Applied Computer Vision

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu www.vernon.eu

Lecture 11

Image Features

Harris and interest point operator

Approaches to Object Recognition

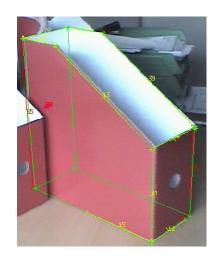
Generic Gestalt Principles

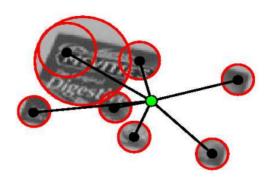
- The world is structured, extract features
- perceptual grouping

- CAD model of object
- Geometric features
- Locate features and their arrangement

Appearance based

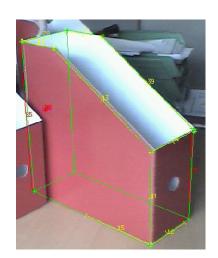
- Interest points / point features
- or "whole" object

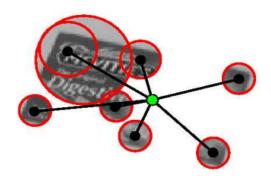




Approaches to Object Recognition

- Point features
 - Key point features
 - Interest points
 - Corners
- Find features in one image and track
- Find features in all images and match





Objects and Interest Points (IPs)

1. Feature detection

Extract interest points (unique image regions)

2. Feature description
Calculate local
(invariant) descriptors

- 3. Feature matching / feature tracking Find correspondences
- 4. Find similar image regions/objects

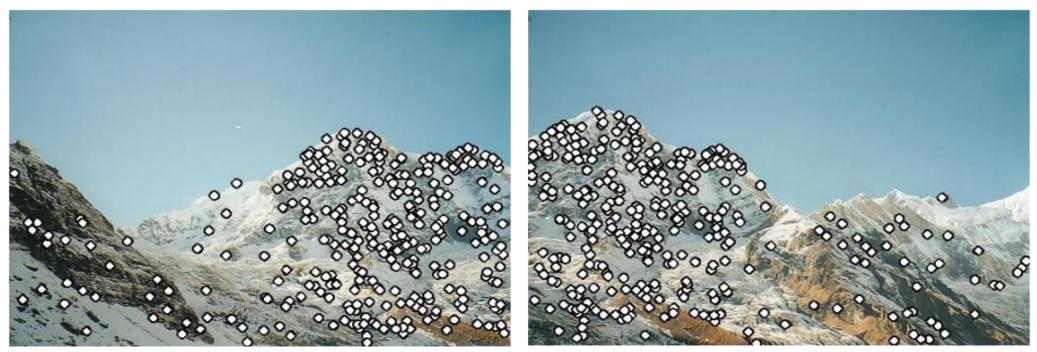
Example: Object Recognition for Image Stitching

- How to recognize the same objects or parts of objects in different images?
- Example: Panorama putting many images together

Credit: Markus Vincze, Technische Universität Wien

Image Stitching: Interest Points (IPs)

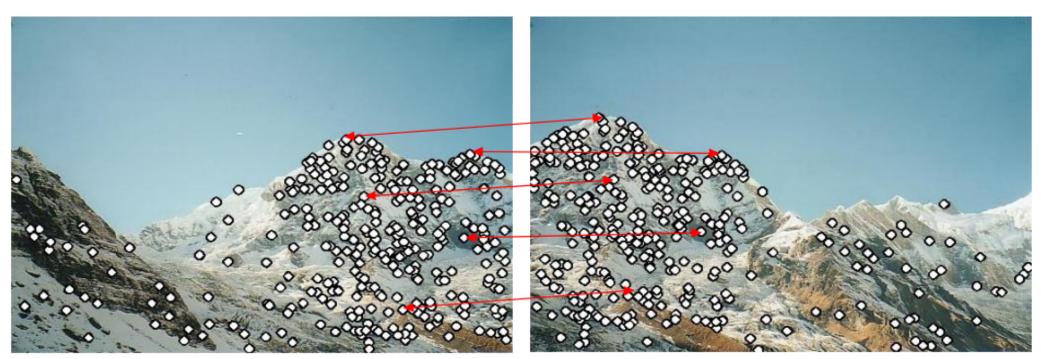
- Recognition of features in both images
- Finding of corresponding point pairs



Credit: Markus Vincze, Technische Universität Wien

Image Stitching: Matching

- Recognition of features in both images
- Finding of corresponding point pairs
- Use points to put image together → panorama



Credit: Markus Vincze, Technische Universität Wien

Image Stitching: Matching

- Recognition of features in both images
- Finding of corresponding point pairs
- Use points to put image together → panorama

Credit: Markus Vincze, Technische Universität Wien

Matching with Features

Problem 1:

Detection of the same point pair independently in two images

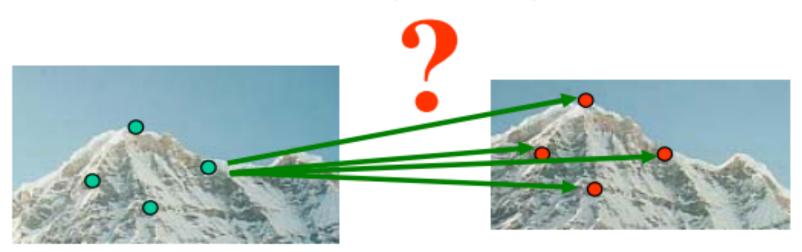
- Here: not the same points, no match
- Need: reliable and distinctive point descriptor

Matching with Features

Problem 2:

For every point in the image, find the corresponding point in the other image

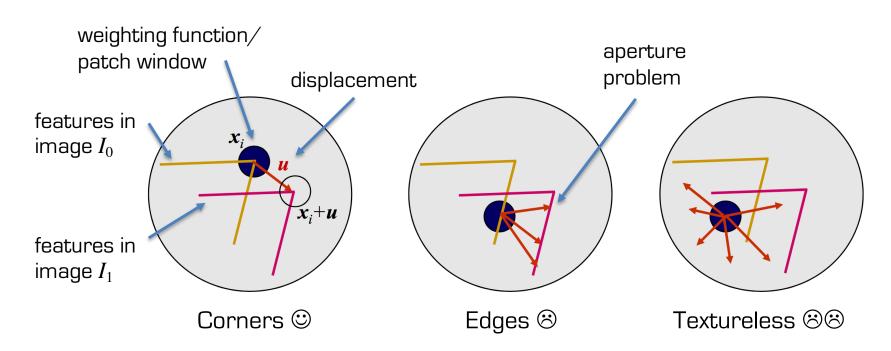
- Here: which point on the right is correct?
- Need: reliable and distinctive point descriptor



Many different approaches

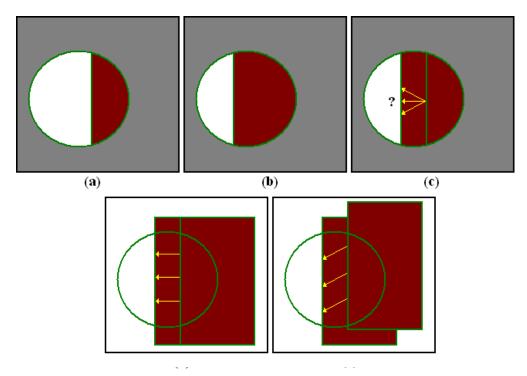
- Corner detector: Harris (1988), Hessian
- Multi-scale corner detector with scale selection
 - Scale invariant Harris and Hessian corners
 - Difference of Gaussian (DoG) (Lowe 2004)
- Affine covariant Regions
 - Harris-Affine (Mikolajczyk, Schmid '02, Schaffalitzky, Zisserman '02)
 - Hessian-Affine (Mikolajczyk and Schmid '02)
 - Maximally stable extremal regions (MSER) (Matas et al. '02)
 - Intensity based regions (IBR) (Tuytelaars and Van Gool '00)
 - Edge based regions (EBR) (Tuytelaars and Van Gool '00)
 - Entropy-based regions (salient regions) (Kadir et al. '04)
 - Features from accelerated segment test (FAST) (Rosten et al. '05)

- Textureless patches are almost impossible to localize
- Patches with high contrast (gradient) are easier to localize
- Straight-line segments suffer from the aperture problem



Credit: Szelisky 2010

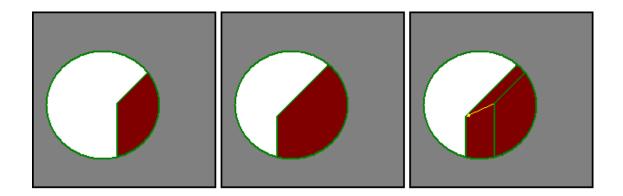
- Aperture problem with edges
- Given two images (a) and (b) taken at different times, determine the movement of edge points from frame 1 to frame 2 (c) ...



Credit: Kenneth Dawson-Howe, A Practical Introduction to Computer Vision with OpenCV, © Wiley & Sons Inc. 2014

Use corners / point features / interest points

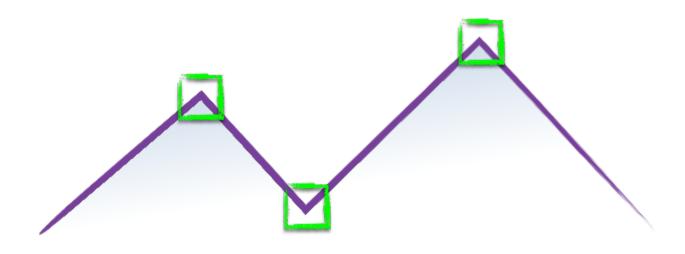
- corner ... intersection of two edges
- interest point ... any feature that can be robustly detected



Credit: Kenneth Dawson-Howe, A Practical Introduction to Computer Vision with OpenCV, © Wiley & Sons Inc. 2014

How do you find a corner?

[Moravec 1980]

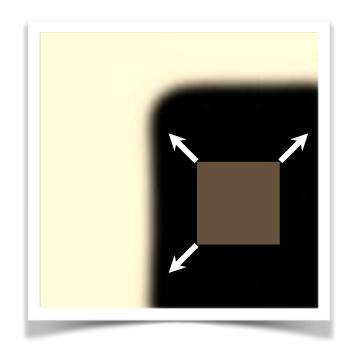


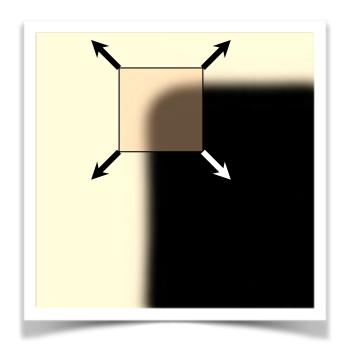
Easily recognized by looking through a small window

Shifting (displacing) the window should give large change in intensity

Easily recognized by looking through a small window

Shifting (displacing) the window should give large change in intensity





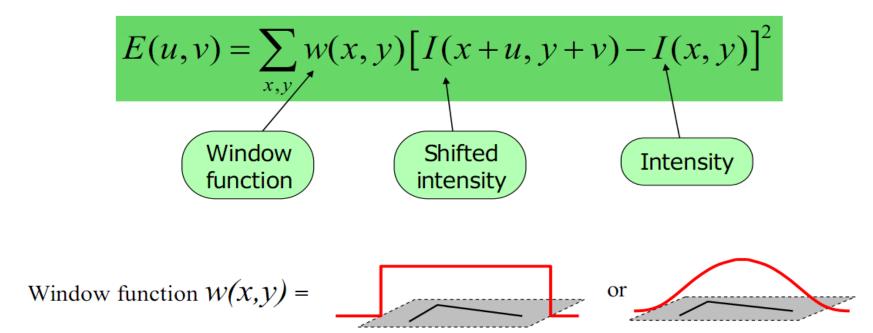
"flat" region: no change in all directions

"edge":
no change along the edge
direction

"corner": significant change in all directions

Autocorrelation function

How well an image patch matches itself as a function of a small displacement (sum of squared differences in a region window)



Credit: Markus Vincze, Technische Universität Wien

1 in window, 0 outside

Gaussian

For small shifts [u, v] we have a bilinear approximation

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u\\v \end{bmatrix}$$

where M is the 2×2 autocorrelation matrix computed from image derivatives I_x and I_x

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

To see why, let's consider the following

Also known as the covariance matrix

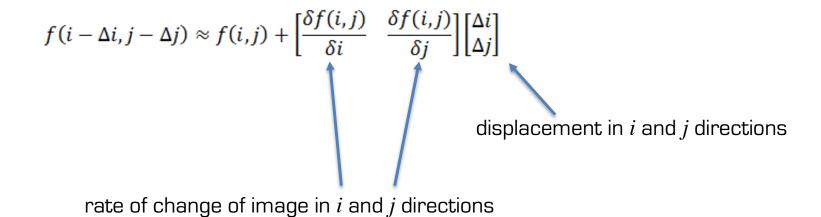
Consider the intensity variation for a displacement $(\Delta i, \Delta j)$ as sum of squared differences SSD

assuming a box weighting / windowing function w

$$SSD_{W}(\Delta i, \Delta j) = \sum_{(i,j) \in W} (f(i,j) - f(i - \Delta i, j - \Delta j))^{2}$$

Consider the intensity variation for a displacement $(\Delta i, \Delta j)$ as sum of squared differences SSD

Approximating the displaced image as follows



Credit: Kenneth Dawson-Howe, A Practical Introduction to Computer Vision with OpenCV, © Wiley & Sons Inc. 2014

Consider the intensity variation for a displacement $(\Delta i, \Delta j)$ as sum of squared differences SSD

Substituting terms and simplifying

$$SSD_{W}(\Delta i, \Delta j) = \sum_{(i,j) \in W} \left(f(i,j) - f(i,j) - \left[\frac{\delta f(i,j)}{\delta i} \quad \frac{\delta f(i,j)}{\delta j} \right] \begin{bmatrix} \Delta i \\ \Delta j \end{bmatrix} \right)^{2}$$

$$SSD_{W}(\Delta i, \Delta j) = \sum_{(i,j) \in W} \left(\left[\frac{\delta f(i,j)}{\delta i} \quad \frac{\delta f(i,j)}{\delta j} \right] \left[\frac{\Delta i}{\Delta j} \right] \right)^{2}$$

$$SSD_{W}(\Delta i, \Delta j) = \sum_{(i,j) \in W} \left(\begin{bmatrix} \Delta i & \Delta j \end{bmatrix} \left(\begin{bmatrix} \frac{\delta f(i,j)}{\delta i} \\ \frac{\delta f(i,j)}{\delta j} \end{bmatrix} \begin{bmatrix} \frac{\delta f(i,j)}{\delta i} & \frac{\delta f(i,j)}{\delta j} \end{bmatrix} \right) \begin{bmatrix} \Delta i \\ \Delta j \end{bmatrix} \right)$$

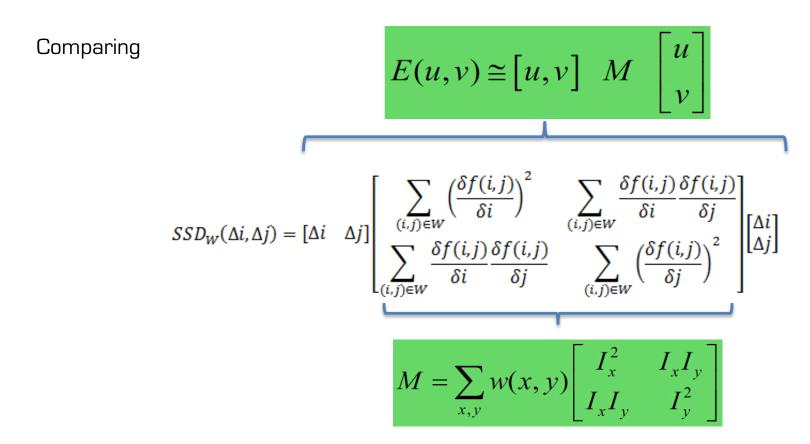
Credit: Kenneth Dawson-Howe, A Practical Introduction to Computer Vision with OpenCV, © Wiley & Sons Inc. 2014

Consider the intensity variation for a displacement $(\Delta i, \Delta j)$ as sum of squared differences SSD

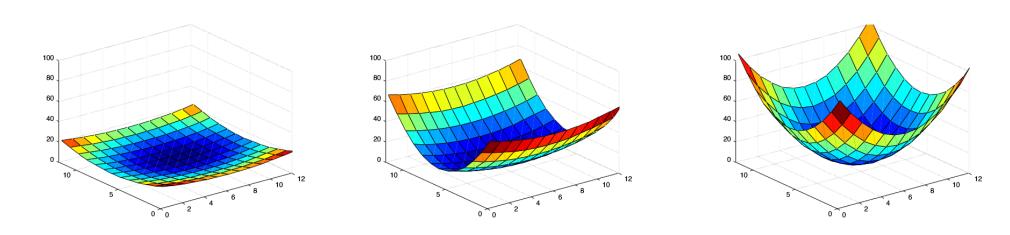
Rearranging

$$SSD_{W}(\Delta i, \Delta j) = \begin{bmatrix} \Delta i & \Delta j \end{bmatrix} \begin{bmatrix} \sum\limits_{(i,j) \in W} \left(\frac{\delta f(i,j)}{\delta i}\right)^{2} & \sum\limits_{(i,j) \in W} \frac{\delta f(i,j)}{\delta i} \frac{\delta f(i,j)}{\delta j} \\ \sum\limits_{(i,j) \in W} \frac{\delta f(i,j)}{\delta i} \frac{\delta f(i,j)}{\delta j} & \sum\limits_{(i,j) \in W} \left(\frac{\delta f(i,j)}{\delta j}\right)^{2} \end{bmatrix} \begin{bmatrix} \Delta i \\ \Delta j \end{bmatrix}$$

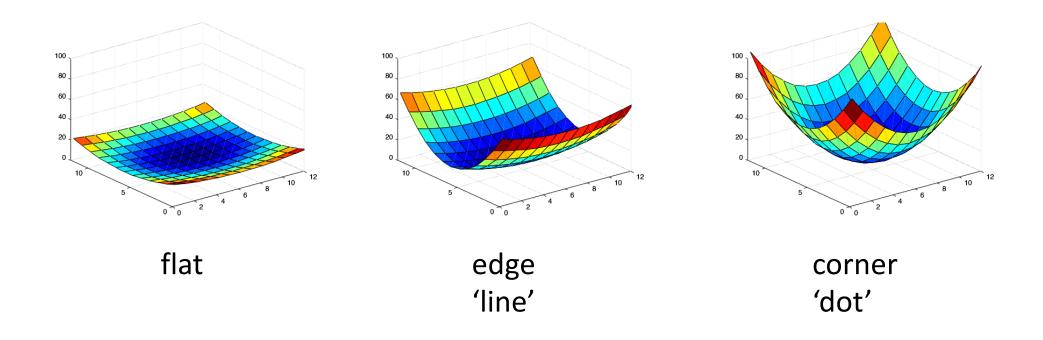
Consider the intensity variation for a displacement $(\Delta i, \Delta j)$ as sum of squared differences SSD

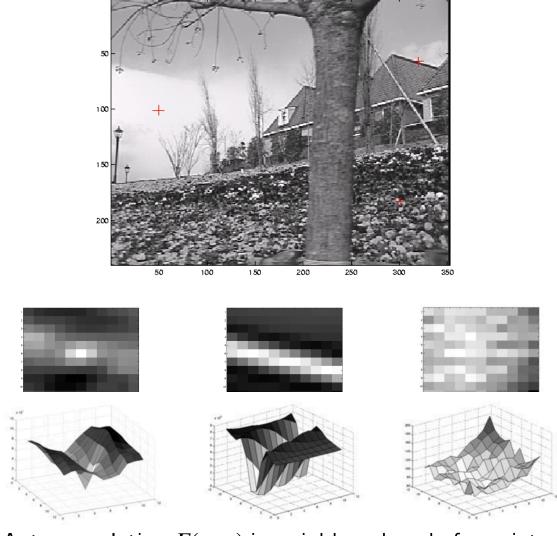


Which error surface indicates a good image feature?



What kind of image patch do these surfaces represent?

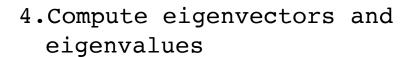


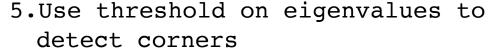


Autocorrelation E(u, v) in neighbourhood of a point

Credit: Szeliski 2010

- 1.Compute image gradients over small region
- 2.Subtract mean from each image gradient



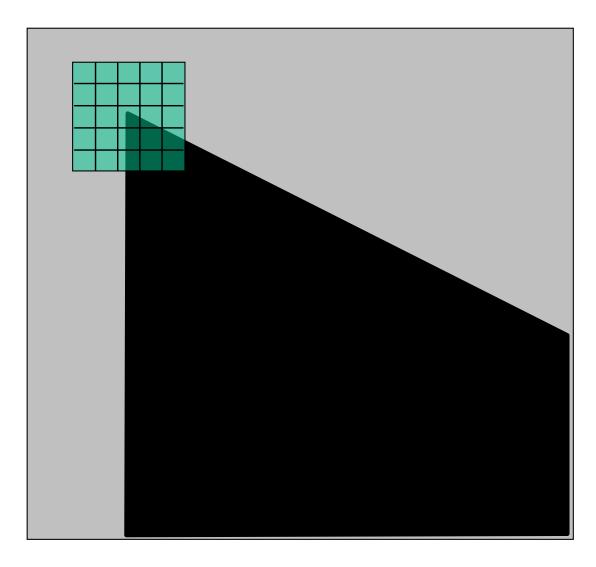


$$I_x = \frac{\partial I}{\partial x}$$

$$I_y = \frac{\partial I}{\partial y}$$

$$\left[\begin{array}{ccc} \sum\limits_{p \in P} I_x I_x & \sum\limits_{p \in P} I_x I_y \\ \sum\limits_{p \in P} I_y I_x & \sum\limits_{p \in P} I_y I_y \end{array}\right]$$

1. Compute image gradients over a small region (not just a single pixel)



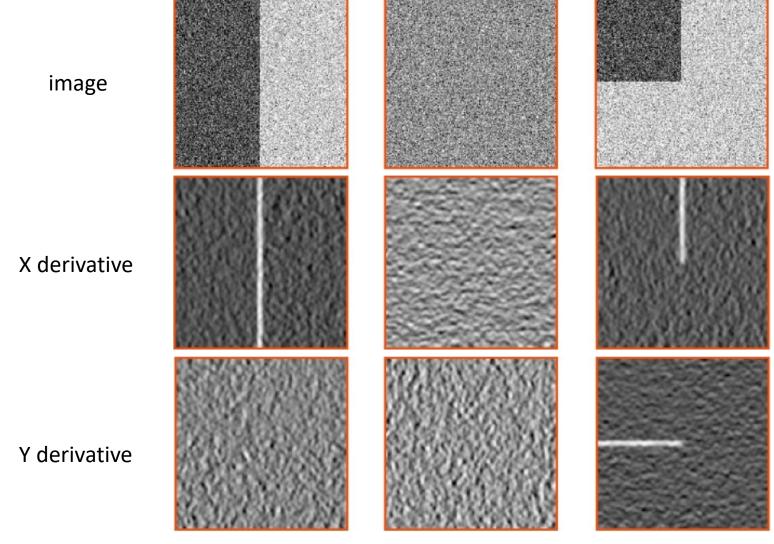
array of x gradients

$$T_x = \frac{\partial I}{\partial x}$$

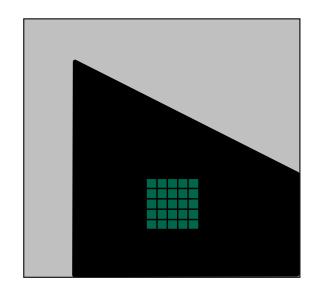
array of y gradients

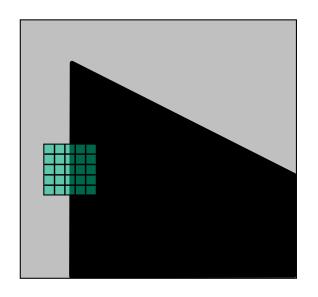
$$I_y = \frac{\partial I}{\partial y}$$

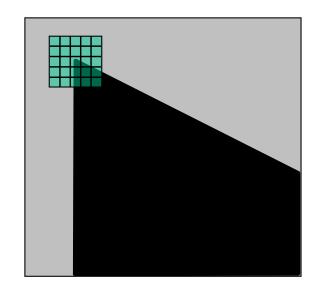
Credit: Kris Kitani, Carnegie Mellon University



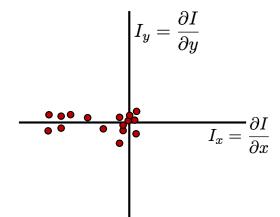
Credit: Kris Kitani, Carnegie Mellon University

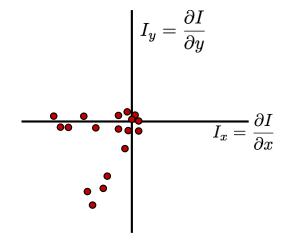




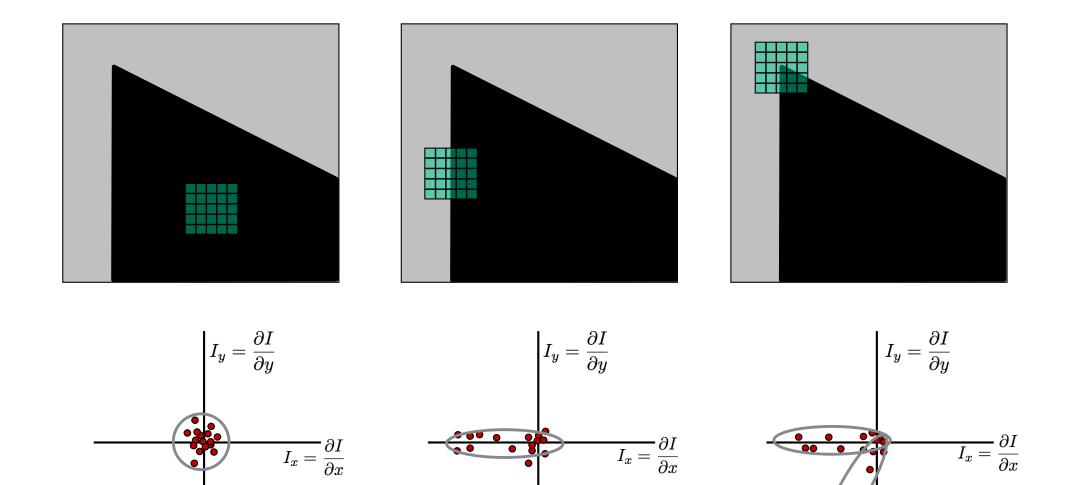




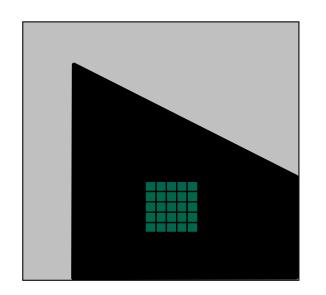


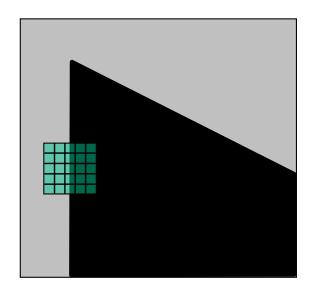


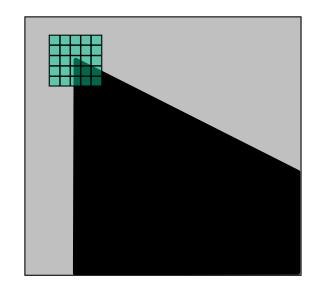
What does the distribution tell you about the region?

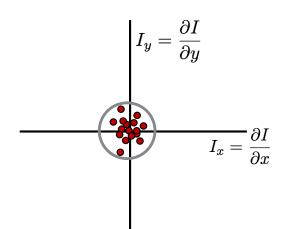


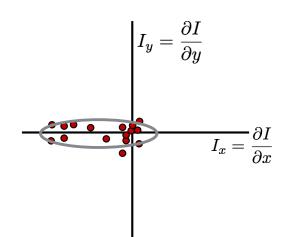
Distribution reveals edge orientation and magnitude

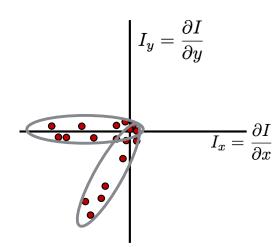








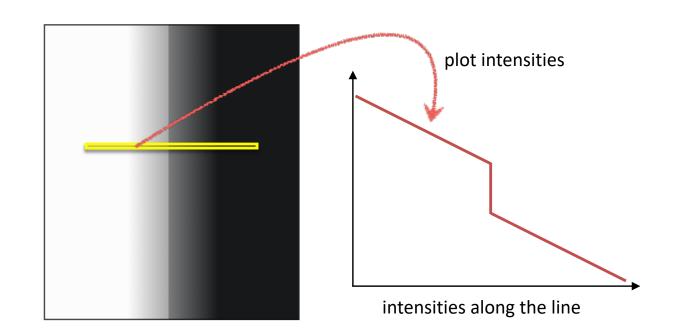




How do you quantify orientation and magnitude?

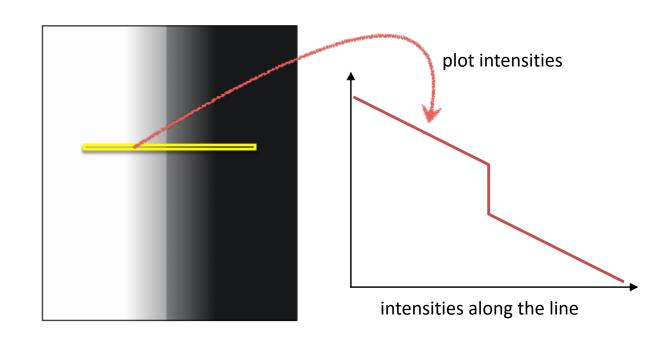
2. Subtract the mean from each image gradient

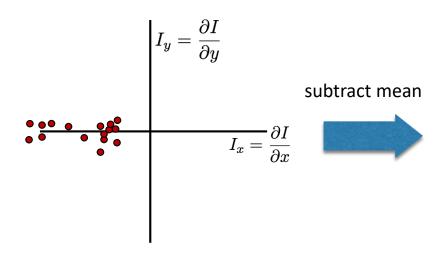
constant intensity gradient



2. Subtract the mean from each image gradient

constant intensity gradient

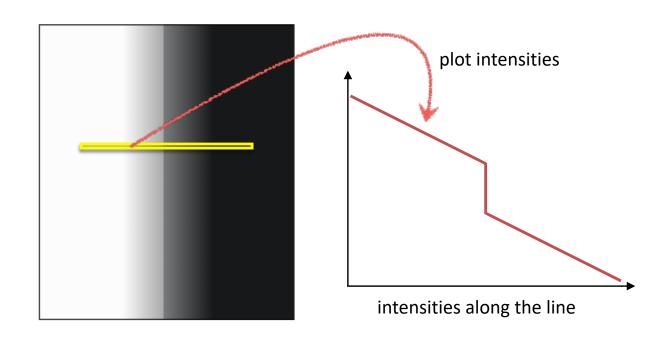


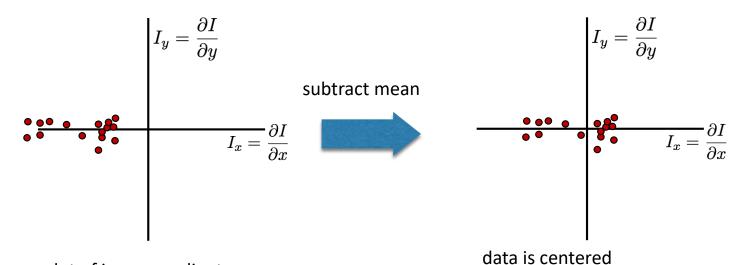


plot of image gradients

2. Subtract the mean from each image gradient

constant intensity gradient



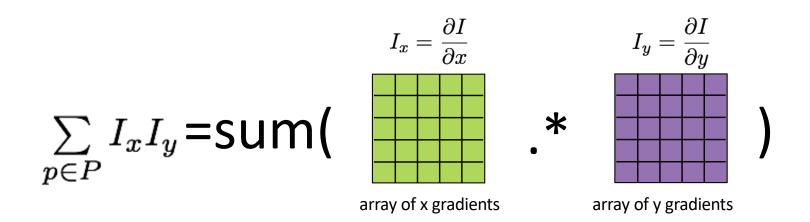


plot of image gradients

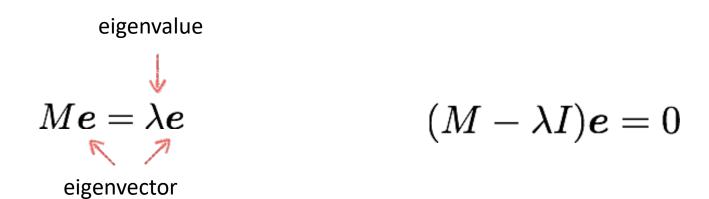
ts Credit: Kris Kitani, Carnegie Mellon Universit('DC' offset is removed)

3. Compute the covariance matrix

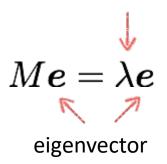
$$\left[\begin{array}{ccc} \sum\limits_{p\in P}I_xI_x & \sum\limits_{p\in P}I_xI_y \\ \sum\limits_{p\in P}I_yI_x & \sum\limits_{p\in P}I_yI_y \end{array}\right]$$



Where does this covariance matrix come from?



eigenvalue



$$(M - \lambda I)\mathbf{e} = 0$$

1. Compute the determinant of

(returns a polynomial)

$$M - \lambda I$$

eigenvalue

$$Moldsymbol{e}=\lambdaoldsymbol{e}$$
 eigenvector

$$(M - \lambda I)\mathbf{e} = 0$$

1. Compute the determinant of

(returns a polynomial)

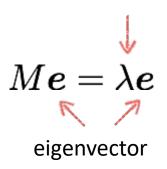
 $M - \lambda I$

2. Find the roots of polynomial

(returns eigenvalues)

$$\det(M - \lambda I) = 0$$

eigenvalue



$$(M - \lambda I)\mathbf{e} = 0$$

1. Compute the determinant of

(returns a polynomial)

 $M - \lambda I$

2. Find the roots of polynomial

(returns eigenvalues)

 $\det(M - \lambda I) = 0$

3. For each eigenvalue, solve

(returns eigenvectors)

$$(M - \lambda I)\mathbf{e} = 0$$

Credit: Kris Kitani, Carnegie Mellon University

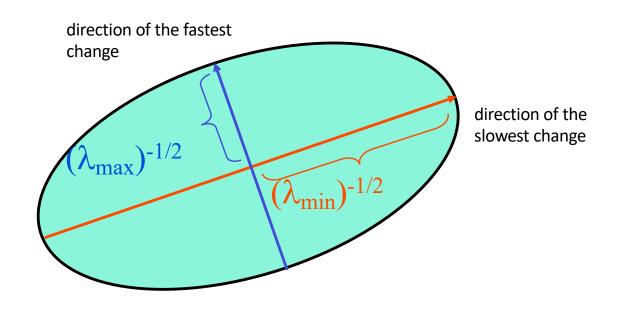
Since M is symmetric, we have

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Ellipse equation:

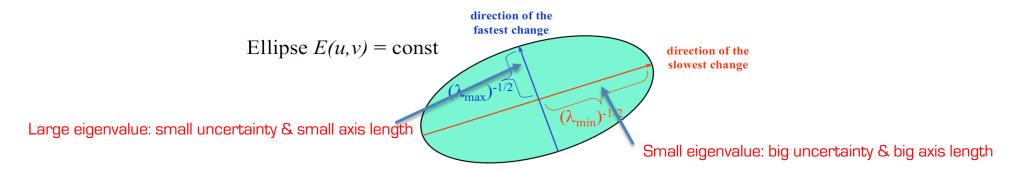
$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$



Credit: Kris Kitani, Carnegie Mellon University

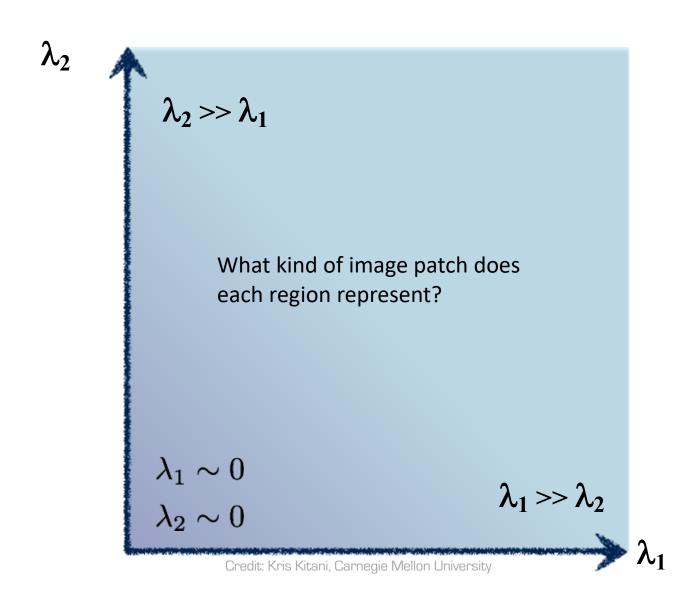
Eigenvalue analysis of M

- Eigenvalues λ_1 and λ_2 of M indicate maximum and minimum directions of gradient, respectively
- Larger uncertainty depends on the smaller eigenvalue
 - Find points where the value of the smaller eigenvalue is large (i.e. where both eigenvalues are large)
 - These indicate good features to track, i.e. corners

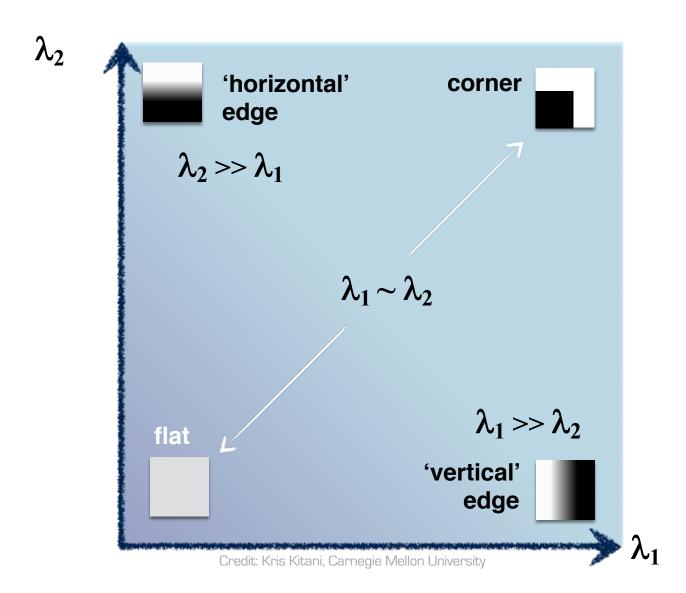


Credit: Markus Vincze, Technische Universität Wien

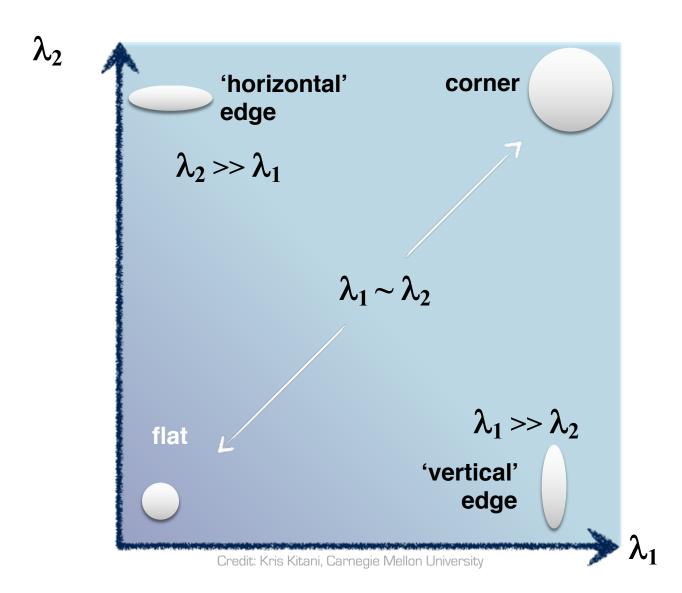
Interpreting eigenvalues

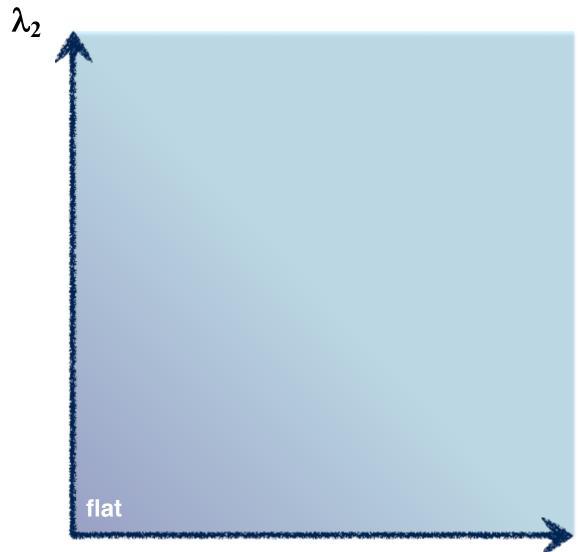


Interpreting eigenvalues

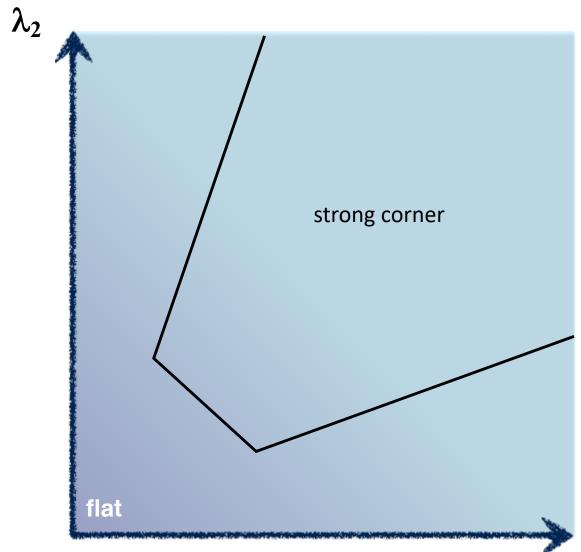


Interpreting eigenvalues



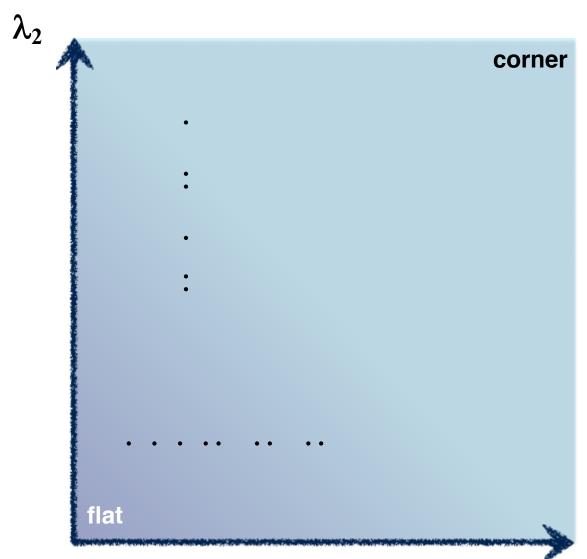


Think of a function to score 'cornerness'



Think of a function to score 'cornerness'

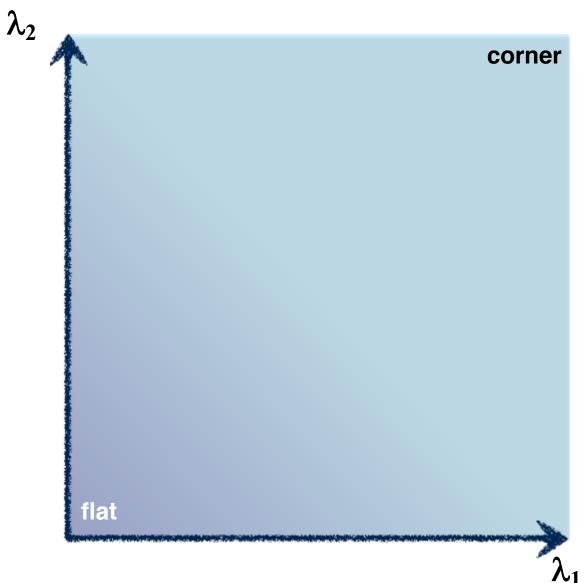
(a function of)



Use the smallest eigenvalue as the response function

$$R = \min(\lambda_1, \lambda_2)$$

(a function of)

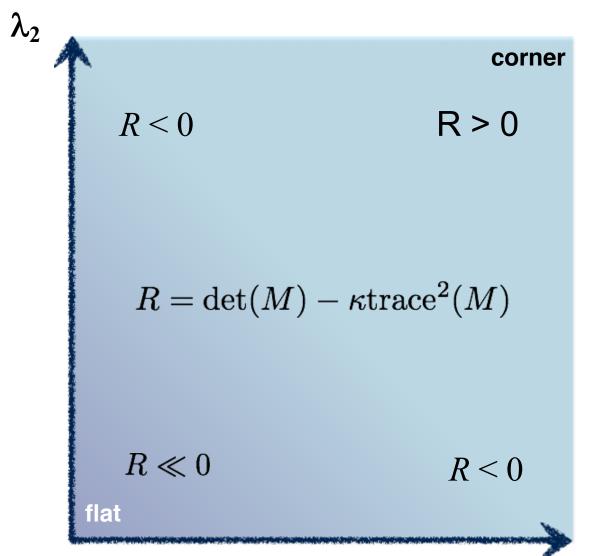


Eigenvalues need to be bigger than one.

$$R = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$$

Can compute this more efficiently...

(a function of)



$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

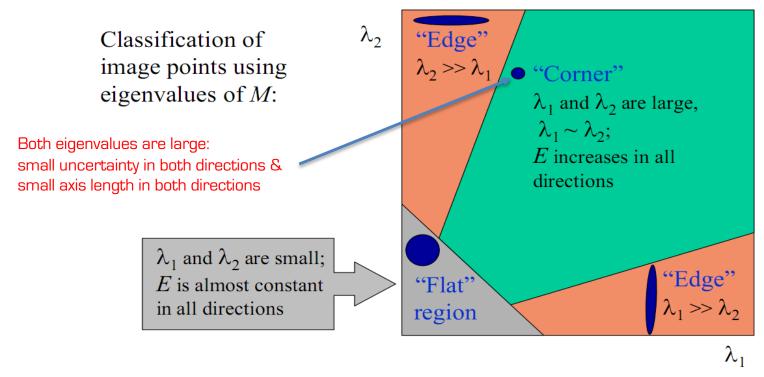
$$\det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = ad - bc$$

$$\operatorname{trace} \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = a + d$$

Summary

Intensity change in shifting window: eigenvalue analysis

Eigenvalues. λ_1 and λ_2 of M indicate max and min directions of gradient



Credit: Markus Vincze, Technische Universität Wien

Summary

Measure of "cornerness" without computing eigenvalues explicitly:

Maximize det M

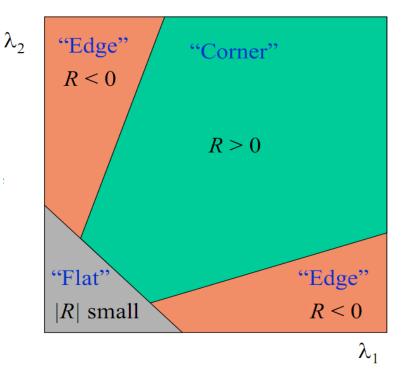
$$R = \det M - k \left(\operatorname{trace} M \right)^2$$

$$\det M = \lambda_1 \lambda_2$$
$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

(k - empirical constant, k = 0.04-0.06)

Summary

- R is negative for edges
- R is small for flat regions
- Find points with large measure of cornerness (R > threshold)
- Take points that are local maxima in R



Harris & Stephens (1988)

$$R = \det(M) - \kappa \operatorname{trace}^2(M)$$

Kanade & Tomasi (1994)

$$R = \min(\lambda_1, \lambda_2)$$

Nobel (1998)

$$R = \frac{\det(M)}{\operatorname{trace}(M) + \epsilon}$$

Credit: Kris Kitani, Carnegie Mellon University

Harris Detector

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." 1988.

1. Compute x and y derivatives of image

$$I_{x} = G_{\sigma}^{x} * I \qquad I_{y} = G_{\sigma}^{y} * I$$

2. Compute products of derivatives at every pixel

$$I_{x^2} = I_x \cdot I_x$$
 $I_{y^2} = I_y \cdot I_y$ $I_{xy} = I_x \cdot I_y$

Compute the sums of the products of derivatives at each pixel

$$S_{x^2} = G_{\sigma'} * I_{x^2}$$
 $S_{y^2} = G_{\sigma'} * I_{y^2}$ $S_{xy} = G_{\sigma'} * I_{xy}$

Harris Detector

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." 1988.

4. Define the matrix at each pixel

$$M(x,y) = \begin{bmatrix} S_{x^2}(x,y) & S_{xy}(x,y) \\ S_{xy}(x,y) & S_{y^2}(x,y) \end{bmatrix}$$

5. Compute the response of the detector at each pixel

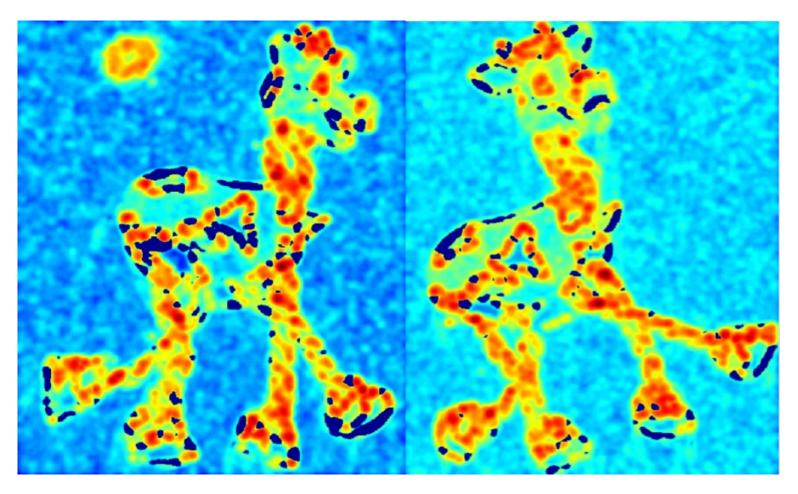
$$R = \det M - k (\operatorname{trace} M)^2$$

6. Threshold on value of R; compute non-max suppression.

Same object with different illumination and pose

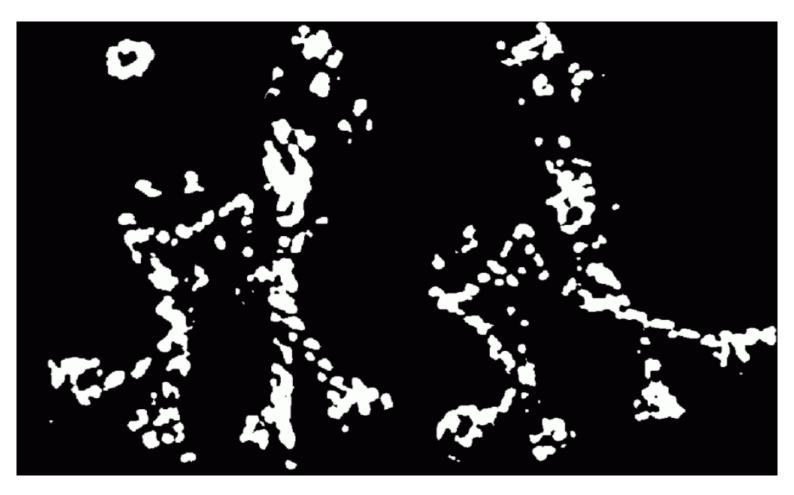
Credit: Markus Vincze, Technische Universität Wien

R values



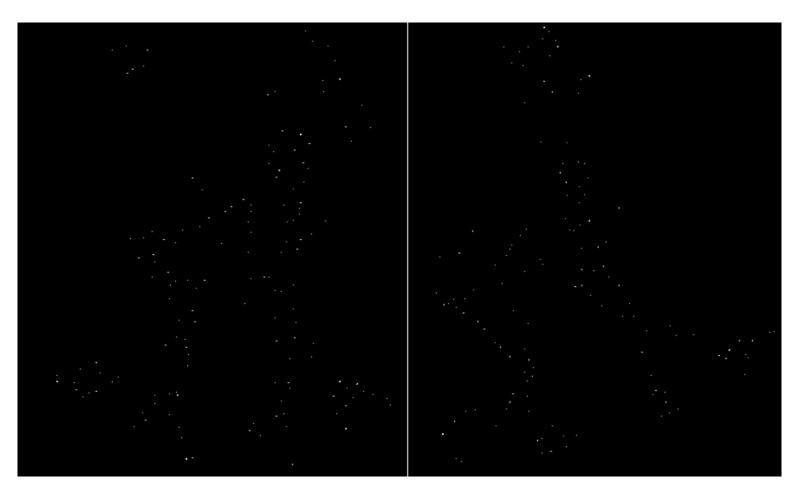
Credit: Markus Vincze, Technische Universität Wien

Points (regions) with R larger than a threshold



Credit: Markus Vincze, Technische Universität Wien

Local maxima



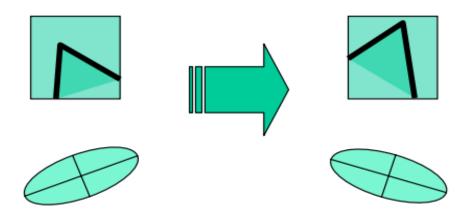
Credit: Markus Vincze, Technische Universität Wien

Detected corner points

Credit: Markus Vincze, Technische Universität Wien

Properties

- Rotation invariant: corner response is invariant to image rotation
- Ellipse rotates with the corner but the shape and size (i.e. the eigenvalues) remain unchanged

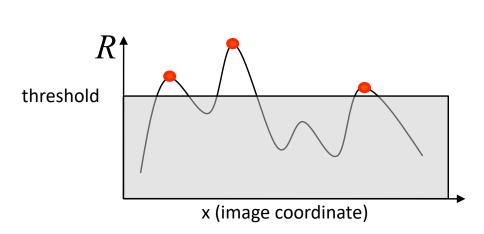


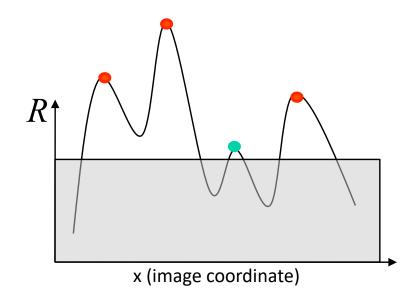
Credit: Markus Vincze, Technische Universität Wien

Partial invariance to affine intensity change

Only derivatives are used \Rightarrow invariance to intensity shift $I \rightarrow I + b$

Intensity scale: $I \rightarrow a I$





Credit: Kris Kitani, Carnegie Mellon University

The Harris	corner de	tector no	t invarian	t to char	nges in

Demos

The following code is taken from the harrisCornerDetection project in the lectures directory of the ACV repository

See:

harrisCornerDetection.h harrisCornerDetectionImplementation.cpp harrisCornerDetectionApplication.cpp

```
Example use of openCV to find interest point features using the Harris corner detector
  Implementation file
      http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html?highlight=cornerharris#cornerharris
      http://docs.opencv.org/2.4/modules/features2d/doc/common interfaces of feature detectors.html#goodfeaturestotrackdetector
  David Vernon
  24 June 2017
*/
#include "harrisCornerDetection.h"
 * function harrisCornerDetection
 * Trackbar callback - set maximum number of corners / interest points
 * Trackbar callback - set minimum distance between matched points
 * Trackbar callback - set block size over which to compute gradients
*/
void harrisCornerDetection(int, void*) {
   extern Mat src;
   extern int num_corners;
   extern int quality level;
   extern int    min distance;
   extern int block size;
   extern char* feature_location_window_name;
   extern char* feature magnitude window name;
```

```
Mat cornerness image; // image of the response to the Harris corner detector
Mat corner image;
                     // image showing the selected Harris interest points
Mat image grey;
vector<KeyPoint> keypoints;
cvtColor(src, image grey, CV BGR2GRAY); // Harris operates on grey-scale images
if (num corners < 1) num corners = 1;// can't define trackbar lower limit so enforce it here</pre>
if (block size < 2) block size = 2; // can't define trackbar lower limit so enforce it here</pre>
if (min distance < 1) min distance = 2; // can't define trackbar lower limit so enforce it here</pre>
/* see http://docs.opencv.org/2.4/modules/imgproc/doc/feature detection.html?highlight=cornerharris#cornerharris */
cornerHarris(image grey,
                          // input
            cornerness_image, // output
                             // blocksize, i.e. the size of region over which to compute the autocorrelation matrix
            block size,
                              // the neighbourhood over which the partial derivatives are computed (using the Sobel operator)
            3,
                          // the Trace multiplier used in the Harris forumula
            0.04);
/* see http://docs.opencv.org/2.4/modules/features2d/doc/common interfaces of feature detectors.html#goodfeaturestotrackdetector */
                                                                      // maximum number of corners to detect
GoodFeaturesToTrackDetector harris detector(num corners,
                                                                     // quality level
                                           0.01,
                                                                     // minimum distance between matched points
                                           min distance,
                                                                     // block size over which to compute the autocorrelation matrix
                                           block size,
                                           true,
                                                                     // true to use Harris; false to use minimum eigenvalue
                                                                     // the Trace multiplier used in the Harris forumula
                                           0.04);
harris detector.detect(image grey,keypoints);
drawKeypoints(src, keypoints, corner image, Scalar( 0, 0, 255 ) );
Mat cornerness display image = convert 32bit image for display(cornerness image);
imshow(feature_magnitude_window_name, cornerness_display_image);
imshow(feature location window name, corner image);
```

Reading

R. Szeliski, Computer Vision: Algorithms and Applications, Springer, 2010.

Section 4.1 Points and Patches

Section 4.1.1 Feature Detectors