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Abstract

There is no indication that it will ever be possible to find some simple trick that miraculously solves most problems in
vision. It turns out that the processing system must be able to implement a model structure, the complexity of which is
directly related to the structural complexity of the problem under consideration in the external world. It has become
increasingly apparent that Vision cannot be treated in isolation from the response generation, because a very high degree
of integration is required between different levels of percepts and corresponding response primitives. The response to be
produced at a given instance is as much dependent upon the state of the system, as the percepts impinging upon the
system. In addition, it has become apparent that many classical aspects of perception, such as geometry, probably do not
belong to the percept domain of a Vision system, but to the response domain. This article will focus on what are
considered crucial problems in Vision for robotics for the future, rather than on the classical solutions today. It will
discuss hierarchical architectures for combination of percept and response primitives. It will discuss the concept of
combined percept—response invariances as important structural elements for Vision. It will be maintained that learning is
essential to obtain the necessary flexibility and adaptivity. In consequence, it will be argued that invariances for the
purpose of Vision are not abstractly geometrical, but derived from the percept—response interaction with the environ-
ment. The issue of information representation becomes extremely important in distributed structures of the types
foreseen, where uncertainty of information has to be stated for update of models and associated data. The question of
object representation is central to the paper. Equivalence is established between the representations of response,
geometry and time. Finally an integrated percept—response structure is proposed for flexible response control. ( 1999
Elsevier Science B.V. All rights reserved.

Zusammenfassung

Es gibt keine Anzeichen, dass es jemals möglich sein wird, einen einfachen Trick zu finden, der wie durch ein Wunder
die meisten Probleme des Sehvermögens löst. Es hat sich herausgestellt, dass das Verarbeitungssystem in der Lage sein
mu{, eine Modellstruktur zu implementieren, dessen Komplexität direkt von der strukturellen Komplexität des in der
äu{eren Welt zugrunde liegenden Problems abhängt. Es ist immer klarer geworden, dass das Sehvermögen nicht isoliert
von der Antwortgenerierung betrachtet werden kann, da ein hoher Integrationsgrad zwischen verschiedenen Stufen von
Empfindungen und der korrespondierenden Basisantworten benötigt wird. Wenn Empfindungen auf das System treffen,
hängt die zu generierende Antwort auf die Instanz stark vom Status des Systems ab. Zusätzlich wurde klar, dass viele
klassische Aspekte der Wahrnehmung, wie z.B. eine Geometrie wahrnehmen, vermutlich nicht zur Empfindungs-
ebene eines Sehsystems sondern zur Antwortebene gehören. Dieser Artikel konzentriert sich auf diejenigen
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entscheidenden Probleme, die in Zukunft für das Sehvermögen von Robotern von Bedeutung sind und nicht auf die
klassischen Probleme der Gegenwart. Er diskutiert hierachische Architekturen zur Kombination von Empfindungen und
Basisantworten. Er diskutiert das Konzept kombinierter Invarianzen zwischen Empfindung und Antwort als wichtiges
strukturelles Element des Sehvermögens. Beibehalten wird, dass Lernen essentiell ist, um die notwendige Flexibilität und
Anpassungsfähigkeit zu erhalten. Als Konsequenz wird argumentiert, dass Invarianzen für den Zweck des Sehvermögens
nicht abstrakt geometrisch sind, sondern aus der Interaktion zwischen Empfindung/Antwort mit der Umgebung folgen.
Die Frage der Informationsdarstellung wird extrem wichtig in verteilten Strukturen der vorgesehenen Typen, in denen
unsichere Information zur Aktualisierung von Modellen und assoziierten Daten verwendet wird. Die Frage der
Objektdarstellung ist ein zentrales Thema des Artikels, in dem auch Gleichwertigkeit zwischen der Darstellung von
Antwort, Geometrie und Zeit hergestellt wird. Schlie{lich wird eine integrierte Struktur zwischen Empfindung und
Antwort für eine flexible Antwortkontrolle vorgeschlagen. ( 1999 Elsevier Science B.V. All rights reserved.

Résumé

Il n’y a pas d’indication qu’il sera un jour possible de trouver un truc simple qui résoudra miraculeusement la plupart
des problèmes de vision. Il apparaı̂t que le système de traitement doit être capable d’implémenter une structure modèle,
dont la complexité est directement liée à la complexité structurelle du problème considéré dans le monde extérieur. Il est
devenu de plus en plus apparent que la vision ne peut être traitée de fac7 on isolée de la génération de réponse, parce qu’un
très haut degré d’intégration est nécessaire entre les différents niveaux de perception et les primitives de réponses
correspondantes. La réponse à produire à une instance dépend autant de l’état du système que des perceptions affectant
sur le système. De plus, il est devenu clair que de nombreux aspects classiques de la perception, comme la géométrie,
n’appartiennent probablement pas au domaine de perception de la vision, mais à celui de la réponse. Cet article se
concentrera sur ce que nous considérons comme des problèmes cruciaux en vision pour la robotique dans le futur, plutôt
que sur les solutions classiques d’aujourdhui. On y discutera des architectures hiérarchiques pour la combinaison des
primitives de perception et de réponse. On y discutera le concept des invariants de perceptions—réponses combinés
comme étant des éléments structurels importants de la vision. Nous y soutiendrons que l’apprentissage est essentiel pour
obtenir la flexibilité et l’adaptabilité nécessaires. Par conséquent, nous argumenterons que les invariants pour le vision ne
sont pas géométriques de fac7 on abstraite mais définis à partir de l’interaction perception—réponse avec l’environnement.
Le problème de la représentation de l’information devient extrêmement important dans des structures distribuées des
types prévus, où l’incertitude de l’information doit être établie pour améliorer les modèles et les données associées. La
question de la représentation des objets est centrale dans cet article. Une équivalence est établie entre les représentations
de réponses, la géométrie et le temps. Finalement, une structure intégrée perception—réponse est proposée pour un
contrôle de la réponse flexible. ( 1999 Elsevier Science B.V. All rights reserved.

Keywords: Vision; Robotics; Information representation; Hierarchies; Learning; Linkage structures; Semantic networks;
Response generation

1. Introduction

There is no indication that it will ever be possible
to find some ‘simple trick’ that miraculously solves
most problems in vision. It turns out that the pro-
cessing system must be able to implement a model
structure, the complexity of which is directly related
to the structural complexity of the problem under
consideration in the external world.

The traditional methodology for vision contains
many procedures to perform various tasks [2,4,14].
A common problem is that these procedures are

rarely suitable as components of a larger system.
The reason is that information is represented in
different ways for different types of features. It is
difficult to have such descriptors combine their
statements in a graceful way, and to have them
control operations in a parametric way.

A particular object may appear in many different
orientations, sizes, projections, etc. It is necessary to
deal with this variability in a more efficient manner
than to have one model or template for every pos-
sible orientation of an object. It is necessary to find
model representations that exhibit invariance, i.e. in
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which the descriptive statements do not depend
upon what are considered irrelevant variations
such as the orientation of an object.

What is irrelevant, or an invariant mode, will
differ from one situation to another. In one case we
want to recognize an object regardless of its ori-
entation. In another case the orientation of the
object is of major concern. In a systematic ap-
proach, we will try to design models to produce
different modes separately, such that we can use the
information if desired.

It turns out to be necessary to use what we may
call different sub-algorithms or sub-models on dif-
ferent parts of an image. The selection of a particu-
lar sub-algorithm is usually based upon a tentative
analysis of the image content. The techniques for
such preliminary or preattentive vision have been
extensively developed [1,30,40], although they are
outside the scope of this paper.

The reason for using different sub-algorithms is
the simple fact that not all possible events can be
expected in a particular context. As indicated
earlier, this handling of sub-algorithms has to be
implemented as a modification or a parameteriz-
ation of more general algorithms. Without such
a system of sub-algorithms, we would obtain
a model computing structure which was totally
unmanageable, which would exhibit a combina-
tional explosion.

In order to allow the repeated use of existing
models or model parts, we will try to design models
that can be used for several purposes. These
partial models will have some general properties
of invariance generation and generality in repres-
entation.

Our own work, as well as some of the work cited,
has received a great deal of inspiration from what is
known about biological visual systems [15,16,29].
This is not to say that the mechanisms presented in
the sections to follow are necessarily models of
phenomena in biological visual systems. Too little
is so far known to draw any firm parallels. The
ultimate criterion for our interest is performance
from a technical point of view.

This article will focus on what are considered
crucial problems in Vision for robotics for the fu-
ture, rather than on the classical solutions today. It
will discuss hierarchical architectures for combina-

tion of percept and response primitives. It will dis-
cuss the concept of combined percept—response in-
variances as important structural elements for
Vision. It will be maintained that learning is essen-
tial to obtain the necessary flexibility and adaptiv-
ity. In consequence, it will be argued that
invariances for the purpose of Vision are not ab-
stractly geometrical, but derived from the per-
cept—response interaction with the environment.
The issue of information representation becomes
extremely important in distributed structures of the
types foreseen, where uncertainty of information
has to be stated for update of models and asso-
ciated data. The question of object representation is
central to the paper. Equivalence is established
between the representations of response, geometry
and time. Finally, an integrated percept—response
structure is proposed for flexible response control.

2. Structured representation of feature information

A fundamental problem is how to assemble suffi-
ciently complex models and the computational
structures required to support them. In order for
a system modeling a high structural complexity to
be manageable and extendable, it is necessary that
it exhibits modularity in various respects. This
implies, for example, standardized information
representations for interaction between operator
modules. Without such standardized information
representations, the complexity will be overwhelm-
ing and the functional mechanisms completely ob-
scure. One way to satisfy these requirements is to
implement the model structure in a regular fashion.
It is often useful to view this regular arrangement
as a hierarchy, although we should bear in mind
that the communication need not be restricted
to adjacent layers of such a hierarchy. In princi-
ple, hierarchical structures are nothing new in
information processing in general, or in computer
vision in particular. A regular organization of
algorithms has always been a desired goal for com-
puter scientists. However, in order for such a struc-
ture to work effectively on spatial data, certain
crucial requirements have to be fulfilled for in-
formation representation and for the structures of
operations.
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Fig. 1. Conceptual representation of an image as an abstraction hierarchy.

2.1. The feature abstraction pyramid

We can distinguish between two different types
of hierarchies:
z Scale hierarchies;
z Abstraction hierarchies.
Most of the work on hierarchies so far has dealt
with size or scale, although they have indirectly
given structural properties. They will not be dealt
with in this paper, but descriptions can be found in
[9,22,28,42].

Granlund introduced an explicit abstraction
hierarchy [7], employing symmetry properties im-
plemented by Gaussian envelope functions, in what

today is commonly referred to as Gabor functions
or wavelets [5]. An abstraction hierarchy implies
that the image can be considered as an expansion
into image primitives, which can be viewed as con-
ceptual building blocks forming the image. In this
concept lies the assumption of a hierarchy, such
that building blocks at a lower level form groups
which constitute a single building block at a higher
level. Building blocks at the two levels are viewed as
having different levels of abstraction.

Fig. 1 suggests a particular set of abstraction
levels. At the lowest level we assume the image
itself, describing a distribution of density and
possibly color. At the second level we have a
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Fig. 2. Generation of a compact information representation
viewed as a two-stage process.

description of line and edge elements. At the third
level we may have a description of curvature, or
convexity and concavity. At the fourth level we may
have outlines. At the fifth level we may have rela-
tions between objects, and continue to higher levels
as appropriate.

The example in Fig. 1 gives an intuitive idea of
the notion of abstraction levels. It should not be
taken as the only possible arrangement of an ab-
straction hierarchy.

We furthermore assume a linkage between ele-
ments at different levels of abstraction. It is easy to
accept the notion that line elements at an angle to
each other form a convex structure element, repres-
enting curvature. Similarly, a number of convex
structures will in combination infer an outline,
which is a characteristic of an object.

Although the issues of size and scale, and of level
of abstraction are conceptually different, they be-
come related in the implementation. With in-
creased level of abstraction, generally follows an
increase of the scale over which we relate phe-
nomena. In a region there may be few objects, but
they may comprise a large number of lines and
edges. The output of a transformation can generally
be described using fewer samples than the input
without any loss of information. This compression
is called sub-sampling. A 256]256 transform image
at one level is, after an operation, represented by
128]128 elements at the next level. This level-by-
level decrease in the amount of data, by a factor of
two in each dimension, produces a pyramid repres-
entation. For that reason we often refer to the
structure as an abstraction pyramid. We will deal
with such a combination of abstraction levels and
variation of scale in the following section.

2.2. Information representation in a hierarchy

It is necessary to omit the important discussion
of mathematical representations for information in
this document. For further details, reference has to
be made to [9]. The generation of descriptors can
generally be viewed as a two stage process. See
Fig. 2.

In the first stage, a number of filters are convol-
ved with the image content within a window to

produce a parameter vector. These filters can be
chosen in a number of ways such as Gaussian,
quadrature or any of the families of wavelets. The
parameters in the vector are generally correlated to
form a subspace of the original vector space. The
second stage implies the forming of more compact
and invariant representations. This has the purpose
to reduce the amount of redundant information,
but also produce descriptors which appear to rep-
resent important conceptual properties like ori-
entation, size, etc.

It turns out that for 2-D information a vector
representation is advantageous, while for three di-
mensions and higher, tensors will do the work.
These representations allow the use of certainty
statements for all features, which can be updated
with respect to models and data. They also give
a description of outcomes in relation to a continu-
ous metric. The effects of this will be dealt with in
a later section. For further details, reference has to
be made to [9], where in addition examples of
processing of images are given.

2.3. Model-based, top—down processing

What we have discussed so far are the properties
of processing as we go upward in the processing
pyramid. This is often referred to as bottom—up
processing. In the same way that context informa-
tion affects our interpretation of a more local event,
context information determines the possible alter-
natives of events within a local region, and conse-
quently the operations we want to perform. The
question is how information at a higher level can be
used to control the processing at a lower level.
This is often referred to as top—down processing.
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Fig. 3. A hierarchical structure with bottom—up and top—down
flow of information.

A hierarchical structure allowing this is illustrated
intuitively in Fig. 3.

In such a structure, processing proceeds in
a number of stages, and the processing in one stage
is dependent upon the derived results at higher
levels. This leads to a model-based analysis, where
models are assembled from combinations of primi-
tives from several levels. An important property is
that these models do not remain constant, but
adapt to the data, which can be used for adaptive
filtering in multiple dimensions [11]. This is a very
important issue which, however, goes beyond the
objectives of this document, and reference has to be
made to [9], where in addition examples of process-
ing of images are given.

3. Representation as linked structures versus arrays

Most information representation in Vision today
is in the form of arrays. This is advantageous and
easily manageable for stereotypical situations of
images having the same resolution, size, and other
typical properties equivalent. Increasingly, various
demands upon flexibility and performance are ap-
pearing, which makes the use of array representa-
tion less attractive.

The increasing use of actively controlled and
multiple sensors requires a more flexible processing

and representation structure. The data which ar-
rives from the sensor(s) can be viewed as image
patches of different sizes, rather than frame data in
a regular stream. These patches may cover different
parts of the scene at various resolutions. Some such
patches may in fact be image sequence volumes, at
a suitable time sampling of a particular region of
the scene, to allow estimation of the motion of
objects. The information from all such various
types of patches has to be combined in some suit-
able form in a data structure.

The conventional iconic array form of image
information is impractical as it has to be searched
and processed every time some action is to be
performed. It is desirable to have the information in
some partly interpreted form to fulfill its purpose to
rapidly evoke actions. Information in interpreted
form, implies that it should be represented in terms
of content or semantic information, rather than in
terms of array values. Content and semantics im-
plies relations between units of information or sym-
bols. For that reason it is useful to represent the
information as relations between objects or as lin-
ked objects. The discussion of methods for repres-
entation of objects as linked structures will be the
subject of most of this document, and we can al-
ready now observe how some important properties
of such a representation relate to that of conven-
tional array representations:
f An array implies a given size frame, which can-

not easily be extended to incorporate a partially
overlapping frame;

f Features of interest may be very sparse over
parts of an array, leaving a large number of
unused positions in the array;

f A description of additional detail cannot easily
be added to a particular part of an array.

3.1. The feature array as a linked structure

How do we go from the hierarchical analysis and
description of a patch in the form of an array, to the
representation in a linked structure? Let us assume
that we have generated arrays containing the orig-
inal image, the orientation description and the cur-
vature description, according to the lowest
abstraction levels indicated in Fig. 1 [9].
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Fig. 4. Transition between hierarchical array structure and linkage structure.

These descriptions reappear in the array pyramid
on the left-hand side of Fig. 4. It is possible to build
up a set of maps or lists, where each set of maps
contains elements of a particular abstraction level,
and where each element contains pointers to ele-
ments at a lower level. See the right-hand side of
Fig. 4, which is an intuitive illustration of the fact
that we no longer have a regular array structure
which relates elements. In this illustration, no par-
ticular attempt has been made to distinguish be-
tween feature links and relative position links. That
distinction will be dealt with later.

In this way a linked structure is built up, which
represents the object in question. What is particular
for this linked structure is that the maps or lists
arrange the objects in terms of reference, or in
semantic terms. In this structure, primitives are tied
together at higher level primitives. The object is
represented as a free-floating structure of linked
primitives, or a graph [12]. This structure or graph
can now be matched to other graphs for recogni-
tion, or related to a larger structure, of which it may
be a part. For the case of a general graph, we know
that this is not a trivial task.

3.2. The classical problem of graph interpretation

Hierarchical features derived from an abstrac-
tion pyramid can be used for classification of ob-
jects and scenes in the classical way by putting
labels on them. For more complex structures, an

extension of the labeling procedure is to express
how the differently labeled objects are related in the
form of a labeled graph. This graph is then sub-
jected to an interpretation.

A great deal of computational power is required
for a procedure where the graph is generated first,
followed by an interpretation of this graph. The
reason is that it is more difficult to analyze a given
graph, than to deal with the original problem struc-
ture in question, with its attributes available. It
turns out that the structure graph becomes less
specific, as it is made more abstract and not related
to particular inputs.

In addition, the label interpretation substructure
requires a centralized decision structure, which re-
quires an overview not only of this particular graph
structure, but other related graph structures which
may emerge as well. This would seem to preclude
the use of decentralized functions in a system, an
organization which is deemed necessary for a sys-
tem which can self-organize its information storage
and computations, and learn. We will in the sub-
sequent sections see how we can make the graph
provide its own outputs.

3.3. A linked feature hierarchy

How can a better structure be devised, which
does not require an external system for inter-
pretation? We assume that we are looking at
a single feature level, say orientation, in the present
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Fig. 5. Generation of continuous maps of features and of rela-
tive position, and the establishment of links between these to
describe objects.

Fig. 6. Generation of maps of features and of relative position at
different levels, and the establishment of links between these to
describe objects.

discussion. We can view Fig. 5 as an attempt to-
wards a linkage structure for object representation
at a particular level.

The transform level of Fig. 1 under considera-
tion, is scanned for features above a certain thre-
shold. Such instances are mapped into a list, or
rather a feature map, which now represents the
features ordered continuously according to simi-
larity. See Fig. 5, left side. The issue of similarity or
adjacency is crucial, and will be discussed exten-
sively in the following sections. A certain map has
a particular locality scale, within which features are
mapped without regard to other properties such as
position. As an example in the cortex, orientation is
mapped continuously into regions or ‘‘blobs’’ of
a certain size.

Contributions within a particular level are
located, and are assigned to an element in the map,
depending upon the class membership of the fea-
ture. The system does as well keep track of their
position. For conventional array descriptions we
use geometric Euclidean distance to describe the
distance between two objects as a numerical para-
meter. For reasons which will become apparent, we
want to avoid free floating labels of properties, be
they local features such as color, orientation, etc. or
geometric properties such as distance, size, etc. We
want to refer all such properties to a common
reference or map. The relative position between
features in the feature map is represented by links
to the relative position map, as indicated in Fig. 5,
right side.

In such a way, the feature array is broken up into
two different parts: a feature map and a relative
position map, both of which are arranged with
respect to similarity or property distance. The dir-
ectly geometrical distance relations between items
in an array are replaced by references to a relative
position map, describing this geometry.

What is the advantage of breaking up the seem-
ingly well-behaved geometrical object description
into bits and pieces of different types? The most
important reason is that it provides the basis of
invariance mechanisms of different types.

A particular set of features can be linked by several
different relative position references, thereby ensuring
e.g. a scale invariance of the object description. This
can be viewed as the most primitive version of
a WHAT and WHERE system division, something
which is known to take place in the primate visual
system [31]. These mechanisms will be further de-
veloped and discussed in the ensuing sections. The
second, very important reason is that we will see how
we can substitute geometry with response links, which
miraculously gives us the required links from the
network out into the external world.

In addition to the lateral linkage, there is a verti-
cal linkage between levels. We saw in the discussion
around Fig. 4, that features at a lower level com-
bine into more complex, higher level features. Two
line elements at an angle will comprise a corner, etc.
Higher level features are assigned to a different list
or map, which contains pointers to the lower level
feature elements and relative positions building up
the element in question. There are as well links over
the relative position or displacement map, valid for
objects at this level. See Fig. 6.

We will according to Fig. 6, have different object
level sets of maps; each level containing two com-
plementary maps:
f A feature map;
f A relative position (response) map.
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There will be several different families of maps,
which will have different purposes in producing
a complete and convergent representation. Localiz-
ed, relative position references deal with the invari-
ant representation of objects, or the WHAT system.
Absolute position references are necessary for
reaching and for the manipulation of objects, which
gives the WHERE system [31].

3.4. Output from linked networks

From the preceding discussion, it is apparent
that it is necessary to build up a network structure,
which includes outputs as well as inputs for the
information. This implies that a response linkage
structure has to be built up simultaneously with
a percept interpretation and linkage structure. We
will see in the next section how a network organiza-
tion driven by responses can solve these problems
for us.

4. Response as the organizing mechanism for
percepts

A vision system receives a continuous barrage of
input signals. It is clear that the system cannot
attempt to relate every signal to every other signal.
What properties make it possible to select a suit-
able subset for inclusion to an effective linkage
structure? We can find two major criteria:

1. Inputs must be sufficiently close in the input
space where they originate, the property space
where they are mapped and/or in time-space.
This is both an abstract and a practical com-
putational requirement: It is not feasible to re-
late events over too large a distance of the space
considered. This puts a requirement upon the
maps of features available, namely the require-
ment of locality.

2. A response or response equivalent signal has to
be available, for three different reasons:
f The first reason is to provide mode associ-

ation; to ascertain that there are responses
which are associated with a particular percept
or percept transformation.

f The second reason is one of simplification, to
provide a limitation to the number of links
which have to be established.

f The third reason is to provide an output path
to establish the existence of this percept struc-
ture. Without a response output path from
the percept structure, it remains an anony-
mous mode unable to act into the external
world.

From the preceding we postulate that:

¹he function of a response or a response aggregate
within an equivalence class is to produce a set of
inputs on its sensors, which similarly can be as-
sumed to belong to a common equivalence class,
and consequently can be linked.

In consequence we propose an even more impor-
tant postulate:

Related points in the response domain exhibit
a much larger continuity, simplicity and closeness
than related points in the input domain. For that
reason, the organisation process has to be driven
by the response domain signals.

Signal structure and complexity is considerably
simpler in the response domain than in the percept
domain, and this fact can be used as a focusing
entity on the linkage process, where the system’s
own responses act as organizing signals for the
processing of the input. There is a classical experi-
ment by Held and Hein, which elegantly supports
this model [13]. In the experiment, two newborn
kittens are placed in each of two baskets, which are
hanging in a ‘carousel’ apparatus, such that they
are tied together to couple the movements of the
kittens. One of the kittens can reach the floor with
its legs, and move the assembly, while the other one
does not reach the floor and is passively towed
along. After some period of time, the kitten which
can control its movements develops normal sens-
ory-motor coordination, while the kitten which is
passively following the movements fails to do so
until being freed for several days. The actively mov-
ing animal experiences changing visual stimuli as
a result of its own movements. The passive animal

G.H. Granlund / Signal Processing 74 (1999) 101—126 109



experiences the same stimulation, but this is not the
result of self-generated movements.

Driving a learning system using response signals
for organization, is a well-known phenomenon
from biology. Many low-level creatures have built-
in noise generators, which generate muscle twitches
at an early stage of development, in order to organ-
ize the sensorial inputs of the nervous system. More
generally, it is believed that noise is an important
component to extend organization and behavior of
organisms [20].

It is apparent that there is no basis for any
estimation of importance or ‘meaning’ of percepts
locally in a network, but that ‘blind and functional
rules’ have to be at work to produce what is
a synergic, effective mechanism. One of these basic
rules is undoubtedly to register how percepts are
associated with responses, and the consequences of
these. This seems at first like a very limited reper-
toir, which could not possibly give the rich behav-
ior necessary for intelligent systems. There is
a traditional belief that percepts are in some way
‘understood’ in a system, after which suitable re-
sponses are devised. This does however require
simple units to have an ability of ‘understanding’,
which is not a reasonable demand upon structures.
This is a consequence of the luxury of our own
capability of consciousness and verbal logical
thinking, something which is not available in sys-
tems we are trying to devise and in fact a capability
which may lead us astray in our search for funda-
mental principles. Rather, we have to look for
simple and robust rules, which can be compounded
into sufficient complexity to deal with complex
problems in a ‘blind’ but effective way.

Driving the system using response signals has
two important functions:
f To simplify, learn and organize the knowledge

about the external world in the form of a linked
network;

f to provide action outputs from the network gen-
erated.

It is necessary that the network structure gener-
ated has an output to allow activation of other
structures outside the network. This output is im-
plemented by the linkage to response signals, which
are associated with the emergence of the invariance
class. If no such association were made, the net-

work in question would have no output and conse-
quently no meaning to the structure outside.

There are other important issues of learning such
as representation of purpose, reinforcement learning,
distribution of rewards, evolutionary components of
learning, etc, which are important and relevant but
have to be omitted in this discussion [23—26].

5. Object representation using percept—response
invariants

Over the years there has been an increasing inter-
est in research on invariants [18,19,21,32]. Most of
the methods proposed treat invariants as geometric
properties, the rules for which should be input into
the system. Theoretical investigation of invariance
mechanisms is undoubtedly an important task, as it
will give clues to possibilities and limitations. It is
not likely, however, that more advanced invariants
can be programmed into a system. The implemen-
tation of such invariance mechanisms in systems
will have to be made through learning.

An important application of invariant repres-
entation is for object description. To position our-
selves for a thorough analysis, we will look at two
traditional major lines of approach which have
been used for object description: object-centered
and view-centered representation. See Fig. 7.

From the real object, a number of measurements
or projections are produced. See Fig. 7(a). From
these measurements we can proceed along either
one of two different tracks.

One of the tracks leads to the object-centered
representation which combines these measurement
views into some closed form mathematical object
[10]. See Fig. 7(b). The image appearance of an
instance of a particular orientation of the object is
then obtained using separate projection mappings.

A view-centered representation, on the other
hand, combines a set of appearances of an object,
without trying to make any closed-form representa-
tion [3,34,39]. See Fig. 7(c).

5.1. Object-centered representation

The basic idea of the object-centered representa-
tion is to produce a representation which is as
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Fig. 7. Object-centered and view-centered representation of an object. (a) Measurements produce information about different views or
aspects of an object. (b) Object-centered representation: The views are used to reconstruct a closed form object representation.
(c) View-centered representation: The views are retained as entities which linked together form a representation of the object.

compact and as invariant as possible. It generally
produces a closed-form representation, which can
be subjected to interpretation. This implies that no
unnecessary information is included about details
on how the information was derived. A central idea
is that matching to a reference object should be
done more easily as the object description is inde-
pendent of any viewpoint-dependent properties.
A particular view or appearance of the object
can be generated using appropriate projection
methods.

We can view the compact invariant representa-
tion of orientation as vectors and tensors [9], as
a simple form of object-centered representations.
Over a window of a data set, a set of filters are
applied producing a component vector of a certain
dimensionality. The components of the vector tend
to be correlated for phenomena of interest, which

means that they span a lower dimensional sub-
space. The components can consequently be map-
ped into some mathematical object of a lower
dimensionality, to produce a more compact and
invariant representation, i.e. a vector or a tensor
[9].

A drawback of the object-centered representa-
tion is that it requires a preconceived notion about
the object to ultimately find, its mathematical and
representational structure, and how the observed
percepts should be integrated to support the hy-
pothesis of the postulated object. It requires that
the expected types of relations are predefined and
already existing in the system, and that an external
system keeps track of the development of the sys-
tem such as the allocation of storage, and the label-
ing of information. Such a preconceived structure is
not well suited for self-organization and learning. It
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requires an external entity which can ‘observe labels
and structure’, and take action on this observation. It
is a more classical declarative representation, rather
than a response domain procedural representation.

5.2. View-centered representation

In a view-linked representation, no attempt is
made to generalize the representation of the entire
object into some closed form. The different parts
are kept separate, but linked together using the
responses which caused the particular view. This
gives a representation which is not nearly as com-
pact or invariant. However, it tells what state of the
system is associated to a particular percept state.
This property will be shown to be crucial for the
development of a learning percept—response struc-
ture. A view-linked representation in addition, has
the advantage of being potentially self-organizing.
There are also indications from perceptual experi-
ments, which support the view-centered representa-
tion.

An important reason for the view representation
is that we want an interpretation, rather than
a copy of an object that we want to deal with. It
provides us with links to the response side of the
system as we require.

An object-centered representation is by de-
finition normalized with respect to contextual
specificities. It has the stated advantage to be inde-
pendent of the observation angle, distance, etc. This
has, however, the consequence that it cuts off all
links that we have with specific contexts or re-
sponse procedures which are related to that context
or view.

A normalization, or the generation of an invari-
ant representation, implies discarding information
which may be essential for the system to act using
the information. It is important to remember that
we are not interested in objects, but in situations
and generation of responses.

5.3. Combination of representation properties

It is postulated that we can represent objects as
invariant combinations of percepts and responses.

This suggests that we shall start out from the view-
centered representation of objects, and interpret
this in the light of invariant combinations of per-
cepts and responses. As we will see, certain aspects
of generalization are necessary, which will bring us
to something which shares important properties of
the two extreme varieties. As an example, an effi-
cient representation of instances is necessary for
a representation structure.

The structure which results from the preceding
model will be of type frames-within-frames, where
individual transformations of separate objects are
possible within a larger scene frame. See Fig. 6.
This seems absolutely necessary, and would not be
possible with a truly iconic view representation. It
is postulated that the frames-within-frames par-
titioning is isomorphic with the response map
structure discussed elsewhere. In this way, the re-
sponse map ‘reaches’ into the frame in question, to
implement the percept—response invariance of
a particular object aspect.

5.4. Object properties being part percept and part
response

Vision has traditionally been the art of combin-
ing percepts in a way that will describe the
external world as well as possible for purposes of
interacting with it. There has been an increasing
awareness, however, that perception cannot be
treated solely as a combination of perceptual at-
tributes, in isolation from the response generation.
As an example, it appears that many classical as-
pects of perception, such as geometry, most likely
do not exclusively belong to the percept domain of
a vision system, but include the response domain.
This is supported by recent research about the
motor system, and in particular the cerebellum
[35].

Invariance mechanisms are central in the de-
scription of properties for recognition and analysis.
It can be seen as an axiom or a truism that only
properties which are sufficiently invariant will be
useful for learning and as contributions to a consis-
tent behavior.

To start with, I would like to postulate that the
following properties are in fact response domain
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features, or features dominated by their origin in
the response domain:
f Depth;
f Geometric transformations;
f Motion;
f Time.
A plane is not a distinguishable entity in the percept
domain. We may perceive the texture of the plane,
or we may perceive the lines which limit the plane,
and these may be clues, but they do not represent
the system’s model of a plane. A learning system
trying to acquire the concept of plane, has to associ-
ate perceptual and contextual attributes with
a translational movement of the response actuator.
This response movement can be a translation
laterally along the plane, or it can be a movement
in depth to reach the plane. This appears to be
the invariance property of a plane, which is not
located in the percept domain but in the response
domain.

Similarly, it is believed that projective trans-
formations are to a large extent response domain
features. They describe how the external world cha-
nges its appearance to the system as a function of
our movements in it. The primary step in that
modeling is to relate the transformations to ego-
motion. The secondary step is for the system to
generalize and relate the transformation to a rela-
tive motion, be it induced by the system itself or any
other cause. This is an important example of equi-
valence, but also an example of invariance. The
system can learn the laws of geometrical trans-
formation as a function of its own responses, and
then generalize them to any situation of relative
motion of the object in question.

In the same way, the representation of time is
postulated to be residing on the response side of the
structure. A further discussion of this is given in
Section 8.1.

5.5. Extension of view linkage

In order for an entity to have some compact
representation, as well as to be learned, it has to
exhibit invariance. This means that there has to
exist some representation which is independent of
the frame in which it is described. The representa-

tion must not depend on the different ways it can
appear to us. As discussed in the last section, the
variation in appearance of views has to be directly
related to responses we can make with respect to it.

We postulate that the invariant property is the
combination of percept structure and response
structure. There are different ways to interpret this
combination of views and response states to form
an object:

View#Change in position"Invariant;

View#View Linkage"Invariant;

View#View Linkage"Object.

The combination of views with information con-
cerning the position of these views, which is equiva-
lent to the combination of percepts and responses,
will in return allow an interpretation for any re-
quired angle observation. This is again equivalent
to our notion of an object, as something which is
not itself affected by the angle from which we view
it. This model goes well with the notion that we
may not necessarily know how an object appears
from all views or sides. We can never expect com-
pleteness in this respect.

As an example at a higher level, we can take
a robot navigating in a room. The combination of
detected corners and objects in the room, and
motion responses which are linking these corners
together, constitutes an invariant representation of
the room. The fact that a combination is an invari-
ant, will make it useful as a data object to carry on
for further computations.

It is furthermore postulated that the invariance
mechanism for the representation of an object as
a combination of views and the responses involved,
implies a form of equivalence between structures in
the feature domain and in the response domain. We
may say that for the domain of an object, we have
a ‘balance’, or an equivalence between a particular
set of features and a particular response. This also
implies that the observation of a particular set of
percepts matches or infers a particular state of the
system in terms of responses, or what we commonly
denote context. To emphasize, they are equivalent
precisely because the combination of them forms an
invariant; an entity whose variation is not perceiv-
able in some combined percept—response domain
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interface surrounding this description. An invariant
inevitably implies the balanced combination of a
percept and a response. Thus a given response in
a particular system state is equivalent or com-
plementary to a particular percept.

Unless we have to postulate some external or-
ganizing being, the preceding must be true for all
interfaces between levels where invariants are for-
med, which for generality must be for all levels of
a system. This must then be true for the interface of
the entire system to its environment as well. What
this implies is that the combination of percepts that
a system experiences and the responses it performs,
constitute an invariant viewed from the wider per-
cept—response domain. This in turn implies that the
entire system appears as an invariant to the envi-
ronment in this wider domain. To avoid misunder-
standing, it has to be emphasized that a system can
only be observed externally from its responses, and
the effects in this subdomain are as expected not
invariant, otherwise the system could not affect its
environment.

5.6. Response and geometry

In the proposed system, response and geometry
are equivalent. Responses always imply a change of
geometry, and geometry is always implemented as
the consequence of responses or something directly
associated with a response. An associated change of
geometry can be implemented as a response. We can
view responses as the means to modify geometry in
the vicinity of the system. What logically follows is
that object and scene geometry is in fact represented
as invariant combinations of features and responses.

Relative position is a modular, scaled property,
which is uni-modal, and directly related to a par-
ticular displacement, in the sequential representa-
tion of responses. There is also a simultaneous
parallel representation of response effects or geo-
metry. In our model terms, this implies the shunting
linkage between two nodes, without an action into
the external world.

Geometry, position and response are all relative
and local properties, which are defined within
a window of a certain size. This window corres-
ponds to the band pass representation of some

property filter, as will be described in a subsequent
section.

5.7. Object versus interpretation

In the process to generate appropriate responses
to scenes, objects, etc., we require information de-
scribing the situation to the system in an appropri-
ate way and with an appropriate accuracy. An
interpretation of an object is a limited representa-
tion of associated states and responses, which is
related to a particular contextual or observation
state. As such, an interpretation or a description is
something entirely different from the object it re-
lates to, not just some incomplete version of the
object. In literature there is sometimes a misunder-
standing expressed, in that we want something
which is as exact a copy of an object as possible.
This is not true because a copy is an uninterpreted
version, which does not help us. The ultimately
absurd consequence of this is, the sometime stated
view, that the best representation of an object is the
object itself.

We can get some insight into the issues, borrow-
ing the view in Quantum Mechanics, where an
objective, unrestricted, uninterpreted field world is
subjected to interpretation or observation through
the projection on a Hermitian operator, which pro-
vides a local, limited description [17]. See Fig. 8. It
is important to understand that the object and the
description domains are entirely different things,
not just a matter of fidelity.

It appears that what we require in the spatial-
cognitive part of the system is a representation of
what we may call situations rather than objects. If
we find a telephone up-side down on our desk, it is
a different situation than if we find it in a normal
position, as it requires a different set of responses to
get it into operation and dial a number. This is the
type of situation that the system has to be able to
deal with. The fact that we are dealing with the
same object, something called a telephone, does not
help particularly. We have earlier challenged the
view that the best representation of an object is the
object itself. To carry around the object itself, or
a copy of it, does not help the system to do anything
as it is not in a form suitable for action.
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Fig. 8. Illustration of the two distinctly different domains of
object versus description or interpretation.

An object appearing under a particular view is
consequently something different from its appear-
ance under another view, as they are related to
different response situations. This means that there
is probably no such thing as a standard view of an
object, although there may be a most commonly
occurring view.

5.8. What do we know about vision, or The peril of
inference from conscious experience

As in all aspects of technology, we use our
minds to devise methods for vision and intel-
ligent systems. This is the only mode of operation
available, but in the case of spatial cognitive in-
formation processing, we have to be particularly
cautious.

A traditional goal in all aspects of information
processing is to establish a class membership ident-
ity of a signal; to denote a particular object. The
class memberships that we use for such a labeling
are derived from our conscious experience of inter-
action with objects. Similarly, we tend to break up
these objects into parts, which are themselves con-
sciously recognizable objects or entities.

A potential danger inherent in this process, is
that our conscious experience of the environment
has its locus at the very end of the chain of neural

processing; at a point where in fact most of the
cognitive processing has already been made. This is
in psychology and in Artificial Intelligence referred
to as two distinctly different domains of processing
and experience: procedural and declarative. The
procedural domain deals with the development of
motor skills and highly contextually dependent ex-
periences, which may be difficult to express in lan-
guage. A typical example is to describe how to ride
a bicycle. The declarative domain deals with facts
and events which we can handle consciously and
describe verbally or communicate. It is well estab-
lished that language capability, logical reasoning
and conscious processing are all derivates of the
motor system normally in the left half of the brain,
at the end of the processing chain. This has the
consequence that

Our conscious perception of the external world is
in terms of the actions we can perform upon objects
around us

rather than some window through our eyes out
into the environment. There is a great deal of per-
ception research, which supports this notion. Ex-
periments have been performed on so called split-
brain subjects, where the corpus callosum, which
communicates information between the two hemi-
spheres of the brain is either sectioned or non-
existent from birth. Experiments can be set up
where information has to be communicated in-
directly and externally from the cognitive half to
the motor/language/consciousness half of the brain.
The conscious part can then be deceived about
what has really happened, but it will still try to
produce as plausible a conscious experience and
rationalization as possible [6,37,38]. With reference
to the pyramid structure in Fig. 11, we may with
some exaggeration say that the motor/lan-
guage/consciousness is just the lower right part of
this pyramid.

This implies that a processing in terms of such
conscious object terms inside the cognitive process-
ing structure is not likely to occur. Most, or nearly
all of the cognitive processing has already been
done when objects in conscious terms emerge, and
are available for motor manipulation. Somehow,
we are too late to see how it happened. We only
notice what has happened.
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Fig. 9. Simplest structure of robotics control system.

5.8.1. Representation in language
Although the relation to language is not central

in this document, we will make a few observations
which extend the issues already dealt with. What
we have been talking about above is what is postu-
lated to happen in the spatial-cognitive or pro-
cedural part of a vision system, which for human
vision is not assumed to be available to us in
conscious experience, except for its effects. What is
happening in the motor/language/consciousness or
declarative part of the human system, on the other
hand, is the generation of a normalized object
centered representation, in order to be able to com-
municate it in a sufficiently compact way. In this
case it is necessary for compactness to cut off a ma-
jor part of incidental contextual links, which are
probably not necessary for the receiver, as it will
anyway not be in exactly the same state as the
sender of the message. The formalism that we find
in classical knowledge-based systems is oriented
towards such compact, string-representable phe-
nomena intended for communication. As for all
object centered representations, taxonomies are
built up with an overview of the final outcome,
rather than the type of incremental, ‘blind’ buildup
which is assumed necessary for view centered rep-
resentations.

There is a clear difference between what we rep-
resent in language as declarative statements, com-
pared to the procedural statements required
for generation of responses. While subset-of and
member-of concepts are important for conscious
taxonomy and organization, such as to determine
a particular disease from its symptoms, it is not
apparent that these concepts are useful for response
generation systems. The type of grouping or ab-
straction which is performed here, is in fact similar
to the process of increased abstraction which we
have in an object-centered representation in con-
trast to a view-centered representation; a number of
specific action references are cut off from the repres-
entation structure.

The fact that language can communicate action,
is due to the rich structure that it evokes in the
receiver’s cognitive system; not due to the structure
of the sentence itself. Most of the information ne-
cessary for the response has to be contained in the
structure of the receiver; it cannot just point to

abstract references thereof. This is the major reason
for the limited success of inference systems using
natural language in robotics: There is too little
information contained in language itself.

6. The extended percept—response pyramid

The ultimate purpose of vision, or in fact all
aspects of information processing, is to produce
a response, be it immediate or delayed. The delayed
variety includes all aspects of knowledge acquisi-
tion. This response can be the actuation of a mech-
anical arm to move an object from one place to
another. The system can move from one environ-
ment to another. It can be the identification of an
object of interest with reference to the input image,
a procedure we customarily denote classification.
Another example is enhancement of an image,
where the system response acts upon the input
image (or a copy of it) in order to modify it or filter
it according to the results of an analysis. In this
case, the input image or the copy is a part of the
external world with respect to the system, upon
which the system can act.

In robotics we have traditionally assumed
a structure according to Fig. 9, where a vision sys-
tem is controlling an actuator system. The systems
were viewed as sophisticated perception modules,
to which a few actuator wires were attached, caus-
ing the requested responses.

A major problem in the implementation of such
a system structure is that the channel between the
analysis and the response generation parts is very
narrow. This implies that the information available
from the analysis stage is not sufficiently rich to
allow the definition of a sufficiently complex re-
sponse required for a complex situation. It has
become increasingly apparent that perception can-
not be treated in isolation from the response
generation, firstly because a very high degree of
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Fig. 10. The two-tier pyramid.
Fig. 11. A stylized analysis—response structure viewed as a
pyramid.

integration is required between different levels of
percepts and corresponding response primitives.
Secondly, it turns out that the response to be pro-
duced at a given instance is as much dependent
upon the state of the system, as the percepts im-
pinging upon the system. The state of the system is
in consequence the combination of the responses
produced and the percepts associated with these
responses. Thirdly, it has emerged that many classi-
cal aspects of perception, such as geometry, do not
belong to the percept domain of a Vision system,
but to the response domain.

It seems that there has to be two tiers of organ-
isation within an effective computation structure
for spatial information, see Fig. 10. Within the
lower tier there is an organization of data in rela-
tion to external geometry. This is also true for
biological systems, where low-level orientation de-
scription is mapped upon the cortex in a accord-
ance with position in the visual field. Similarly for
motor functions and other features, which are map-
ped correspondingly between the body and the
cortex. For technical systems, it can be assumed
that computations to produce these low-level fea-
tures can be made in parallel, and that influences on
earlier levels of computation are at least very local.

It is postulated that at some level of abstraction,
local geometrical relations become less important,
and other non-spatial and non-local relations be-
come essential. The separation into distinctive
paths for WHAT and WHERE information is one
indication of this in biological systems [31]. This
forms the upper tier of the computation structure
for spatial information, see Fig. 10, which has to be
formed through association based upon properties
of the signals themselves as they are driven by
stimuli, rather than by geometric adjacency. Most
of the discussion to follow will deal with computa-
tion structures for the upper tier.

In contrast to the system structure in Fig. 9, we
want to propose a conceptual structure, which has
the potential of producing more complex re-
sponses, due to a close integration between visual
interpretation and response generation [8], as illus-
trated in Fig. 11.

This structure is an extension of the computing
structure for vision, which we have developed over
the years [9]. As discussed earlier, the input in-
formation enters the system at the bottom of the
processing pyramid, on the left. The interpretation
of the stylized Fig. 11 is that components of an
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Fig. 12. Multi-level step-wise definition of a response.

input are processed through a number of levels,
producing features of different levels of abstraction.
These percept features of different levels, generated
on the left-hand side of the pyramid, are brought
over onto the right-hand side, where they are as-
sembled into responses, which propagate down-
ward, and ultimately emerge at the bottom on the
right-hand side. A response initiative is likely to
emerge at a high level, from where it progresses
downward, through stages of step-by-step defini-
tion. This is illustrated intuitively as percepts being
processed and combined until they are ‘reflected’
back and turned into emerging responses.

The number of levels involved in the generation
of a response will depend on the type of stimulus
input as well as the particular input. In a compari-
son with biological systems, a short reflex arch
from input to response may correspond to a skin
touch sensor, which will act over interneurons in
the spinal cord. A complex visual input may in-
volve processing in several levels of the processing
pyramid, equivalent to an involvement of the visual
cortex in biological systems.

A characteristic feature of this structure is that
the output produced from the system leaves the
pyramid at the same lowest level as the input. This
arrangement has particular reasons. We believe
that processing on the percept side going upward in
the pyramid, usually contains differentiating opera-
tions upon data which is a mixture between input
space and property space. More on this in Sec-
tion 7.2. This means that variables in the hierarchi-
cal structure will not correspond to anything which
we recognize at our own conscious level as objects
or events. In the generation of responses on the
right-hand side, information of some such abstract
form is propagated downward, usually through in-
tegrating operations. Only as the emerging re-
sponses reach the interface of the system to the
external world, do they have a form which is in
terms of objects as we know them. In conclusion,
this is the only level at which external phenomena
make sense to the system; be it input or output.

This structure illustrates far-reaching conse-
quences concerning programming versus learning
for intelligent systems. Information cannot be
pushed directly into the system at a higher level, it
must have the correct representation for this par-

ticular level, or it will be incomprehensible to the
system. A more serious problem, which we will deal
with later, is that new information will have to be
related to old information, on terms set by the
system and organized by the system. It will require
the establishment of all attribute links and contex-
tual links, which in fact define the meaning of the
introduced item. It is apparent that information
can only be input to a system through the ordinary
channels at the lowest level of a feature hierarchy
system. Otherwise it cannot be recognized and or-
ganized in association with responses and other
contextual attributes, which makes it usable for the
system.

In biological systems, there appear to be levels of
abstraction in the response generation system as
well, such that responses are built up in steps over
a number of levels [27,36]. Arguments can be made
for the advantage of fragmentation of response
generation models, to allow the models to be
shared between different response modes.

A look into the interior of the response part of
the pyramid in Fig. 11 will reveal a stylized struc-
ture for implementation of responses as can be seen
in Fig. 12. We can view this as a more general
response action command entering from the top of

118 G.H. Granlund / Signal Processing 74 (1999) 101–126



the structure. This command is then modified by
processed percept data input entering from lower
levels, to produce a more context specific response
command. This is in turn made even more specific
using more local, processed lower-level input
data.

A typical response situation may be to stretch
out the hand towards an object to grasp it. The first
part of the movement is made at high speed and
low precision until the hand approaches the object.
Then the system goes into a mode where it com-
pares visually the position of the hand with that of
the object, and sends out correcting muscle signals
to servo it on the object. The grasping response can
now start, and force is applied until the pressure
sensors react. After this, the object can be moved,
etc.

Interpreted in classical terms, we can state that
knowledge in this pyramid is of two types:
1. Feature-related knowledge;
2. Response-related knowledge.
These two types of knowledge relate directly to the
two sides of the feature—response pyramid.

It should be emphasized that there is no sharp
division between a percept side and a response side
in the pyramid. There will be a continuous mixture
of percept and response components to various
degrees in the pyramid. We will for that purpose
define the notion of percept equivalent and response
equivalent. A response equivalent signal may
emerge from a fairly complex network structure,
which itself comprises a combination of percept
and response components to various degree. At
low levels it may be an actual response muscle
actuation signal which matches or complements
the low-level percept signal. At higher levels,
the response complement will not be a simple
muscle signal, but a very complex structure, which
takes into account several response primitives
in a particular sequence, as well as modifying
percepts.

A response complement also has the property
that an activation of it may not necessarily produce
a response at the time, but rather an activation of
particular substructures which will be necessary for
the continued processing. It is also involved in
knowledge acquisition and prediction, where it
may not produce any output.

7. Non-geometric similarity representations for
linked structures

There is a great deal of literature available on the
topic of object representation using classical
methods [10], which however will not be reviewed
here. Most of these methods treat objects with
respect to geometric properties expressed in some
coordinate system. They relate to rules of inter-
pretation, which should be input into the system.
This is probably appropriate for the representation
of low-level properties. For higher-level properties
the requirements are different.

7.1. Continuity, similarity and semantics

In the world around us, things generally appear
different, whether they are or not. A particular
object will appear different seen from different
angles. Still we can recognize most objects at arbit-
rary positions, orientations, distances, etc. An ob-
ject which persists in appearing different from
anything else we know, cannot be matched to any
known class, which is a common purpose of re-
cognition. There have to be aspects which are
sufficiently familiar, for us to start a process of
recognition. For that reason we will be interested in
the simultaneous appearance of similarity and differ-
ence of properties of objects. This is related to the
concepts of invariance and equivariance, which are
discussed elsewhere in this paper.

From statistics we have derived the notion that
we can only certify the difference between items. As
a complement, we can never be certain that two
items are similar. It may only be necessary to take
one more measurement to be able to separate
the items, or that we are able to reject the hypothesis
of similarity. Consequently, similarity is never
unequivocal. It may be rejected if we look more
closely at the items, and make another measure-
ment which happens to be distinctive. Dissimi-
larity on the other hand is absolute. There is no
way in which we may add more measurements to
make items more similar, from a statistical point of
view.

In practice, statistics may not give the full pic-
ture, as structural aspects enter the setup of the

G.H. Granlund / Signal Processing 74 (1999) 101—126 119



Fig. 13. Example of words having a small distance in terms
of an ASCII letter metric, but large distances in content or
meaning.

Fig. 14. Channel representation of some property as a function
of match between filter and input pattern domain.

problem. Measurements which we try to relate
must be commensurable, which means that we
must have already identified the object and its parts
under investigation. This is generally a severe catch.
Measurements may be partially incommensurable,
such as the two views of a stereo image, or proper-
ties at two instances of a moving object. In general,
the measurement of dynamic properties leads to
measurements of properties in two or more
images which are not completely commensurable.
This does also apply to the comparison of two
different objects in general. Measurements upon
two objects can never be fully commensurable as
they deal with what is in effect two different things.
Measurements made on one of the objects are not
totally relevant with respect to the other object.
This leads to a variety of the ºncertainty Principle
in vision [41].

The representation of information in a cognitive
system is crucial for effective performance. Tradi-
tionally, the representation is in the form of natural
language, which has the following less desirable
properties:
f Discrete and discontinuous: Similarity is estab-

lished by matching, and the result is MATCH or
NO MATCH;

f Non-metric: It is not possible to establish a de-
gree of similarity or distance between symbols.

As an example we can take the words in Fig. 13.
Establishing a similarity measure, e.g. using their

ASCII numerical value would not be useful. Such
a representation cannot be used for efficient pro-
cessing of semantic or cognitive information.

We can conclude that a suitable representation
for semantic information requires:

Continuous representation of similarity in content

In the preceding case with words, we can observe
that we deal with two types of adjacency:
f Time or position adjacency between words.
f Content adjacency or similarity in meaning be-

tween words.
It is apparent that both of these distance measures
have to be represented in the description, although
this is not the case in the example above. It is fairly
obvious what the space or time distance represents,
but what about the similarity in property? We will
address this question in the next section.

7.2. Channel representation of information

A representation of similarity requires that we
have a metric or distance measure between items.
For an advanced implementation of a linkage
structure, we assume that information is expressed
in terms of a channel representation. See Fig. 14.

Each channel represents a particular property
measured at a particular position of the input
space. We can as a first approximation view such
a channel as the output from some band pass filter
sensor for some property. This resembles the func-
tion of biological neural feature channels. There
are in biological vision several examples available
for such properties; edge and line detectors, ori-
entation detectors, etc. If we view the channel out-
put as derived from a band pass filter, we can
establish a measure of distance or similarity in terms
of the parameters of this filter. See Fig. 14. For a
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Fig. 15. Visualization of channels as partially overlapping enti-
ties in some space.

conventional, linear simple band pass filter, the
phase distance between the flanks is a constant p/2.
Different filters will have different bandwidths, but
we can view this as a standard unit of similarity or
distance, in terms of the particular channel filter.
Such a channel filter has the characteristic that it is
local in some input space, as well as local in some
property space. It may map from some small region
in the visual field, and indicate, say, the existence of
a line at some orientation.

We can view every channel as an originally inde-
pendent fragment of some space. The output of the
channel is dependent upon the value of the input
parameter relative to the center of the channel. There
will be an ambiguity in terms of the position with
respect to this center, which can only be resolved with
the combination with other channel responses.

Our mission is to obtain a description or model
of some phenomenon involving a large number of
channel signal contributions. Such a description
can be achieved under certain assumptions of con-
tinuity in the signal structure. A description implies
that we relate a phenomenon to other phenomena,
described in terms of various properties through
a comparison of difference and similarity in these
properties in relation to various alternatives. This
procedure will, if successful, allow us to link or
combine different originally independent frag-
ments, implying that we form an abstract spatial
structure for some phenomenon.

If a set of adjacent channel receptors driven by
a single and simple stimulus display an output as
indicated in Fig. 15, where the falling flank of one
channel coincides with the rising flank of another
channel, we know that the distance between the
peaks is as well p/2. This phase distance is in terms
of some average of the parameters of the channel
filters involved.

By using a sufficiently dense representation we
can employ the knowledge of a particular similarity
or distance between channel contributions. Viewed
in the input parameter domain, we can intuitively
view a sequence of activated channels as illustrated
in Fig. 15. The input parameter may be time, dis-
placement or some other variable.

It should now be observed that we have two
different types of distances:
f Distance in input space;
f Distance in property space.
The distance in input space may be the distance
between two different positions of a line within the
receptive field of an orientation detector, where the
line has a constant orientation.

The distance in property space may be the differ-
ence between two different orientations of a line,
located centrally within the receptive field of an
orientation detector.

A variation of position or a variation in orienta-
tion will both of them give a variation of the output
according to Fig. 14, and a priori, we cannot distin-
guish between these two situations, having a single
and simple stimulus acting upon a single orienta-
tion detector. Either a line at the proper orientation
is moving over the spatial region of the detector, or
a line at the proper position is rotating over the
detector, or in general a combination of both.

This leads us to consider the input space and the
property space as two orthogonal subspaces, which
in the general case both will contribute to the output
in some linear combination. See Fig. 16, which is
intended as a two-dimensional version of Fig. 15.
the distance represented by the channel filter will be
in a linear combination from both of these spaces.
Distance is a property which is well defined in
a multidimensional space. Distance does not allow
us to order events, but to define a sequence of events,
represented by nodes which are joined by links.
Every such link will represent a different one-dimen-
sional projection from the multidimensional space
under consideration, than a joining link.

The fact that we can view the phase distance
between two adjacent channel peaks as p/2, implies
that we can view the two subspaces as orthogonal
in the metric defined by the joining band pass filter.
Still these subspaces are parts of some larger com-
mon vector space.
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Fig. 16. Visualization of channels in input space as well as
property space.

Fig. 17. Representation of channels as orthogonal subspaces.

Given this fact that we are dealing with projec-
tions in different subspaces, we must concede that
the illustrations in Figs. 15 and 16 are not totally
correct, although hopefully helpful. This means
that the subspaces which relate to each filter output
are different, and cannot really be compared in the
same two-dimensional projection plane. Each sub-
space can for intuitive visualization be represented
as a vector, which is orthogonal to its nearest-
neighbor subspaces. This is illustrated in Fig. 17.
As can be seen from Fig. 17, the vector magnitudes
are tapering off from the center, which is the as-
sumed point of observation of the coordinate sys-
tem. This indicates that while adjacent subspaces
are orthogonal, we cannot say much about the
relation to vector subspaces at a larger distance.
What we can assume is that the subspaces ‘bend’
into other parts of the common vector space, which
makes them disappear from the horizon of any
given vector subspace. This can be viewed as a cur-
vature of the local space around a particular sub-
space, or as a windowing effect. As such, it may well
be a necessary introduction of locality providing
a stabilizing effect for the resulting networks, much
like lateral inhibition.

7.3. Implications of multiple measurements

From the previous section it follows that sim-
ilarity is measured and valid along a single, one-

dimensional subspace only, given the output from
one single channel. For a particular object, there
will be different distance measures to another par-
ticular object, in terms of different properties. Two
successive links may not represent distances along
the same, one-dimensional subspace, as we have no
way to track what filters are involved where. There
is no way to order objects unambiguously for two
different reasons:
1. There is no way to order items which are defined

in a multidimensional space, which is the Curse
of Multi-dimensionality [9].

2. It is not possible to sort objects with respect to
a particular property, as similarity between sub-
spaces of different filters can never be estab-
lished.

The potential possibility to sort objects with re-
spect to similarity, to produce a list is consequently
not available. The fact that we have different
measures of distance between two objects implies
that we can represent the objects as points in a suffi-
ciently high-dimensional, common space. See
Fig. 18.

7.4. Representation using canonical points

It is postulated that we do not observe the world
continuously although it may appear so to us.
Rather observations and representations are made
in particular, discrete points. We call these canoni-
cal points.

It is postulated that canonical points relate to
certain phases of the output from the filters in-
volved. It is postulated that canonical points cor-
respond to phases 0°, 180° and $90° in outputs
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Fig. 18. Distance between two objects measured with two dif-
ferent probes, implying projection upon two different subspaces.

from these filters. Parenthetically, these values do
as well correspond to the discrete eigensystems
which are derived from observation operators
used for continuous fields in quantum mechanics
[17].

It is furthermore postulated that a representation
at these characteristic phases gives us exactly the
sampling resolution required to provide a suffi-
ciently good description. This can be viewed as
a variable sampling density controlled by the con-
tent of the image.

It is obvious that there has to be some discretiz-
ation in the representation of objects and events,
implying a certain limited resolution. What is
stated here is that this resolution is directly related
to the forms and scales of objects and events them-
selves, mediated by the measurement probes or
filters involved. These canonical points will imply
different things dependent upon the level and phe-
nomenon under consideration, but in general be
points of symmetry, etc., of objects. Canonical
points represent what we will abstractly denote an
object, which in everyday language can be a feature,
an edge, a line, an object, an event, a position,
a view, a sequence, etc. Every feature or object is
provided at some level of the processing hierarchy
by something equivalent to a filter band pass func-
tion. The implementation of this is apparent for
low-level features, but we can find equivalent inter-
pretations at higher levels.

8. Associative linkage between percept and response
primitives

The conventional way to represent association in
neural network methods is to use a covariance
matrix. There are however some disadvantages
with such a matrix structure for the representation:
f The matrix structure and size has to be deter-

mined before the learning process starts.
f It is a centralized representation, which assumes

a centralized computational resource.
f To sufficiently well define the matrix and the

components, generally requires a large number
of training samples.

f A conventional covariance matrix does track the
relation between points mapped, but it does not
track typical dynamical sequences.

f There will generally be a large number of zeroes
for undefined relations.

As a consequence, a closed-form matrix organiza-
tion is not attractive for self-organizing, extendable
representation structures.

Rather, an attractive representation should be
oriented towards sparse representation, and not be
organized in terms of spatial coordinates, nor in
terms of feature coordinates. It is also postulated
that a fundamental property of effective representa-
tion structures is the ability of representation of
instances. Many procedures in neural network
methodology require thousands of training runs for
very simple problems. Often, there is no apparent
reason for this slow learning, except that the organ-
ization of the learning does not take into account
the dynamics of the process, and considers every
data point as an isolated event. We know that
biological systems usually require only one or two
examples for learning per item. The reason is that
the succession of states is a very important restrict-
ive mechanism for compact representation as well
as fast learning. The system must consequently be
able to learn from single or few instances as a base
for the knowledge acquisition.

As a consequence of the preceding, it is postu-
lated that it is more important to keep track of
transitions between association states, than the ac-
tual association states themselves as static points.

For that reason it is postulated that the basis of
the representation is one-dimensional trajectories
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Fig. 19. Intuitive illustration of linkage structure.

linking these associated states, which have earlier
been referred to as canonical points. The essential
properties of similarity or distance can be represent-
ed by linkages implemented by operators stating this
distance in a general form. The use of discrete points
is a way to resolve the problem of scaling, in that it
allows the linkage of items, regardless of distance
between the objects in the external physical space.
The canonical points are linked by a trajectory,
which is basically one-dimensional, but may fork
into alternative trajectories. The linkage can be given
an intuitive representation according to Fig. 19.

A link between two canonical points can itself be
represented by a canonical point in the actual res-
olution and the actual set of features. It can be
viewed as an interval over which only one thing is
happening at the level under consideration. It can,
however, also be an aggregate of, or a sequence of
canonical points at some level. We can view such
a path as a single canonical point at a low resolution.
As an example, we can take the walking along a cor-
ridor between two major landmarks. Between these
two major landmarks there may well be other minor
landmarks, but at a different level of resolution.

An experimental system has been built up to test
response driven learning of invariant structures using
channel representation, with successful results [33].

8.1. Representation of time

A crucial issue is how time should be represented
in a percept/response hierarchy. An apparent way

is to employ delay units of different magnitudes.
This is a useful mechanism for low-level processing
of motion. To use such delays at higher levels,
implementing long time delays, has a number of
problems as will appear in the ensuing discussion.

We postulate that:

¹ime is represented only on the response side of
the pyramid. ¹ime is represented by the duration
of responses, as time and dynamics are always
related to a particular action of physical motion.
¹he linkage which is related to a particular time
duration is mediated by actuator control signals
expressing this duration.

This gives us a linkage structure representation
of displacement and of time. Time must be given
a representation which is not a time-delayed ver-
sion of features, but allows us to treat time like any
other linked variable in the system. This is e.g.
necessary as time sequence processes are to be
compared. The model obtained is completely inde-
pendent of the parameter scaling which generated
the model. As there is not always a correspondence
in time between percepts and the responses which
should result, the equivalence relation must contain
time as a link, rather than to match for equivalence
or coincidence between the percept and the re-
sponse for every time unit. In the same way that we
in an earlier section postulated equivalence be-
tween response and geometry, we can now postu-
late that:

Response and time are equivalent

An important property of this representation is
that it allows us to generate predictive models which
allow simulations of actions in faster than real time.
It is postulated that this is implemented as direct
shunting of response control signals, replacing
those normally produced at the completion of a re-
sponse action. See Fig. 20. It is well known that
there are such on—off shunts for output response
signals in the nervous system, which are activated
e.g. during dreaming. It is also believed that mem-
ory sequences can be processed at a much higher
speed than real time, e.g. as they are consolidated
into long-term memory during REM sleep.

Another benefit is that something which is
learned as a time sequential process, can later be
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Fig. 20. Time representation for fast predictive modeling.

represented as a completely parallel, time-delay in-
dependent model.

It appears that such an organization procedure
goes in two steps:
1. The establishment of a model employs know-

ledge about the band pass adjacency between
different features to sequentially build
a model having the appropriate structure.

2. The use of a model assumes that features
input to the model will exhibit the same ad-
jacency pattern as before, although it is not
tested for, which allows parallel application of
the model.

The fact that adjacency is not crucial in the second
case implies that a time sequential activation of
features, in the same way as in the learning process,
is no longer necessary to activate the model. Fea-
tures can in fact be applied in parallel. While re-
sponses are inherently time sequential signals, we
can still represent them in a time independent form
as described earlier. This implies that we activate
model sets of responses in parallel.

9. Concluding remarks

The demands on an effective Vision system are
tremendous, and require a large number of well
integrated functionalities. A processing system

must be able to implement a model structure, the
complexity of which is directly related to the struc-
tural complexity of the problem under considera-
tion in the external world. One of the central
functionalities is an ability to learn the external
world through interaction and exploration. This
will require totally different information repres-
entations and computing structures from what is
common today.
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