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Outline Part 1

♦ Motivation
♦ Appearance based learning and recognition
♦ Subspace methods for visual object recognition
♦ Principal Components Analysis (PCA)
♦ Linear Discriminant Analysis (LDA)
♦ Canonical Correlation Analysis (CCA)
♦ Independent Component Analysis (ICA)
♦ Non-negative Matrix Factorization (NMF)
♦ Kernel methods for non-linear subspaces
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Outline Part 2

♦ Robot localization
♦ Robust representations and recognition
♦ Robust PCA recognition
♦ Scale invariant recognition using PCA
♦ Illumination insensitive recognition
♦ Representations for panoramic images
♦ Incremental building of eigenspaces
♦ Multiple eigenspaces for efficient representation
♦ Robust building of eigenspaces
♦ Research issues
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The name of the game

• complex objects/scenes

• varying pose (3D rotation, scale)

• cluttered background/foreground

• occlusions (noise)

• varying illumination
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Object Representation  

• High-Level Shape Models (e.g., Generalized Cylinders)
• Idealized Images
• Texture Less

• Mid-Level Shape Models (e.g. CAD models, Superquadrics)
• More Complex
• Well-defined geometry 

• Low-level Appearance Based Models (e.g. Eigenspaces)
• Most complex
• Complicated shapes
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Problems

Segmentation:

Pose/Shape:
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Illumination 
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Example 
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Learning and recognition

scene training
images

input 
image

3D 
reconstruction

learning

matching

matching
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Appearance-based approaches

A renewed attention in the appearance-based approaches

Encompass combined effects of:

• shape,

• reflectance properties,

• pose in the scene,

• illumination conditions.

Acquired through an automatic learning phase.
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Appearance-based approaches
A variety of successful applications:

• Human face recognition e.g. [Beymer & Poggio, Turk & Pentland]

• Visual inspection e.g. [Yoshimura & Kanade]

• Visual positioning and tracking of robot manipulators, e.g. [Nayar & 
Murase] 

• Tracking e.g., [Black & Jepson]

• Illumination planning e.g., [Murase & Nayar]

• Image spotting e.g., [Murase & Nayar]

• Mobile robot localization e.g., [Jogan & Leonardis]

• Background modeling e.g., [Oliver, Rosario & Pentland]
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Appearance-based approaches

Objects are represented by a large number of views:
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Subspace Methods

• Images are represented as points in the N-dimensional vector space
• Set of images populate only a small fraction of the space
• Characterize subspace spanned by images 

… … …

Image set Basis images Representation

≈
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Subspace Methods

Properties of the representation:

• Optimal Reconstruction ⇒ PCA

• Optimal Separation ⇒ LDA

• Optimal Correlation ⇒ CCA

• Independent Factors ⇒ ICA

• Non-negative Factors ⇒ NMF

• Non-linear Extension ⇒ Kernel Methods
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Image Matching

Θ>=
||y||||x||

yxT

ρ

Normalized images Ψ<− 2|||| yx

⇒ Compress images
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Eigenspace representation

♦ Image set (normalised, zero-mean)

♦ We are looking for orthonormal basis functions:

♦ Individual image is a linear combination of basis functions
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Best basis functions ν?

♦ Optimisation problem

♦ Taking the k eigenvectors with the largest eigenvalues of

♦ PCA or Karhunen-Loéve Transform (KLT)
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Efficient eigenspace computation

♦ n << m
♦ Compute the eigenvectors u'i, i = 0,...,n-1, of the inner product 

matrix

♦ The eigenvectors of XXT can be obtained by using 
XXTXvi'=λ'iXvi':
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Principal Component Analysis
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Principal Component Analysis

= q1⋅ + q2⋅ + q3⋅ + ...
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Image representation with PCA

u1

u2

u3
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Image presentation with PCA
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Properties PCA

♦ Any point xi can be projected to an appropriate point qi by :
qi = UT(xi - µ)

♦ and conversely (since U-1 = UT)
Uqi + µ = xi

X

Y xi

X

Y

qi

UT(xi-µ)

Uqi + µ
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Properties PCA

♦ It can be shown that the mean square error between xi and its 
reconstruction using only m principle eigenvectors is given by 
the expression :

♦ PCA minimizes reconstruction error

♦ PCA maximizes variance of projection

♦ Finds a more “natural” coordinate system for the sample data.
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PCA for visual recognition and pose estimation
Objects are represented as coordinates in an n-dimensional eigenspace.

An example:

3-D space with points representing individual objects or a manifold 
representing parametric eigenspace (e.g., orientation, pose, 
illumination).
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PCA for visual recognition and pose estimation

♦ Calculate coefficients
♦ Search for the nearest point (individual or on the curve)
♦ Point determines object and/or pose
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Calculation of coefficients

To recover ai the image is projected onto the eigenspace

• Complete image xi is required to calculate ai.

• Corresponds to Least-Squares Solution
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Linear Discriminant Analysis (LDA)

♦ PCA minimizes projection error

PCA-Projection

Best discriminating
Projection

♦ PCA is „unsupervised“ no information on classes is used
♦ Discriminating information might be lost
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LDA

♦ Linear Discriminance Analysis (LDA)

– Maximize distance between classes 
– Minimize distance within a class

Fisher Linear Discriminance
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LDA: Problem formulation

♦ n Sample images: 
♦ c classes:

♦ Average of each class: 

♦ Total average:
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LDA: Practice

♦ Scatter of class i: ( )( )Tik
x
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♦ Within class scatter:

♦ Between class scatter:

♦ Total scatter:
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LDA: Practice 

♦ After projection:

– Between class scatter (of y’s):

– Within class scatter (of y’s):
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Good separation

2S

1S

BS

21 SSSW +=

LDA
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LDA

♦ Maximization of

♦ is given by solution of generalized eigenvalue problem

♦ For the c-class case we obtain (at most) c-1 projections as the 
largest eigenvalues of 
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LDA

♦ How to calculate LDA for high-dimensional images?

♦ Problem: SW is always singular
– Number of pixels in each image is larger than the number of images in 

the training set

1. Fischerfaces Reduce dimension by PCA and then perform 
LDA

2. Simultaneous diagonalization of SW and SB
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LDA

♦ Fischerfaces (Belhumeur et.al. 1997)

♦ Reduce dimensionality to n-c with PCA

♦ Further reduce to c-1 with FLD

♦ The optimal projection becomes
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LDA

♦ Example Fisherface of recognition Glasses/NoGlasses
(Belhumeur et.al. 1997)
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LDA

♦ Example comparison for face recognition (Belhumeur et.al. 1997)

♦ Superior performance than PCA for face recognition
♦ Noise sensitive
♦ Requires larger training set, more sensitive to different training data 

[Martinez&Kak2001]
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Canonical Correlation Analysis (CCA)

♦ Also „supervised“ method but motivated by regression tasks, 
e.g. pose estimation.

♦ Canonical Correlation Analysis relates two sets of 
observations by determining pairs of directions that yield 
maximum correlation between these sets.

♦ Find a pair of directions (canonical factors)      wx∈ ℜ p, wy∈ ℜ q, 
so that the correlation of the projections c = wx

Tx and d = wy
Ty

becomes maximal.
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What is CCA?
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What is CCA? 
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CCA for images

• Same problem as for LDA

• Computationally efficient algorithm based on SVD
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Properties of CCA

• At most min(p,q,n) CCA factors

• Invariance w.r.t. affine transformations

• Orthogonality of the Canonical factors
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CCA Example

0.4 0.3 0.2 0.1 0 0.1 0.2 0.3

0.3
0.2

0.1
0

0.1
0.2

0.3

0.3

0.2

0.1

0

0.1

0.2

0.3

Parametric eigenspace obtained by PCA for 2DoF in pose
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CCA Example

5 4 3 2 1 0 1 2 3 4 50.01

0.008

0.006

0.004

0.002

0

0.002

0.004

0.006

0.008

0.01

CCA representation
(projections of training images onto wx1, wx2)
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Independent Component Analysis (ICA)

♦ ICA is a powerful technique from signal processing (Blind 
Source Separation)

♦ Can be seen as an extension of PCA

♦ PCA takes into account only statistics up to 2nd order

♦ ICA finds components that are statistically independent (or as 
independent as possible)

Local descriptors, sparse coding
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Independent Component Analysis (ICA)

♦ m scalar variables X=(x1 ... xm)T

♦ They are assumed to be obtained as linear mixtures of n 
sources S=(s1 ... sn)T

♦ Task: Given X find A, S (under the assumption that S are 
independent) 

ASX =
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ICA Example

Original Sources

Mixtures

Recovered Sources
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ICA Example

ICA basis obtained
from 16x16 patches
of natural images 
(Bell&Sejnowski 96)
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ICA Algorithms

1. Minimize (Maximize) function
♦ Complex matrix (tensor) functions

2. Adaptive Algorithms based on stochastic gradient
♦ Measure of independence
♦ Non-Gaussian, e.g. Kurtosis, Negentropy

♦ Fast ICA Algorithm (Hyvärinen)
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ICA Properties

♦ ICA works only for Non-Gaussian Sources

♦ Usually centering and Whiteing of data is performed

♦ We can not measure the variance of the components

♦ ICA does not provide ordering

♦ ICA components are not orthogonal

PSAPX 1−=
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ICA for Noise Suppression

♦ Sparse Code Shrinkage (similar to Wavelet Shrinkage 
Hyvärinen 99)
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Face Recognition using ICA

♦ PCA vs. ICA on Ferret DB (Baek et.al. 02)

PCA

ICA
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Non-Negative Matrix Factorization (NMF)

♦ How can we obtain part-based representation?

♦ Local representation where parts are added

♦ E.g. learn from a set of faces the parts a face consists of, i.e. 
eyes, nose, mouth, etc.

♦ Non-Negative Matrix Factorization (Lee & Seung 1999) lead to 
part based representation
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Matrix Factorization - Constraints

V ≈ WH
♦ PCA: W are orthonormal basis vectors

♦ VQ : H are unity vectors

♦ NMF: V,W,H are non-negative
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NMF - Cost functions

♦ Euclidean distance between A and B

♦ Divergence of A from B (Relative entropy)
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NMF - update rules

♦ is non-increasing under

♦ is non-increasing under

♦ We can start with random matrices for W and H and update 
each matrix iteratively until W and H are at a stationary point -
the cost functions are invariant at this point.
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Concrete example – Handwritten Digits

♦ Training data set for learning process
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Learning

Training images Basis images

Find basis images from the training set
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Reconstruction

New image Basis images

Approximation

Encoding

X

[Non-negative]
[Non-negative]
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Face features

Basis images

Encoding (Coefficients)

Reconstructed image
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Kernel Methods

♦ All presented methods are linear

♦ Can we generalize to non-linear methods in a computational 
efficient manner?
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Kernel Methods

♦ Kernel Methods are powerful methods (introduced with 
Support Vector Machines) to generalize linear methods 

BASIC IDEA:
1. Non-linear mapping of data in high dimensional space
2. Perform linear method in high-dimensional space

Non-linear method in original space
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Kernel Trick

♦ Problem: High-dimensional spaces:
♦ E.g. N=16x16 polynomial of degree 5 ⇒ 1010

♦ Can we avoid computing the non-linear mapping directly?
♦ E.g. polynomial and inner products

♦ If algorithm can be specified in terms of dot products and 
non-linearity satisfies Mercers condition we can apply the 
kernel trick
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Example kernels

Gaussian:

Polynomial
:

)
2
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−
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Sigmoid: R,),)yx(()y,x( ∈ΘΘ+⋅⋅= κκσk

Nonlinear separation can be achieved.



66Subspace Methods for  Visual Learning and Recognition                               H. Bischof and A.Leonardis                    

Kernel Principal Component Analysis

KPCA carries out a linear PCA in the feature space F

The extracted features take the nonlinear form
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KPCA and Dot Products

Find eigenvectors V and eigenvalues λ of the covariance matrix
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Kernel PCA Toy Example

Artificial data set from three point sources, 100 point each.
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De-noising in 2-dimensions

• A half circle and a square in the plane
• De-noised versions are the solid lines
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Kernel-CCA 

♦ Reformulation of CCA for finite sample size n

X … p × n matrix of training images
Y … q × n matrix of pose parameters
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Kernel-CCA 

♦ Theorem

The component vectors wx*, wy* of the extremum points w* of

wBw
wAw

ˆ
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T
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lie in the span of the training data X, Y, i.e., 

YgwXfwgf ==∃ ** ,:, yx
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Kernel-CCA III
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Kernel-CCA 

♦ Apply non-linear transformations φ(), θ() to the data

φ(X) = < φ(x1) ,…, φ(xn) >     θ(Y) = < θ(y1) ,…, θ(yn) > 

♦ The Kernel Trick:

Kij = φ(xi)T φ(xj) = kφ(xi,xj)    Lij =  θ(yi)T θ(yj) = kθ(yi,yj) 

Inner Product in Feature Space Kernel Evaluation in Input Space
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Experiments 

Hippo:
Rotated through
360o (1 DOF) in
2o steps. CCA-Factor 

Linear Y-Encoding: yi = turntable position 
αi in degrees.

Estimates for yi

wx1
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Experiments 

CCA-Factors 

Trigonometric Y-Encoding: 
yi = <sin(αi),cos(αi)>

Estimates for yi1,yi2

wx1

wx2

atan2 
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Experiments 

♦ Using Kernel-CCA, optimal output features can be found 
automatically

Application of a RBF-kernel to the 
scalar output parameters αi   yielded two 
factors pairs with a canonical correlation 
of 1.
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Outline Part 1

♦ Motivation
♦ Appearance based learning and recognition
♦ Subspace methods for visual object recognition
♦ Principal Components Analysis (PCA)
♦ Linear Discriminant Analysis (LDA)
♦ Canonical Correlation Analysis (CCA)
♦ Independent Component Analysis (ICA)
♦ Non-negative Matrix Factorization (NMF)
♦ Kernel methods for non-linear subspaces
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Outline Part 2

♦ Robot localization
♦ Robust representations and recognition
♦ Robust recognition using PCA 
♦ Scale invariant recognition using PCA
♦ Illumination insensitive recognition
♦ Representations for panoramic images
♦ Incremental building of eigenspaces
♦ Multiple eigenspaces for efficient representation
♦ Robust building of eigenspaces
♦ Research issues
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Mobile Robot
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Panoramic image
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Environment map

♦ environments are represented by a large number of views

♦ localisation = recognition
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Compression with PCA
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Image representation with PCA
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Localisation
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Distance vs. similarity
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Robot localisation

♦ Interpolated hyper-surface represents the memorized 
environment.

♦ The parameters to be retrieved are related to position and 
orientation.

♦ Parameters of an input image are obtained by scalar product.
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Localisation
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Enhancing recognition and representations

♦ Occlusions, varying background, outliers 
– Robust recognition using PCA

♦ Scale variance
– Multiresolution coefficient estimation
– Scale invariant recognition using PCA

♦ Illumination variations
– Illumination insensitive recognition

♦ Rotated panoramic images
– Spinning eigenimages

♦ Incremental building of eigenspaces
♦ Multiple eigenspaces for efficient representations
♦ Robust building of eigenspaces
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Occlusions
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Standard recovery of coefficients
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Non-robustness
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Robust method
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Robust algorithm
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Selection
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Robust recovery of coefficients
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Robustness – Experimental results
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Recognition and pose estimation
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Robust localisation under occlusions
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Robust localisation at 60% occlusion

Standard approach Robust approach
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Mean error of localisation

♦ Mean error of localisation with respect to % of occlusion
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Multiresolution coefficient estimation

♦ Multiresolution 
– a well-known technique to reduce computational complexity
– a search for the solution at the coarsest level and then a refinement through 

finer scales

♦ Standard eigenspace method cannot be applied in an ordinary mul-
tiresolution way — it relies on the orthogonality of eigenimages.
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Standard multiresolution coefficient estimation

♦ Eigenimages in each resolution layer are computed from a set of
templates in that layer

♦ Computationally costly and requires additional storage space
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Robust multiresolution coefficient estimation

♦ Robust method requires only a single set of eigenimages obtained on 
the finest resolution.

♦ Linear system of equations: does not require orthogonality.
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Multiresolution coefficient estimation
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Scaled images
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Scale estimation
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Numerical demonstration
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Multiresolution approach

♦ Estimate scale & coefficients simultaneously in the pyramid
♦ Efficient search structure
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Experimental results – test image
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Experimental results
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Illumination insensitive recognition

• Recognition of objects  under 

varying illumination 

• global illumination changes

• highlights

• shadows

• Dramatic effects of illumination on 

objects appearance

• Training set under a single

ambient illumination
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Illumination insensitive recognition

Our Approach

• Global eigenspace representation

• Local gradient based filters

• Efficient combination of global and local representations

• Robust coefficient recovery in eigenspaces
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Eigenspaces and filtering
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Filtered eigenspaces
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Gradient-based filters

Global illuminationGlobal illumination

Gradient-based  filtersGradient-based  filters

Steerable filters [Simoncelli]
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Robust coefficient recovery

Highlights and shadowsHighlights and shadows

Robust coefficient recoveryRobust coefficient recovery

L+++= 321 aaa

L+++= 321 aaa

L+++= 321 aaa
M

L+++= 321 aaa
M

Hypothesize 
&

Select

Hypothesize 
&

Select

Robust solution of linear equations
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Experimental results

Test images Standard methodOur approach

Demo
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Experimental results

obj. 1 2 3 4 5        % ang.
1 360 0 0 0 0 100.0 5.25
2 0 308 16 0 0 95.1 10.55
3 0 0 504 0 0 100.0 1.05
4 19 4 3 332 2 92.2 3.37
5 15 2 17 0 578 94.4 3.34
avg. 96.4 4.19

Robust filtered method - all eigenvectors used

Standard method - all eigenvectors used
obj. 1 2 3 4 5        % ang.
1 141 0 14 26 179 39.2 10.50
2 0 254 62 5 3 78.4 18.90
3 0 4 317 0 183 62.9 3.47
4 23 6 38 249 44 69.2 7.11
5 3 1 51 0 557 91.0 6.82
avg. 70.3 8.53
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Illumination invariant localisation

♦ Illumination variations and occlusions
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Filtered eigenvectors
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Experimental results

♦ Training set: straight path, uniform illumination
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Experimental results

Test sets T/1/2/3
without occlusion

Test sets 4/5/6/7
with occlusion
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Experimental results

♦ Comparison with standard method



124Subspace Methods for  Visual Learning and Recognition                               H. Bischof and A.Leonardis                    

Experimental results

♦ Comparison with standard method
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Experimental results

♦ Comparison with standard method
Coefficient error, test sets 2 and 6
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Experimental results

♦ Comparison with standard method
Coefficient error, test sets 3 and 7
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Experimental results

♦ Average localisation error (in cm).
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Rotated panoramic images
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Unwrapping
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A rotated panoramic image

♦ rotated/shifted n times 

♦ Inner product matrix Q=XTX
♦ symmetric, Toeplitz, circulant
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Eigenvectors of a circulant matrix

♦ Shift theorem: the eigenvectors of a general circulant matrix are the N
basis vectors from the Fourier matrix F=[u0', u1', ... , un-1'], where 

♦ The eigenvalues can be calculated simply by retrieving the magnitude 
of the DFT of one row of Q
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From ui' to ui

♦ The eigenvectors of XXT can be obtained by using XXTXui'=λ'iXui':

♦ eigenvectors ui
– same frequency as ui',
– phase and amplitude may change
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Eigenvectors
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Generalisation to several locations
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A set of rotated images

♦ P different locations, each shifted n times

♦ Every Qij is circulant (but in general not symmetric!)
♦ Is it possible to exploit these properties?

It is still possible to compute the eigenvectors without 
performing the SVD decomposition of A.



136Subspace Methods for  Visual Learning and Recognition                               H. Bischof and A.Leonardis                    

Rotated panoramic images
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Eigenvalue problem

♦ Solution of the problem
Aw' = µw'

♦ matrix blocks Qjl of A are circulant matrices
♦ every circulant matrix can be diagonalised in the same basis by 

Fourier matrix F
♦ all the submatrices Qjk have the same set of eigenvectors
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Derivations

♦ Aw' = µw' written blockwise:

♦ Since ui' is an eigenvector of every Qjl,

♦ λi
jk is an eigenvalue of Qjl corresponding to ui'.
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Derivations

♦ This implies a new eigenvalue problem
Λα i = µαι,

♦ where

♦ and
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Computational complexity

♦ Since Qjk=QT
kj, it can be proved that Λ is Hermitian and

♦ we have P linearly independent eigenvectors αi,
♦ which provide P linearly independent eigenvectors w'i.
♦ Since the same procedure can be performed for every v'i,
♦ we can obtain N·P linearly independent eigenvectors of A.

It is therefore possible to solve the eigen-problem using N 
decompositions of order P (as opposed to decomposition of P · N).
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Complex eigenspace of spinning images

♦ Real and imaginary part of one of the vectors:

♦ Real and imaginary part of one of the w vectors:
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Eigenvectors
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Energy distribution

♦ compressing efficiency of the eigenspace

♦ 62 images, each in 50 different orientations
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Timings for building the eigenspace

♦ Images of dimensions 40x68, each image was rotated/shifted 68 times, i.e., for 
40 locations we got 2720 images.

♦ This is also the number of image elements (the border case when the 
covariance matrix is of the same size as the inner product matrix, and the 
complexity of the SVD method reaches its upper bound).
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Eigenspace of spinning images

♦ K-L expansion of a set of rotated panoramic images
♦ SVD on the complete covariance matrix is not necessary
♦ Instead, we solve a set of smaller eigen-problems
♦ The final eigenvectors are composed of locally varying 

harmonic functions (analytic functions!)
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Other approaches

♦ Images stored in arbitrary orientation
♦ Images stored in a reference orientation (e.g. gyrocompass)
♦ Autocorrelation
♦ FFT power spectra
♦ Zero Phase Representation
♦ Eigenspace of spinning-images
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Batch computation of PCA

i i + 1

k l



148Subspace Methods for  Visual Learning and Recognition                               H. Bischof and A.Leonardis                    

k

Incremental computation of PCA

i i + 1
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Incremental computation of PCA – Algorithm

increase 
dimensionality

discard a 
dimension

preserve
dimensionality
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Determining the number of eigenvectors

♦ Increase the number of dimensions by 
one if the distance between the last 
image and its projection is high.

Increase the number of dimensions by one 
if the cumulative distance between the 
images and their projections is high.
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Incremental PCA in detail

♦ Extend U with a residual hn of the new image y and rotate by R

♦ Rotation matrix R is a result of the eigenproblem

♦ Λ' is the new eigenvalue matrix

;
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Incremental PCA in detail

♦ D is assembled from the current eigenvalues Λ, the new image y and 
its corresponding coefficients a
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Comparison with batch method
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Localization with incremental method

44.555.566.577.588.5900.511.522.533.544.5nate [m]nate [m]Location of a training imageLocation of a test imageMatched location
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Reconstruction error through time
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Multiple Eigenspaces - Motivation

♦ A single eigenspace
– high dimensionality
– low-dimensional structure of data is ignored
– poor generalisation

♦ Ad-hoc partitioning of the image set is not efficient
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Multiple eigenspaces – our goal

♦ Systematically construct multiple low-dimensional eigenspaces from 
a set of training images

♦ Each image is described as a linear combination

♦ Design a numerically feasible and robust procedure
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Eigenspace growing and selection
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Multiple eigenspaces - experiments
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Eigenspace growing and selection



161Subspace Methods for  Visual Learning and Recognition                               H. Bischof and A.Leonardis                    

Eigenimages of individual eigenspaces
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Mean images of individual eigenspaces
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"Box" images in four eigenspaces
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"Block" images in five eigenspaces
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Multiple eigenspaces
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Robust Subspace Learning

♦ Subspace learning from data containing outliers:
– Detect outliers
– Learn using only inliers.

[D. Skočaj, A. Leonardis, H. Bischof: A robust PCA 
algorithm for building representations from 
panoramic images, ECCV 2002]
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EM algorithm for learning

E-step: 

M-step: 

Smoothing in missing pixels

Solving systems of 
linear equations

Only in non-
missing pixels

Estimate coefficients A
using given principal vectors U .

Estimate principal vectors U
using given coefficients A.
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Energy function

♦ Minimization of reconstruction error in non-missing pixels 
(the main property of PCA).

♦ Smoothing reconstructed values in missing pixels 
(additional constraint to prevent over-fitting).
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Robust learning algorithm

1. Compute PV using SVD on the whole image set.

2. Detect outliers (pixels with large reconstruction 
error).

3. Compute PV from inliers using EM algorithm.

4. Repeat 1.-3. until change in outlier set is small.

Input: Learning images containing outliers and 
occlusions.

Output: Principal subspace, learning images without 
outliers, detected outliers and occlusions.
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Experimental results – synthetic data

ground truth added outliers

standard 
PCA  2PC

standard 
PCA  8PC

robust 
PCA  8PC



171Subspace Methods for  Visual Learning and Recognition                               H. Bischof and A.Leonardis                    

Experimental results – real data

input standard PCA

robust PCA outliers
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Research issues

♦ Comparative studies (e.g., LDA versus PCA, PCA versus ICA)
♦ Robust learning of other representations (e.g. LDA, CCA)
♦ Integration of robust learning with modular eigenspaces
♦ Local versus Global subspace represenations
♦ Combination of subspace representations in a hierarchical 

framework 
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Further readings 

♦ Recognizing objects by their appearance using eigenimages 
(SOFSEM 2000, LNCS 1963)

♦ Robust recognition using eigenimages (CVIU 2000, Special Issue on 
Robust Methods in CV)

♦ Hierarchical top down enhancement of robust PCA (SSPR 2002)
♦ Illumination insensitive eigenspaces (ICCV 2001)
♦ Mobile robot localization under varying illumination (ICPR 2002)
♦ Eigenspace of spinning images (OMNI 2000, ICPR 2000, ICAR 2001)
♦ Incremental building of eigenspaces (ICRA 2002, ICPR 2002)
♦ Multiple eigenspaces (Pattern Recognition, In press)
♦ Robust building of eigenspaces (ECCV 2002)
♦ Generalized canonical correlation analysis (ICANN 2001)
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