# Artificial Cognitive Systems

Module 6: Development and Learning

Lecture 3: Development from the perspective of psychology

David Vernon
Carnegie Mellon University Africa

www.vernon.eu

## Two types of natural species

#### Precocial

- Born with well-developed behaviours, skills, and abilities direct result of their genetic make-up (phylogeny)
- After birth, these abilities are honed and tuned but they don't change greatly over their lifetime



## Two types of natural species:

#### **Altricial**

- Born with poor or undeveloped behaviours and skills & highlydependent for support
- Acquire complex cognitive skills over their life-time through ontogenetic development



### Two types of natural species:

- Should view the precocial and altricial as two ends of a spectrum
- The goal is to strike the right balance between precocial and atricial
  - balance between innate and developmental potential
- Identify the appropriate phylogenetic configuration
  - i.e. cognitive architecture that will support subsequent development

#### Goal-directed and Prospective Nature of Action

- Movements of biological organisims are organized as actions not reactions
- Reactions: response to earlier events
- Actions:
  - Initiated by a motivated agent
  - Defined by goals
  - Guided by prospective information
  - Organized by goals not the trajectory or the movement

### Core Cognitive Abilities in Infants

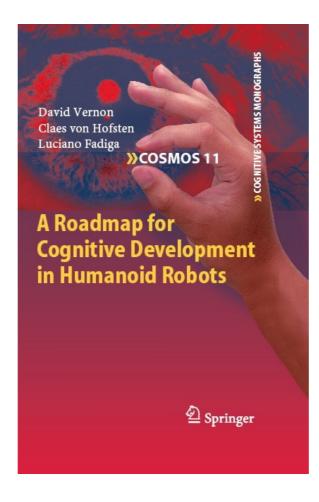
- Core knowledge systems
  - Basis of representations of objects, people, places
    - Object-like:

complete connected solid bodies that maintain identity over time persist through occlusion

### Core Cognitive Abilities in Infants

- Core knowledge systems
  - Two core systems for numbers:
    - Small exact numbers: discriminate 1 vs 2; 2 vs 3; not higher
    - Approximate numbers in sets
    - Discriminate without counting: subitization (independent of modality)

### Core Cognitive Abilities in Infants


- Very attracted to sounds, movements, features of human face
- Look longer at a face that makes eye contact (mutual gaze)
- Turn-taking
- Imitation of facial gestures

#### Core Cognitive Abilities in Infants

- Navigation and orientation
  - Adults: combine non-geometric (e.g. colour) with geometric information
  - Young children rely only on geometry
  - Momentary rather than enduring
  - Egocentric rather than geocentric
  - Capacity for path integration (cumulatively basing next step on previous ones) by recognizing landmarks rather than forming global representations of scenes

#### Ontogeny

- The path that development takes in scaffolding these abilities
- Anticipatory, prospectively-controlled goal-directed repertoire of possible actions
- Begins with actions that have minimal prospection
- Progresses to more complex and more prospective actions
  - Head-hand-eye coordination
  - Manual and bi-manual manipulation
  - Inter-agent interaction
  - Imitation
  - Communication (gestural and vocal)



36 design requirements for a developmental cognitive architecture

| Requirements for an Emergent Developmental Cognitive Architecture |                                                                             |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Embodiment                                                        |                                                                             |  |
| 1                                                                 | Rich array of physical sensory and motor interfaces                         |  |
| 2                                                                 | Humanoid morphology                                                         |  |
| 3                                                                 | Morphology integral to the model of cognition                               |  |
| Perception                                                        |                                                                             |  |
| 4                                                                 | Attention fixated on the goal of an action                                  |  |
| 5                                                                 | Perception of objecthood                                                    |  |
| 6                                                                 | Discrimination & addition of small numbers; groups of large numbers         |  |
| 7                                                                 | Attraction to people (faces, their sounds, movements, and features)         |  |
| 8                                                                 | Preferential attention to biological motion                                 |  |
| 9                                                                 | Recognition of people, expression, and action                               |  |
| 10                                                                | Prolonged attention when a person engages in mutual gaze                    |  |
| 11                                                                | Perceive & communicate emotions by facial gesture and engage in turn-taking |  |
| 12                                                                | Involvement of the motor system in discrimination between percepts          |  |
| 13                                                                | Mechanism to learn hierarchical representations                             |  |
| 14                                                                | Mechanism for spatial attention                                             |  |
| 15                                                                | Mechanism for selective attention                                           |  |
| Action                                                            |                                                                             |  |
| 16                                                                | Movements organized as actions                                              |  |
| 17                                                                | Early movements constrained to reduce the number of degrees of freedom      |  |
| 18                                                                | Navigation based on dynamic ego-centric path integration                    |  |
| 19                                                                | Re-orientation based on local landmarks                                     |  |
| 20                                                                | Action selection modulated by affective motivation mechanisms               |  |
| 21                                                                | Hierarchically-structured representations of action-sequence skills         |  |

| Anticipation |                                                                                    |  |
|--------------|------------------------------------------------------------------------------------|--|
| 22           | Internal simulation to predict, explain, & imagine events, and scaffold knowledge) |  |
| Adaptation   |                                                                                    |  |
| 23           | Self-modification to expand actions and improve prediction                         |  |
| 24           | Autonomous generative model construction                                           |  |
| 25           | Learning affordances                                                               |  |
| 26           | Grounding internal simulations in actions                                          |  |
| 27           | Learn from experience the motor skills associated with actions                     |  |
| 28           | Transient and generalized episodic memories of past experiences                    |  |
| 29           | Procedural memory of actions and outcomes associated with episodic memories        |  |
| Motivation   |                                                                                    |  |
| 30           | Social and exploratory motives                                                     |  |
| 31           | Affective drives associated with autonomy-preserving processes of homeostasis      |  |
| Autonomy     |                                                                                    |  |
| 32           | Autonomy-preserving processes of homeostasis                                       |  |
| 33           | Encode space in motor & goal specific manner                                       |  |
| 34           | Minimal set of innate behaviours for exploration and survival                      |  |
| 35           | Separate representations associated with each sub-system                           |  |
| 36           | Concurrent competitive operation of subsystems                                     |  |

# Desiderata for Developmental Cognitive Architectures

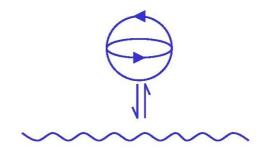
Desideratum 1. Value systems, drives, motivation

Desideratum 2. Physical embodiment

Desideratum 3. Sensorimotor contingencies

Desideratum 4. Perception

Desideratum 5. Attention


Desideratum 6. Prospective action

Desideratum 7. Declarative & procedural memory

Desideratum 8. Multiple modes of learning

Desideratum 9. Internal simulation

Desideratum 10. Constitutive autonomy





#### Biologically Inspired Cognitive Architectures

Volume 18, October 2016, Pages 116-127

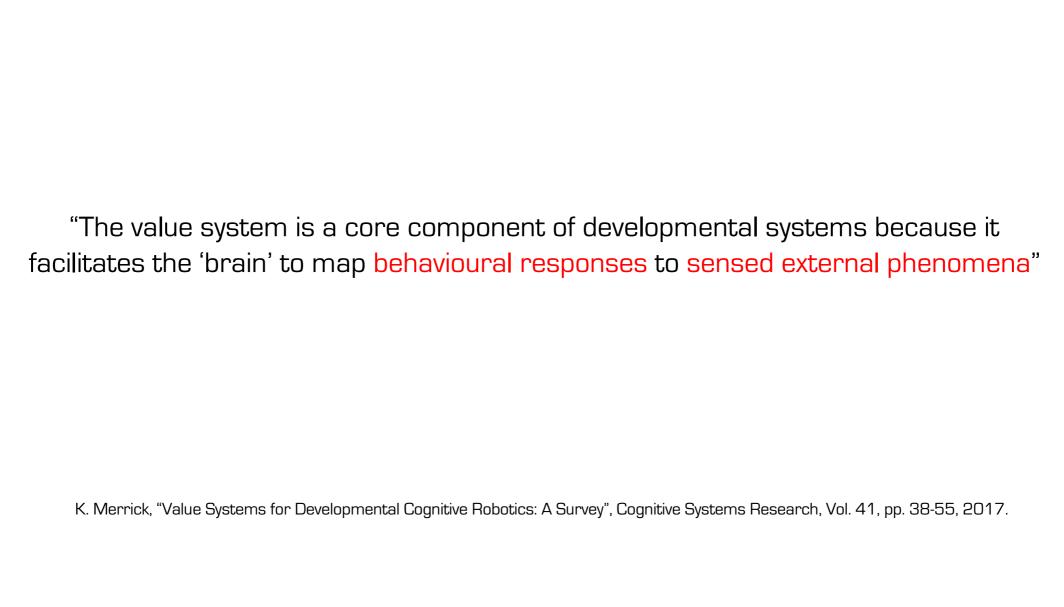


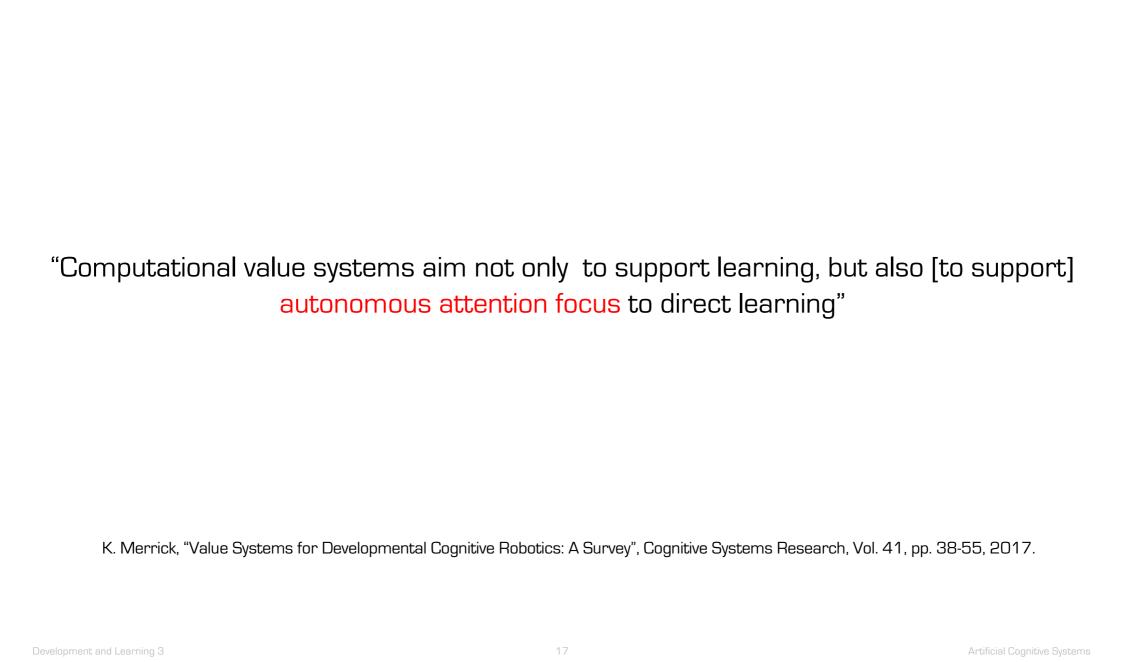
Research article

Desiderata for developmental cognitive architectures

David Vernon<sup>a.</sup> ♣ · ☑, Claes von Hofsten<sup>b</sup>, Luciano Fadiga<sup>c, d</sup>

http://dx.doi.org/10.1016/j.bica.2016.10.004


Get rights and content


Artificial Cognitive Systems

Phylogeny (Cognitive Architecture)

Ontogeny
(Learning & Development + Motivation)

Drives
Value System
(Merrick 2017)





## Reading

Vernon, D. Artificial Cognitive Systems - A Primer, MIT Press, 2014, Chapter 6

Merrick, K. E. Value Systems for Developmental Cognitive Robotics, Cognitive Systems Research, Vol. 41, Issue C (2017).

## Further Reading

- Merrick, K. E. A Comparative Study of Value Systems for Self-motivated Exploration and Learning by Robots, IEEE Transactions on Autonomous Mental Development, Vol. 2, No. 2, 119–131 (2010).
- Vernon, D., von Hofsten, C., and Fadiga, L. A Roadmap for Cognitive Development in Humanoid Robots, Cognitive Systems Monographs (COSMOS), Springer, ISBN 978-3-642-16903-8 (2010); Chapter 6.
- Vernon, D., von Hofsten, C. and Fadiga, L. "Desiderata for Developmental Cognitive Architectures", Biologically Inspired Cognitive Architectures, Vol. 18, pp. 116-127 (2016).