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Abstract. Channel smoothing is an alternative to diffusion filtering for
robust estimation of image features. Its main advantages are speed, sta-
bility with respect to parameter changes, and a simple implementation.
However, channel smoothing becomes instable in certain situations, typ-
ically for elongated, periodic patterns like for instance fingerprints. As
for the diffusion filtering an anisotropic extension is required in these
cases. In this paper we introduce a new method for anisotropic channel
smoothing which is comparable to coherence enhancing diffusion, but
faster and easier to implement. Anisotropic channel smoothing imple-
ments an orientation adaptive non-linear filtering scheme as a special
case of adaptive channel filtering. The smoothing algorithm is applied
to several fingerprint images and the results are compared to those of
coherence enhancing diffusion.

1 Introduction

In this paper we introduce a method for anisotropic, nonlinear smoothing of
images. The results of our method are similar to those of coherence enhancing
anisotropic1 diffusion, see e.g. [1]. The new approach is based on the channel
representation [2–4]. As shown in [5, 6], linear smoothing of channels is equivalent
to a robust estimator and non-linear diffusion. As we will show, an extension to
a sophisticated anisotropic smoothing technique is possible.

1.1 Channel Representation

The idea of the channel representation is the following. Instead of storing the
value (or intensity) of a feature (e.g. grey level, orientation), the feature range is
sampled with local (compact) smooth functions, see Fig. 1. The sampled values
are combined to form the channel vector c = (cmin . . . cmax)T , representing the
feature.
? This work has been supported by DFG Grant FE 583/1-2
1 Throughout this paper ’anisotropic’ means anisotropic in the image plane, i.e.,

anisotropic diffusion uses a tensor valued diffusivity.
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Fig. 1. Channel representation of a feature value. All channels except for c3, c4, and
c5 are zero. If the channel centers have unit distance, the encoded value is 4.

The components of this vector (the channel values) are monopolar (non-
negative). In most frameworks, the channel values are chosen to be in the interval
[0, 1] and the channel vector is normalized, i.e., it can be considered as a sampled
probability density function of the feature. Since the samples are obtained from
local smooth functions which are monopolar and add up to one, the channel
representation belongs to the kernel methods [7]. In general, the channel vector
is sparse and only the non-zero elements need to be stored and processed. The
non-zero channels are called active channels.

What are the benefits of the channel representation? First, it allows to store
and separate multiple values. Hence, metamery [2, 8] is avoided to a certain
degree depending on the basis functions and the sampling rate. Second, it is
possible to perform non-linear operations on the original data by means of linear
operations on the channel representation. A nice example for this linearization
is the channel smoothing [9]. A third advantage is that the topology of the
feature space need not be linear; for instance it can be periodic [10]. The channel
encoding and decoding is hardly affected, whereas classical methods become
much more complicated (e.g. orientation diffusion [11]).

In order to take advance of the mentioned properties, it is necessary to have
an appropriate local decoding available. In the present paper, we use quadratic
B-splines [12] to compute the channel values. By a simple proof one can show
that the decoding is given by a linear combination of the channel values [5].
Restricting the linear combination to a small interval of channel indices (the
reconstruction window) yields a local reconstruction.

1.2 Channel Smoothing and Robust Estimators

When dealing with grey levels represented by channels, one might ask where the
metamery might occur. One example where multiple valued functions occur is
the local estimation of the mean value for non-stationary processes. Consider for
example an edge in a noisy image, Fig. 2, upper left.
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Fig. 2. Channel smoothing of a noisy edge (slice cut orthogonal to edge). Left: signal
and its channel representation; right: averaged channels and reconstructed signal.

The aim of a sophisticated smoothing method should be to remove the noise,
but not to blur the edge. Linear smoothing fails, since it implicitly considers
the signal in the whole filter support to be stationary and therefore treats both
sides of the edge as realizations of the same stochastic process. This is different
for linear smoothing of channels: By an appropriate choice of the channel width
and the sampling rate, one can assure that different grey levels are represented
by disjunct channels. Linearly averaging of the channels therefore keeps the two
sides of the edge separated, see Fig. 2, right.

By averaging the channels, the active channels are propagated across the
edge (see Fig. 2, lower right). Hence, close to the edge and on the edge itself,
the channels represent two different values at a time (metamery). Each of both
is obtained by applying the local decoding, resulting in the two values and their
corresponding likelihoods. These likelihoods are obtained by summing up the
channel values in the respective reconstruction window. At every point the re-
construction with the highest likelihood is chosen [13]. The result is a signal
which is smoothed within stationary regions only, Fig. 2, upper right.

The output of channel smoothing resembles the results from non-linear dif-
fusion. Under certain assumptions, the latter is equivalent to a robust estimator
[14] and in [5] it has been shown that channel smoothing is indeed a good ap-
proximation of a robust estimator. Therefore, channel smoothing is indeed an
alternative to non-linear diffusion for noise removal in images and other feature



maps. The advantages of channel smoothing compared to diffusion is the lower
computational complexity, a simpler implementation, and its applicability to
non-linear spaces (e.g. orientation space [10]).

2 A Method for Anisotropic Channel Smoothing

Looking at the channel smoothing as such, it is not obvious, how to turn it into
a real anisotropic smoothing. Applied to simple edges, the channel smoothing
already shows an anisotropic behavior which is comparable to edge enhancing
diffusion. Close to an edge, the filter support of a comparable linear filter is a
semi-disc lying completely on one side of the edge. Hence, the averaging makes
use of a support which can be compared to the one effectively used for edge
enhancing diffusion. However, if we consider periodic, oriented patterns, which
occur for instance in images of finger prints, the ordinary channel smoothing fails.
The reconstructed image suffers from ’flip-over’ effects, i.e., contours become
fragmented or displaced.

2.1 Incorporating Orientation Information

Anisotropic smoothing requires orientation dependent processing [15]. Hence,
the channel smoothing must be extended using orientation information. A quite
elegant way to introduce orientation information is in the channel encoding step.
The method works as follows.

1. For each position (x, y) the grey level is encoded in cg(x, y).
2. A local orientation map is created, using the orientation of the gradient

(modulo π).
3. For each position (x, y) the orientation is encoded in co(x, y).
4. The orientation channel representation is smoothed, in order to reduce the

noise in the orientation information.
5. For each position (x, y) the channel matrix c = cgcT

o is computed.

The result is a channel representation where the orientation information is repre-
sented by the row index. The column index represents the grey levels, see Fig. 3.
This extended channel representation can be decoded in three steps using the
standard methods for linear and periodic decoding:

1. For each column in the matrix, decode the orientation.
2. The likelihoods of the decoded orientations form a new channel vector.
3. Apply the ordinary linear decoding to the new channel vector.

The sketched method works correctly, since for oriented structures the channel
matrix has a clear 2D maximum. Projecting onto the grey level axis (which is
basically what we are doing in step 1) yields a 1D channel vector with a 1D
maximum at the appropriate grey level. For unoriented structures, we more or
less randomly pick up grey level channels for arbitrary orientations. This is still
correct, since all rows of the matrix are nearly identical in that case.
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Fig. 3. Channel matrix using ten grey level channels and six orientation channels.

2.2 Anisotropic Smoothing

The channel matrix encodes explicitly which grey level is present at which orien-
tation. Hence, it is straightforward to design a method for anisotropic smoothing.
For ordinary channel smoothing, a linear smoothing operation is introduced be-
tween the encoding and the decoding. Each channel is smoothed with the same
linear kernel. If the final result is supposed to be adaptive to the orientation, we
simply use differently oriented anisotropic smoothing kernels, where we choose
the orientation of the smoothing kernel according to the row index of the channel
matrix.2

The anisotropic smoothing kernels which are applied in our method are polar
separable filters. Their radial component is given by a Gaussian kernel and their
angular component is given by the same B-splines which where used to encode
the orientation before. Note that the sum over all orientations yields an isotropic
Gaussian kernel.

2 In this paper we ignore the possibility of choosing different kernels for different grey
levels which would result in an intensity adaptive smoothing method [6]. Such a
method would be appropriate if the assumed noise model is not additive.



For oriented structures, it is obvious why the previously described approach
should work. The structure is smoothed perpendicular to the orientation vector3,
but is hardly affected parallel to it. This should give very nice results for noisy,
nearly periodic patterns with varying orientations, e.g., for fingerprints.

For unoriented structures, the anisotropic channel smoothing behaves simi-
lar to an isotropic method, which can be shown by a probabilistic consideration.
In unoriented regions the orientation vector is equally distributed, i.e., in the
reconstruction we randomly pick different rows of the channel matrix and there-
fore differently oriented smoothing kernels. Since the kernels sum to one, this
corresponds to isotropic smoothing.

3 Experiments

In our experiments, we compared the presented method to the approach of co-
herence enhancing diffusion [16]. In the comparison we focused on two aspects:
computational speed and the quality of the results. Both implementations are
realized in Matlab, the coherence enhancing diffusion implementation was taken
from [17]. We applied both methods to images of a fingerprint4, see Fig. 4.

The parameters for the anisotropic channel smoothing used for the results in
Fig. 4 are: eight orientation channels, four grey level channels, isotropic smooth-
ing kernel for orientation: σi = 3, and anisotropic smoothing kernel: σa = 1.2.
The parameters for the coherence enhancing diffusion are taken from [17] (diffu-
sion speed exponent: 0.001, scale of Gaussian derivative: 0.7, scale of structure
tensor: 5, time-step: 0.2, iterations: 10, no display of results).

The anisotropic channel smoothing is three times faster than the coherence
enhancing diffusion. Both methods are scarcely optimized, i.e., the speed-up
factor might be slightly different for other implementations. The quality of the
results is comparable, depending on the selection of the parameters. The actual
values of the variances σi and σa are of little importance, i.e., the method is very
stable with respect to changes in these parameters.

The parameters were chosen for the 300dpi images. Accordingly, the 600dpi
images were not sufficiently smoothed and the 150dpi images are over-smoothed.
Whereas for the insufficiently smoothed images the anisotropic channel smooth-
ing and the coherence enhancing diffusion give quite similar results, the diffusion
suffers more from aliasing in case of the over-smoothed case.

4 Conclusion

We have presented an anisotropic extension of channel smoothing which is com-
parable to coherence enhancing diffusion. The orientation information is explic-
itly considered by forming the outer product of grey level channel vector and
3 The orientation vector is for instance given by the normalized double angle gradient.
4 The images were acquired by repeatedly pressing the finger on an ink-pad and on a

sheet of paper afterwards. The sheet of paper was then scanned with 150dpi, 300dpi,
and 600dpi.



orientation channel vector. The smoothing kernels are adapted to the orienta-
tion information, such that the reconstructed signal is a robust estimate of the
original signal with an orientation bias. Anisotropic channel smoothing is faster
than coherence enhancing diffusion, but gives very similar results. It is very sta-
ble with respect to parameter changes and is easy to implement. Furthermore,
it can easily be adapted to other features than orientation.
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Fig. 4. Fingerprint experiment. From left to right: original images, results from diffu-
sion, and results from channel smoothing. From top to bottom: fingerprint 1 (FP1) at
300dpi, zoomed detail of FP1, FP2 at 300dpi, FP1 at 600dpi, and FP1 at 150dpi.


