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Abstract—
A learning system architecture using a channel information

representation has been developed. This representation im-
plies that signals are monopolar and local. Monopolar means
that data only utilizes one polarity, e.g. positive values, al-
lowing zero to represent no information. Locality derives from
a partially overlapping mapping of signals into a higher-
dimensional space. This implies that a signal is non-zero
only within a limited range of the input domain. This com-
bination of monopolarity and locality leads to an efficient
sparse representation.

Locality of features allows the generation of highly non-
linear functions using a linear mapping. The averaging prop-
erties of channel functions allow representation of discon-
tinuities, while implementing an interpolating mapping in
other regions. Mapping from an input channel set onto an
output channel set, allows the use of confidence statements
in data, leading to a low sensitivity to noise in features.

The optimization uses a modified projected Landweber
method. The sparse monopolar representation together
with locality, using individual learning rates, allows a fast
optimization, as the system exhibits linear complexity. The
monopolarity implies a regularization, providing a better
generalization.

Experiments on functionality and noise sensitivity are
presented.

Keywords— Channel representation, monopolar, associa-
tion, sparse, confidence, learning, learning rate, optimiza-
tion, neural networks, RBF, SVM, local features, classifica-
tion, linkage matrix, non-linear mapping, wavelets, function
approximation, computer vision, signal processing.

I. Introduction

OVER the years, the complexity of systems for informa-
tion processing has increased dramatically. In many

fields such as vision, robotics, speech and control it has
proved increasingly difficult to specify complex procedures,
where each subprocedure may only be valid within limited
windows of context, or it depends upon contextual param-
eters. It would be of great benefit if such procedures could
be designed through learning of the complex and usually
non-linear relationships.

There has over the years been an extensive research on
mechanisms which would allow such an acquisition of in-
formation, e.g. under the heading of neural networks [1].
However, the number of powerful applications using learn-
ing has been limited, due to the still limited capacity of
today’s learning structures.

A large class of problems, which would benefit from the
use of learning methods, is characterized by the following
properties:
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• A large number of input and output variables
• A highly non-linear mapping, which in parts is locally
continuous and in other parts transiential switching
• A mapping which requires the interpolation between a
large number of models

These characteristics are true for many problems in con-
trol, robotics, signal processing and vision. An improve-
ment of methodology for this class of problems would have
a large impact upon the number of feasible applications.
The architecture proposed in this paper is intended to pro-
vide efficient learning for problems within this class.

II. Notations

Italic letters (x,X) denote scalars, lowercase letters in
boldface (x) denote vectors, and uppercase letters in bold-
face (X) are used for matrices. Further, 〈· , ·〉 denotes the
standard Euclidean inner product, and ‖·‖ the induced
norm. Weighted inner products are given by 〈·, ·〉W =
〈·,W·〉, and ‖·‖W denotes the induced weighted norm. The
norm of a matrix is assumed to be the Frobenius norm,
‖A‖2 = trace(AT A). Moreover, D = diag(v) denotes
a diagonal matrix with Dii = vi, v = max(x,y) denote
element-wise maximum, i.e. vi = max(xi, yi), and x > 0
and x ≥ 0 denotes positive and non-negative vectors re-
spectively.

We will use both row vectors and column vectors in this
paper. To avoid confusion, we introduce additional nota-
tions. A vector without index (x) denotes a column vector.
Element i in a column vector x is denoted in superscript
italics, xi. A superscript vector (xi) denotes a row vector.
A subscript vector (xi) denotes a column vector. As a con-
sequence, an element in a matrix may be written with one
subscript and one superscript (Xij = Xi

j).
Additional notations are introduced when needed.

III. Architecture Overview

In the proposed architecture, the choice of information
representation is of fundamental importance. The architec-
ture uses a monopolar channel information representation.
The channel representation implies a mapping of signals
into a higher-dimensional space, in such a way that it in-
troduces locality in the information representation with re-
spect to all dimensions; geometric space as well as property
space.

The locality obtained in this channel representation gives
two advantages:

• Nonlinear functions and combinations can be imple-
mented using linear mappings
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Fig. 1. Architecture overview. (a) The system is moving along a
state space trajectory. Response channels, uk, and feature channels,
ah, measure different (local) aspects of the state vector x. (b) The
response channels and the feature channels make up localized func-
tions along the trajectory. A certain response channel is associated
with some of the feature channels.

• Optimization in learning converges much faster

Figure 1 gives an intuitive illustration of how signals are
represented as local fragments, which can be freely assem-
bled to form an output. The system is moving along a state
space trajectory. The state vector x consists of both inter-
nal and external system parameters. The response space
is typically a subset of those parameters, e.g. orientation
of an object, position of a camera sensor in navigation, or
actions of a robot. Response channels and feature chan-
nels measure local aspects of the state space. The response
channels and feature channels make up reponse channel
vectors u and feature vectors a respectively.

The processing mode of the architecture is association
where the mapping of features ah onto desired responses
uk is learned from a representative training set of observa-
tion pairs {an,un}Nn=1, see figure 1(b). The feature vector
a may contain some hundred thousand components, while
the output vector u may contain some thousand compo-
nents.

The monopolar property implies that data only utilizes
one polarity, e.g. only positive values, in addition to zero.
This allows zero to represent not just another value, such
as temperature zero as opposed to other values of the tem-
perature, but to represent no information.

For most features of interest, only limited parts of the
domain will have non-zero contributions. This provides
the basis for a sparse representation, which gives improved
efficiency in storage and better performance in processing.

The model of the system is in the standard version a
linear mapping from a feature vector a to a response vector
u over a linkage matrix C,

u = Ca . (1)

In some training process, a set with N samples of output
vectors u and corresponding feature vectors a are obtained.
These form a response matrix U =

(
u1 . . . uN

)
and a

feature matrix A =
(
a1 . . . aN

)
. The training implies

finding a solution matrix C to

U = CA . (2)

The linkage matrix is computed as a solution to a least
squares problem with a monopolar constraint C ≥ 0. This
constraint has a regularizing effect, and in addition it gives
a sparse linkage matrix. The monopolar representation to-
gether with locality, allows a fast optimization, as it allows
a parallel optimization of a large number of loosely coupled
system states.

We will compare the standard version (1) to models
where the mapping is made directly to the response subset
of the state parameters, i.e. typically what would be used
in regular kernel machines. We will in these cases use a
modified model with various normalizations of a.

IV. Channel representation of signals

The channel representation [2], [3], [4] is a high-
dimensional representation of a signal, in such a way that
confidence or certainty can be represented and used in com-
putations. This is achieved using a position encoding of the
signal value. By applying a set of non-negative kernel func-
tions {Bk(x)}K1 to a signal x(t), and weighting the result
with the corresponding confidence r(t) we obtain a vector

u =
(
rB1(x) rB2(x) . . . rBK(x)

)T
. (3)

This operation defines the channel encoding of the sig-
nal/confidence pair (x, r), and the resultant vector u con-
stitutes a channel representation of the signal/confidence,
provided that the channel encoding is injective; i.e. there
exists a corresponding decoding that reconstructs the sig-
nal, and its confidence from the channels. We will in this
context forego the discussion about how confidence of sig-
nals can be established, but reference is made to [5].

Examples of suitable kernels for channel representations
include Gaussians[6], B-splines[7], and other localized win-
dowing functions with a shape similar to the kernel in figure
2.

Fig. 2. A kernel function that generates a channel from a signal.

A. The cos2 kernel

In this paper, channel properties will be exemplified us-
ing the following family of kernel functions

Bk(x) =

{
cos2(ωd(x, k)) if ωd(x, k) ≤ π

2

0 otherwise.
(4)
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Variable k is the kernel center, ω is the kernel width, and
d(x, d) is a distance function. For variables in linear spaces
the Euclidean distance is used,

d(x, k) = |x− k| , (5)

and for periodic spaces with period K a modular1 Eu-
clidean distance is used,

dK(x, k) = min(mod(x− k,K),mod(k − x,K)). (6)

The measure of an angle is a typical example of a vari-
able in a periodic space. Rather than separate signal x,
and confidence r values, we now have a set of channel val-
ues {uk = rBk(x)}K1 . The total interval of a signal x can
be seen as cut up into a number of local but partially over-
lapping intervals, d(x, k) ≤ π

2ω .
In order to simplify the notation, we have defined the

numbers k as consecutive integers, directly corresponding
to the indices of consecutive kernel functions. We are obvi-
ously free to scale and translate the actual signal value in
any desired way, before we apply the set of kernel functions.
For instance, a signal value ξ can be scaled and translated
in the desired way,

x = scale · (ξ − translation), (7)

to fit the interval spanned by the set of kernel functions
{Bk(x)}K1 . Non-linear mappings x = f(ξ) are of course
also possible, but they should be monotonous for the rep-
resentation to be non-ambiguous.

Fig. 3. Channel representation of the signal value x = 7.

Figure 3 shows an example of a channel representation
of a single signal value. It is represented using a one-
dimensional set of K = 13 sequentially ordered kernels
with a width of ω = π/3. The kernels are indicated by
the dashed lines. The set of channels is activated by the
signal value x = 7, as indicated by a dot. The values of the
activated channels are indicated by the heights of the solid
curves. The coefficients in the resultant channel vector u
for r = 1 are shown in the bottom of figure 3. Note that
the channel set in figure 3 is designed to represent signals
in the interval −0.5 ≤ x ≤ 10.5.

1using the modulo operation mod(x, K) = x − bx/KcK

B. Sparse data representation

The representation of a signal as 13 numbers instead of
one may seem like a waste of memory. There are however
two redeeming features:
• Due to the localized support of the kernel functions used,
see (4), we are guaranteed that only a small fraction of the
channels are non-zero at a time, i.e. the representation is
sparse. For instance ω = π/3 gives at most three non-zero
channels. For sparse representations there exist a number
of methods to reduce the memory storage requirements,
and to reduce the computation time significantly.
• The redundancy in the nonzero values allows a descrip-
tion of confidence in addition to signal value.

C. Representation of multiple values

The channel representation has a distinct advantage to
conventional signal representations in that it allows several
signal values to be represented simultaneously. This is use-
ful in cases where multiple alternatives of a variable shall
be provided to a subsequent processing step.

As an example, the channel set from the previous section
can simultaneously represent the signal values x = 1 and
x = 7, as shown in figure 4.

Fig. 4. Channel representation of x = 1 and x = 7.

In this case both signal values have the same confidence,
but in a typical application they may differ. It is appar-
ent that as the difference between the two signal values
decreases, there will be interference between the contribu-
tions. This indicates a need to worry about proper channel
resolution, like for any sampling process.

D. Properties of the cos2 kernel

A major motivation for the cos2-kernel in (4) is that
it has a localized support, which ensures sparsity. An-
other motivation is that for values of ω = π/N where
N ∈ {3, 4, ...} we have

∑
k

Bk(x) =
π

2ω
and

∑
k

(Bk(x))2 =
3π

8ω
. (8)

This implies that the sum, and the vector norm of a chan-
nel value vector generated from a single signal/confidence
pair is invariant to the value of the signal x, as long as
x is within the definition interval of the channel set (for a
proof, see [4]). The constant norm implies that the kernels
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locally constitute a tight frame [8], a property that ensures
uniform distribution of signal energy in the channel space,
and makes a decoding operation easy to find.

E. Decoding a channel representation

An important property of the channel representation is
the possibility to retrieve the signal/confidence pair corre-
sponding to a given channel vector. The problem of decod-
ing signal and confidence values from a set of channel func-
tion values, superficially resembles the reconstruction of a
continuous function from a set of frame coefficients. How-
ever, in the present situation of position encoding, there
is a significant difference: we are not interested in recon-
structing the exact shape of a function, we merely want to
find all peak locations and their heights.

As mentioned earlier, the channel representation allows
several values to be represented simultaneously. As the
difference between these values decreases, there will be an
interference between channel statements. This turns out
to be an advantage, as it automatically allows an averag-
ing over adjacent values, while sufficiently separated values
maintain their identity [9].

In order to decode several signal values from a channel
vector, we have to make a local decoding, i.e. a decoding
that assumes that the signal value lies in a specific limited
interval (see figure 5).

[k+0.5,k+1.5]

k k+1 k+2

Fig. 5. Interval for local decoding (ω = π/3).

For the cos2 kernel, and the local tight frame situation
(8), it is suitable to use decoding intervals of the form
[k + N/2 − 1, k + N/2], see figure 5. Decoding a chan-
nel vector thus involves examining all such intervals for
signal/confidence pairs.

The local decoding is computed using a method illus-
trated in figure 6. The channel values, uk, are now seen as
samples from a kernel function translated to have its peak
at the represented signal value x̂.

0 10

Fig. 6. Example of channel values (ω = π/3, and x̂ = 5.23).

We denote the index of the first channel in the decoding
interval by l (in the figure we have l = 4), and use local
intervals of channels {ul, ul+1, . . . , ul+N−1}. For the local

tight frame situation (8), we can now compute x̂ as a local
weighted summation of complex exponentials2 [4]:

x̂ = dec(u) = l +
1
2ω

arg

[
l+N−1∑

k=l

ukei2ω(k−l)

]
. (9)

This decoding assumes that the channel values uk have
been generated using (4). For response channels estimated
using (1) this is not necessarily true even though we may
have supplied such responses during training.

The most straightforward way to decode the confidence
is to use a scaled sum of the channel values used to estimate
the corresponding signal value,

r̂ =
2ω

π

l+N−1∑
k=l

uk. (10)

A study of the robustness of this signal/confidence de-
coding, as well as the behavior in case of interfering sig-
nal/confidence pairs, can be found in [6].

We conclude this discussion by emphasizing that the re-
lation between neighboring channel values tells us the sig-
nal value, and the channel magnitudes tell us the confidence
of this statement. In signal processing it is important to
attach a measure of confidence to signal values [5]. The
channel representation can be seen as a unified representa-
tion of signal and confidence.

F. Comparison with other kernel methods

Kernel functions are used in the design of kernel ma-
chines for classification and regression, such as Radial Ba-
sis Function (RBF) networks and Support Vector Machines
(SVM), see e.g. [1], [10], [11], [12]. A desired property in
those systems is often that the kernel function is positive
definite. Mercers theorem states that the kernel function is
equivalent to an inner product in a high-dimensional space.
This is called the kernel trick. The kernels are typically
chosen in such a way that there is a kernel centered around
each training data, and the kernel trick can be used to de-
sign sparse networks that only use a few of the kernels, see
e.g. [12]. The kernels in the present paper are not assumed
to be positive definite, only to be monopolar and to have
a local spatial support.

Another method is to choose kernel parameters, e.g. cen-
ter and width, independently of the training set. Note that
a proper regularization is required if the number of kernels
is higher than the number of samples. This is the approach
used in this paper. The kernel parameters are sometimes
included in the optimization, see e.g. generalized RBF net-
works [1]. However, this will give a non-linear optimization
problem, which is more difficult to solve than a linear prob-
lem. We assume in this paper that the kernel parameters
are given by other systems requirements, such as sensor
resolution, and are suitably chosen from the start.

2Note the similarity to a local Fourier reconstruction of a Dirac
delta distribution.
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V. Representation of system output states

For a system acting in a continuous environment, we
can define a state space X ⊂ R

M . A state vector, x ∈
X , completely characterizes the current situation for the
system, and X is thus the set of all situations possible for
the system. The state space has two parts termed internal
and external. Internal states describe the system itself,
such as its position and its orientation. External states
describe a subset of the total states of the environment,
which are to be incorporated in the system’s knowledge,
such as the position, orientation and size of a certain object.

The estimation of external states requires a coupling to
internal states, which can act as a known reference in the
learning process. Generally it is desirable to estimate either
a state, or a change of state or response. The detailed
implementation of this, however, goes beyond the scope of
this presentation, and we will for simplicity only assume
that the desired response variables are components of the
state vector x.

We assume that the system is somehow induced to
change its state, such that it covers the state space of inter-
est for the learning process. The system state change must
take place in a continuous way, due to the inertia caused
by limited power for displacement of a certain mass (See
[13] for a more extensive discussion).

The state variables are defined at sample points n =
1, 2, . . . , N . We will denote the state at sample point n

by a vector xn =
(
x1

n x2
n . . . xM

n

)T . The sample points n
may e.g. correspond to different time instances, or sim-
ply ordered points along a system trajectory. We can
express such a system state trajectory as a matrix X =(
x1 x2 . . . xN

)
.

A. Channel representation of the state space

The normal form of output for the structure is in channel
representation. It is advantageous to represent the scalar
state variables in a regular channel vector form, as this
allows multiple outputs when the input is ambiguous, see
IV-C. The channel representation also forms the basis for
learning of discontinuous phenomena, and is an appropriate
representation for continued processing at a next level.

A response channel vector um is a channel representation
of one of the components xm of the state vector x, see (3).
The vector um is thus a non-ambiguous representation of
position in a response state space Rm = {xm : x ∈ X}.

With this definition, a response channel will be non-zero
only in a very limited region of the state space. The value
of a channel can be viewed as a confidence about the dis-
tance of the current state to a prototype state. When a
specific channel is non-zero it is said to be active, and the
subspace where a specific channel is active is called the
active domain of that channel. As the active domain is
always much smaller than the inactive domain, an inactive
channel will convey almost no information about position
in state space. The small active domain is also what makes
a sparse representation effective.

The response channel vectors um
n can be put into re-

sponse channel matrices Um =
(
um

1 um
2 . . . um

N

)
. All such

response channel matrices are stacked row-wise to form the
response channel matrix U. While U will have a much
larger number of rows than the original state matrix X
due to the increase of dimensionality in the representation,
the sparsity of the representation will imply a moderate
increase of the amount of data.

VI. Channel representation of input features

It is assumed that the system can obtain at least par-
tial knowledge about its state from a set of observed
feature variables, {ah}, forming a feature vector a =(
a1 a2 . . . aH

)T . In order for an association or learn-
ing process to be meaningful, there has to be a suffi-
ciently unique and repeatable correspondence between sys-
tem states and observed features. One way to state this
requirement is as follows: The sensor space of states that
the feature channels can represent, A, should allow an un-
ambiguous mapping f : A → R. The situation where this
requirement is violated is known in learning and robotics
as perceptual aliasing, see e.g. [14].

A generative model for {ah}, useful for systems analysis,
can be expressed as localized, non-negative kernel functions
Bh(x). These are functions of a scaled distance between the
state vector x and a set of prototype states xh ∈ X . We
exemplify this with the cos2-kernel,

ah = Bh(x) =

{
cos2(d(x,xh)) if d(x,xh) ≤ π/2
0 otherwise.

(11)

The used distance function is defined as

d(x,xh) =
√

(x− xh)T Mh(x− xh). (12)

Matrix Mh is positive semidefinite, and describes the
metric for the distance function around state xh, allowing
a scaling with different sensitivities with respect to differ-
ent state variables. The norm of the metric matrix Mh

is generally very large, which makes the angular space for
a nonzero contribution to a particular ah extremely small
compared to the total angular space of the curved hyper-
surface over which the state vector is moving. The number
of such partially overlapping regions may be of the order
H = 105 to H = 107. Assuming a more or less even cover-
age of the parts of interest of the hyperspace, means that
most outputs ah will be zero at any given sample point
along the training trajectory, ensuring a sparse data set.
Equation (11) indicates that ah will have a maximal value
of 1 as x = xh. It will go to zero as the weighted distance
increases to π/2, see figure 2. Normally, neither xh, nor Mh

are explicitly known, but emerge implicitly from the prop-
erties of the set of sensors used in the actual case. These
are generally different from one sensor or filter to another,
which motivates the notion of channel representation, as
each channel has its specific identity, the identification of
which is part of the learning process.

The feature variables ah will in a typical case be outputs
from band-pass filters describing properties of a signal, or
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properties in an image of an object, such as local orienta-
tion, local curvature, color, etc, image features at different
positions. If the properties have a confidence measure, it
is natural to weight the channel features with this. See
discussion in section IV.

In general, there is no requirement for a regular arrange-
ment of channels, be it on the input side or on the output
side. The prescription of an orderly arrangement at the
output comes from the need to interface the structure to
the environment, e.g. to determine its performance. In such
a case it will be desirable to map the response channel vari-
ables back into scalar variables in order to compare them
with the reference, something which is greatly facilitated
by a regular arrangement.

Similarly to the state variables, we denote the observa-
tion at sample point n by a vector an =

(
a1

n a2
n . . . aH

n

)T .
These observation or feature vectors can be put into a fea-
ture matrix A =

(
a1 a2 . . . aN

)
.

A. Feature generation

The feature vectors a, input to the associative structure,
may derive directly from the preprocessing parts of a com-
puter vision system, representing orientation, curvature,
color, etc. More often, combinations or functions f(a) of
a set of features a, will be used as input to the associa-
tive structure. A common variety to increase specificity in
the percept space is covariant combination between compo-
nents, or a subset of components, such as f(a) = vec(aaT ).
The symbol vec signifies the trivial transformation of con-
catenating rows or columns of a matrix into a vector. For
simplicity of notation, we will express this as a substitution,

a← f(a) . (13)

This is given a conceptual illustration in figure 7. The
final vector a, going into the associative structure will gen-
erally be considerably longer than the corresponding size
of the sensor channel array. As we are dealing with sparse
feature data, the increase of the data volume will be mod-
erate.

VII. System Operation Modes

The channel learning architecture can be run under two
different operation modes, providing output in two different
representations:
1. Position encoding for discrete event mapping
2. Magnitude encoding for continuous function mapping

The first variety, using discrete event mapping, is the
mode which maximally exploits the advantage of the infor-
mation representation, to allow implementation and learn-
ing of highly non-linear transfer functions, using a linear
mapping.

The second variety is similar to more traditional function
approximation methods.

A. Position encoding for discrete event mapping

In this mode, the structure is trained to map onto a
set of channel representations of the system response state

Fig. 7. Illustration of steps in going from sensor array to feature
vector.

Fig. 8. Intuitive illustration of discrete event mapping (the input
domain will generally be multidimensional).

variables, as discussed in subsection V-A. Thus the re-
sponses will have non-zero output only within limited re-
gions of the definition range. The major issue is that a
multi-dimensional, fragmented feature set is mapped onto
a likewise fragmented, version of the system state space.
See figure 8 for an intuitive illustration.

There are a number of characteristics of this mode:
• Mapping is made to sets of output channels, whose re-
sponse functions may be partially overlapping to allow the
reconstruction of a continuous variable.
• Output channels are assumed to assume some standard
maximum value, say 1, but are expected to be zero most
of the time, to allow a sparse representation.
• The system state is not given by the magnitude of a
single output channel, but is given by the relation between
outputs of adjacent channels.
• Relatively few feature functions, or sometimes only a sin-
gle feature function, are expected to map onto a particular
output channel.
• The channel representation of a signal allows a unified
representation of signal value and of signal confidence,
where the relation between channel values represents value,
and the magnitude represents confidence. Since the dis-
crete event mode implies that both the feature and re-
sponse state vectors are in the channel representation, the
confidence of the feature vector will be propagated to the
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Fig. 9. Intuitive illustration of continuous function mapping.

response vector if the mapping is linear.
The properties just listed, allows the structure to be im-

plemented as a purely linear mapping,

u = Ca . (14)

B. Magnitude encoding for continuous function mapping

The continuous function mapping mode is used to gener-
ate the response state variables directly, rather than a set
of channel functions for position decoding. The response
state vector, x, is approximated by a set of discrete channel
feature functions. See figure 9 for an intuitive illustration.

This mode corresponds to classical function approxima-
tion objectives. The mode is used for accurate representa-
tion of a scalar continuous function, which is often useful
in control systems.

The approximation will be good if the feature functions
are sufficiently local, and sufficiently dense. There are
a number of characteristics for the Continuous Function
Mapping:
• It uses rather complete sets of feature functions, com-
pared to the mapping onto a response mapping in discrete
event mode. The structure can still handle local feature
dropouts without adverse effects upon well behaved re-
gions.
• Mapping is made to continuous output response vari-
ables, which may have a magnitude which varies over a
large range.
• A high degree of accuracy in the mapping can be ob-
tained if the feature vector is normalized, as stated below.

In this mode, however, it is not possible to represent both
a state value x, and a confidence measure r, except if it is
done explicitly. Given the properties of the channel feature
vector a, we intuitively accept that a feature vector with a
larger magnitude has a greater confidence in its statement
than one with a small magnitude. An additional assump-
tion is that features which are active within a domain all
have the same confidence. This implies that the confidence
measure r can be viewed as a part the feature vector a.

Assuming a linear model of mapping, this gives a product
between the expected state x and the confidence measure,

rx = Ca . (15)

By dividing the feature vector a with r we can normalize
with the amount of confidence, or certainty, in a. This is
related to the theory of normalized averaging, see e.g. [5].

TABLE I

Overview of characteristics of different operation modes.

Operation
mode

Continuous
Function
Mapping

Discrete Event
Mapping

Representation
of state

Magnitude
encoding

Position
encoding

Handling
of zero

Zero is not
an acceptable

value

Zero represents
domains of

“no information”

Representation
of confidence

Implicit
representation

Explicit
representation

Model x = C 1
wT a

a u = Ca

For the confidence measure a linear model is assumed,

r = wT a . (16)

The model for this mode comes out as

x = C
1

wT a
a , (17)

where w > 0 is a suitable weight vector. Note that wT a
is a weighted l1-norm of a, since a is non-negative. An
unweighted l1-norm, w = 1, is often used in RBF net-
works and probabilistic mixture models, see [1], [15]. Other
choices of weighting w will be discussed in section VIII-F.

B.1 Comparison between modes

Although the the two modes use a similar mapping, there
are distinctive differences, as illustrated in table I.

The major difference is in how they deal with zero, or
more properly with no information and with interpolation.
This depends upon whether the output is a channel vector
or not. If it is, position encoding will be used with use of
confidence. This should be viewed as the normal mode of
operation for this architecture, as this forms the appropri-
ate representation for continued processing at a next level.
A conversion back to scalars, as described in section IV-E,
is used mainly for easier interpretation of the states or for
control of some linear actuator.

C. Comparison with other methods

The idea of localized kernels has been widely used in the
field of neural networks. The continuous function model
(17) with fixed kernel parameters is a simple form of RBF-
network. The discrete event model (14) on the other hand
is to our knowledge quite different from kernel machines.
Using a channel representation of the output variables, as
well as the input variables, we are able to handle problems
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that other kernel machines cannot. In function approxi-
mation, the discrete event mode can simultaneously han-
dle discontinuities and continuous regions. The reason is
the representation form of the channel reponse vector. The
channel vector u can represent two values near a discon-
tinuity. A global decoding would average the two values,
similar to the behaviour in continuous mode and other neu-
ral networks. The discrete event mode can consequently
be used in cases where we have multiple events, or where
there are alternative interpretations. For example, a sys-
tem designed to estimate object view from image features
can give alternative statements at a lower level, an ambigu-
ity which can be resolved at a more global level. Another
problem that produces multiple, conflicting, events is per-
ceptual aliasing. These properties will be demonstrated in
the experiments section IX.

VIII. Associative Structure

We will now turn to the problem of estimating the linkage
matrix C in (17) and in (14). We take on a unified approach
for the two system operation modes. The models can be
summarized into

u = C
1

s(a)
a , (18)

where s(a) is a normalization function, and u denotes a
scalar or a vector, representing either the explicit state
variable/variables, or a channel representation thereof. In
continuous function mode (17) u = x and s(a) = wT a. In
discrete event mode (14) u is a channel representation of x
and s(a) ≡ 1.

In the subsequent discussion, we will limit the scope
to a supervised learning framework. Still, the structure
can advantageously be used as a core in systems for other
strategies of learning, such as reinforcement learning, with
a proper embedding [16]. This discussion will assume batch
mode training. This implies that there are N observation
pairs of corresponding feature vectors an and state or re-
sponse vectors un. Let A and U denote the matrices con-
taining all feature vector and response vector samples re-
spectively, i.e.


U =


 | | |

u1 u2 . . . uN

| | |


 =



− u1 −
− u2 −

...
− uK −




A =


 | | |

a1 a2 . . . aN

| | |


 =



− a1 −
− a2 −

...
− aH −




(19)

For a set of observation samples collected in accordance
with (19), the model in (18) can be expressed as

U = CADs , (20)

where

Ds = diag−1
(
s(a1) s(a2) . . . s(aN )

)
. (21)

The linkage matrix C is computed as a solution to a
least squares problem, with the constraint C ≥ 0. We will
motivate this constraint before we go into the optimization
procedure.

A. Regularization properties

An unrestricted least squares solution tends to give a
full matrix with negative and positive coefficients, which
do their best to push and pull the basis functions to min-
imize the error for the particular training set, a.k.a. over-
fitting. This requires some form of regularization to make
the problem well-posed.

In many situations a linkage matrix with a small norm is
preferred, e.g. in Tikhonov regularization, because a small
norm reduces the global noise propagation. However, this
is not a primary goal in an architecture based on locality.
Rather, it is desirable that a large error, due to drop-outs,
heavy noise etc., in one region of the state space should
not affect the performance in other, sufficiently distant re-
gions of the state space. This can be achieved using a
non-negativity constraint. While non-negativity does not
give the smallest possible error on the training set, nor the
smallest norm of the linkage matrix, it acts as a regulariza-
tion. The non-negativity constraint will consequently be
referred to as monopolar regularization. It is well known
that this constraint gives a regularization in image recon-
struction applications, see e.g. [17]. Monopolar regulariza-
tion has the great advantage that it is not determined by
prespecified parameters, but dependent upon the feature
functions. Monopolarity in addition gives a more sparse
linkage matrix, allowing a faster processing.

Figure 10 illustrates typical behavior of Tikhonov reg-
ularization and monopolar regularization for the type of
monopolar localized functions used in discrete event mode.
A response channel function uk is to be approximated by
a linear combination of a set of feature functions ah. The
feature functions are randomly placed and have a random
width within a certain range. As before, let uk denote a
row vector with samples from uk, and A denote a matrix
where row h contains corresponding samples from ah. As-
sume that we want to find a linkage vector ck such that
uk ≈ ckA. A solution using Tikhonov regularization is
computed as

cTikh = arg min
ck
‖uk − ckA‖2 + γ‖ck‖2 , (22)

while a solution using monopolar regularization is com-
puted as

cmono = arg min
ck≥0

‖uk − ckA‖2 . (23)

The parameter γ in (22) is chosen such that both methods
give the same relative error ‖uk − ckA‖/‖uk‖, which in
this case became 5%, i.e. both methods perform quite well.
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Fig. 10. Comparison between Tikhonov regularization and monopo-
lar regularization. (a) Response channel function uk, and feature
functions ak. (b,c) Linkage vectors cTikh and cmono from (22) and
(23) respectively. Each link is plotted at the center of its correspond-
ing function ak. (d) Response errors.

Tikhonov regularization tends to produce non-sparse,
non-local, solutions which give a computationally more
complex system. We can also observe ringing effects which
typically occur for linear methods. The non-negativity con-
straint on the other hand gives a solution with a slightly
larger norm, ‖cmono‖/‖cTikh‖ = 1.1, but it is both sparse
and local. Note that only two elements in cmono are non-
zero. Also worth mentioning is that an unrestricted so-
lution, i.e. setting γ = 0, gives a slightly better approxi-
mation of uk, but a much worse solution ck with respect
to generalization power and noise robustness (not shown
here).

The monopolar regularization is most efficient in discrete
event mode, although it may be useful in continuous func-
tion mode as well, especially if the function consists of lo-
calized nonzero regions similar to the channel functions.
For partially negative scalar functions, a positive offset has
to be added and later subtracted.

B. Loosely coupled subsystems

The terms loosely coupled and weakly coupled are used
in control theory to describe systems which consist of a
number of subsystems, which only share a subset of the
state variables and the feature variables available for the
entire system, see e.g. [18], [19]. A subsystem will partially
share variables with some limited set of other subsystems,
while being totally independent of the remaining subsys-
tems. The degree to which variables are shared among
subsystems can be expressed as a state distance or cou-
pling metric between subsystems. Subsystems at a larger
distance according to this metric will not affect each other,
e.g. in a process of optimization.

The architecture described here takes advantage of this
property. The local behavior of the feature and response
channels, together with the monopolar constraint on the
linkage matrix, implies that the solution for one local region

of the response space does not affect the solution in other,
sufficiently distant, regions of the response space. For ex-
ample, the mapping to a certain response channel will only
depend on the features that are active somewhere within
the active domain of that response channel. No other fea-
tures will be linked to that response. This also implies
that there can be a bad performance in the mapping ac-
curacy locally in the response space, without this affecting
the performance in the remaining part of the space.

This property is also essential as we want to add new
features after training the system, such as in the imple-
mentation of an incremental learning procedure. A new
feature that is never active within the active domain of a
response channel will not affect the previously learned links
to that response channel.

This is very different from the unconstrained case used in
most learning procedures, where the linkage elements are
allowed to assume any values. In this case, every added
feature, regardless of whether it is active or not within
some domain of the response space, may affect the solution
for the entire response space. This global, tightly coupled,
dependence is found to various degrees in many artificial
networks such as multilayer perceptrons or RBF networks,
and this makes them less attractive for complex problems.

Another important advantage with loosely coupled sub-
systems structures is that the iterative procedure to com-
pute the model parameters, in this case the linkage matrix,
exhibits fast convergence.

To summarize, there may always be regions of the state
space which can not be reconstructed well. Still, large er-
rors within these will not affect the performance within
other parts of the state space.

C. Comparison with other methods

The discrete event mode is somewhat similar to fuzzy
systems, see e.g. [20], [21], although fuzzy systems are used
in low-dimensional problems only. The system in discrete
event mode can almost, due to the monopolar constraint,
be thought of as built up by a set of weighted fuzzy rules.
This makes it easier to interpret the system behaviour, a
problem which has recieved some attention within the ma-
chine learning community, see e.g. [22]. An ordinary fuzzy
system can be thought of as having a sparse binary link-
age matrix, and an optimization made with respect to the
kernel parameters.

We can also observe that the decoding method in sec-
tion IV-E corresponds to the defuzzification step in fuzzy
systems. An important difference, is that fuzzy systems
typically use a global centroid computation, while our de-
coding is local, and thus allows multiple output values.

If our system was to use Tikhonov regularization in-
stead of monopolar regularization we would get a much
less sparse linkage matrix, and the system would be more
complex to interpret. In addition, the non-sparseness
would make the system more computationally complex and
tightly coupled.
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D. Optimization procedure

Motivated by the discussion in sections VIII-A and VIII-
B, C is computed as the solution to the constrained
weighted least-squares problem

min
C≥0

e(C) , (24)

where

e(C) = ‖U−CADs‖2W
= trace(U−CADs)W(U−CADs)T .

(25)

The weight matrix W, which controls the relevance of each
sample, is chosen W = D−1

s . The minimization problem
(24) does not generally have a unique solution, as it can be
under-determined or over-determined.

There are several ways to solve sparse box constrained
optimization problems, see e.g. [23], [24]. However, the
high dimensionality largely reduces the number of methods
which can be efficiently applied. The method used here is
related to, but not covered by, the theory in [25]. The
solution is derived from the projected Landweber method{

C(0) = 0

C(i + 1) = max (0,C(i)−∇e(C(i))Df ) ,
(26)

where Df is the positive definite diagonal matrix

Df = diag(v)diag−1(ADsAT v) for some v > 0 . (27)

Since W = D−1
s we have

∇e(C) = (CADs −U)WDsAT

= (CADs −U)AT ,
(28)

and we rewrite sequence (26) as

C(i + 1) = max
(
0,C(i)− (C(i)ADs −U)AT Df

)
.
(29)

We can interpret Ds and Df as normalizations in the sam-
ple and feature domain respectively. See section VIII-F
for further details. We will consequently refer to Ds as
sample domain normalization and Df as feature domain
normalization.

Note that if v is an eigenvector with eigenvalue λ to the
matrix ADsAT , then we get the ordinary gradient search
method Df = (1/λ)I. It is well known that ordinary gra-
dient search without constraints converges for Df = αI if
0 < α < 2/λmax, where λmax is the largest eigenvalue to
ADsAT . An advantage using (26) is that we do not have
to estimate the largest eigenvalue, which can be a compu-
tationally difficult task for large matrices.

Df is sometimes called a preconditioner, and if suitably
chosen (not necessarily as a diagonal matrix) it can allow
a considerable acceleration of the Landweber methods, see
e.g. [25]. It is generally a good idea to choose Df such
that it in some way mimics the behaviour of the inverse
of ADsAT . It is easy to see that the choice (27) gives

DfADsAT v = v. This means that Df is a (local) inverse
in the neighborhood of v. Hence, we should expect a fast
convergence if the solution, i.e. each row in C, has a sim-
ilar direction as v. Note that we are at least guaranteed
that the solution lies in the same hyper-quadrant as v,
since they are both non-negative. Although not theoret-
ically proven, experiments show that preconditioner (27)
combined with the locality exhibited by the data gives a
very fast convergence.

The convergence of sequence (29) and other related
methods are discussed and proven in [26]. We reproduce
the major steps below. Define B := DfADsAT , and let
ρ(·) denote the spectral radius, i.e. the largest, in absolute
value, eigenvalue.

Theorem 1 Assume that ρ(B) < 2. Then sequence (29)
converges to a solution of problem (24).

(See [26] for a proof.) In order to verify the inequality
ρ(B) < 2, we use the following auxiliary lemma.

Lemma 1 Let G be an non-negative matrix. Assume
there exist a vector w > 0 and a scalar κ > 0 such that
Gw ≤ κw. Then the spectral radius ρ(G) ≤ κ.

(See [26] for a proof.) As mentioned earlier we have that
Bv = v and, hence, B fulfills the conditions in Lemma 1
with κ = 1 and the convergence follows from Theorem 1.
Note that the non-negativity of A paved the way for the
non-negativity of B, which is needed in Lemma 1.

The issue of stopping rules is no different here from other
cases of optimization, and we will not go into any details.
All Landweber methods have a property of semiconver-
gence for noisy data, meaning that the performance on
other data than the training data typically improves at first
and later deteriorates. This problem is reduced by regular-
ization, and two types are usually suggested; Tikhonov reg-
ularization and early termination. We use the latter with a
stop criterion based either on experience or by monitoring
the performance on a validation set.

As a final remark, note that problem (24) implies inde-
pendent optimization of each response, i.e. the optimiza-
tion is performed locally in the response domain. Hence
we may, as an equivalent alternative, optimize each linkage
vector ck separately as

ck(i + 1) = max
(
0, ck(i)− (ck(i)ADs − uk)AT Df

)
,

(30)

which then solves the problem

min
ck≥0

∥∥uk − ckADs

∥∥2

W=D−1
s

. (31)

E. Further Improvements

Coefficients of matrix C which are below certain thresh-
olds Cmin shall be eliminated altogether, as this gives an
even more sparse matrix. The thresholding is computed
every now and then during the iterative procedure. The
increase of error on new data turns out to be minimal, as
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Fig. 11. Block diagram of the associative structure.

the iterative optimization will try to compensate for this
removal of coefficients.

Furthermore, the coefficients of matrix C may be lim-
ited in magnitude, as this gives a more robust system
as well. One way to achieve this is to use a constraint
C ≤ Cmax. The assumption is that significant feature val-
ues, ah, shall be within some standard magnitude range,
and consequently the maximum value of ah shall be above
some minimum value amin. This leads to an alternative,
more computationally efficient, procedure to remove fea-
ture values in A, which are below amin. This is related to
the thresholds of a sigmoid curve, often assumed for the
transfer function of real and artificial neurons.

A block diagram summarizing the associative structure
is given in figure 11. The particular features departing
from conventional approaches are centered around the non-
linearities acting to produce the monopolar linkage coeffi-
cients C, and the normalization matrices Df and Ds; sub-
ject of next section.

F. Normalization modes

The normalization can be viewed as a way to control
the gain in the feedback system loop, which the iterative
optimization procedure implies, see figure 11. This normal-
ization can be put in either of the two representation do-
mains, the sample domain or the feature domain, but with
different effects upon convergence, accuracy, etc. For each
choice of sample domain normalization Ds there are non-
unique choices of feature domain normalizations Df such
that sequence (29) converges to a solution of problem (24).
Df can for example be computed from (27). The choice of
normalization depends on the operation mode, i.e. continu-
ous function mapping or discrete event mapping. There are
some choices that are of particular interest. These are dis-
cussed in sections VIII-F.1 and VIII-F.2 and summarized
in section VIII-G.

F.1 Discrete event mapping

Discrete event mode (14) corresponds to a sample do-
main normalization matrix

Ds = I . (32)

Choosing v = 1 = (1 1 . . . 1)T in (27) gives

Df = diag−1(AAT 1) =




1
a1mT

f
1

a2mT
f

. . .


 , (33)

where mf =
∑

h ah is proportional to the mean in the
feature domain. As Ds does not contain any components
of A there is no risk that it turns singular in domains of
samples having all feature components zero.

This choice of normalization will be referred to as Nor-
malization entirely in the feature domain.

F.2 Continuous function mapping

There are several ways to choose w in the continuous
function model (17), depending on the assumptions of error
models, and the resulting choice of confidence measure s.
One approach is to assume that all training samples have
the same confidence, i.e. s ≡ 1, and compute C ≥ 0 and
w ≥ 0 such that {

1 ≈ wT A
X ≈ CA .

(34)

Sometimes it may be desirable to have an individual confi-
dence measure for each training sample. Another approach
is to design a suitable w and then compute C using the op-
timization framework in section VIII-D with s(a) = wT a.

There are two specific designs of w that are worth em-
phasizing. The channel representation implies that large
feature channel magnitudes indicate a higher confidence
than low values. We can consequently use the sum of the
feature channels as a measure of confidence:

s(a) = 1T a ⇒ x = C
1

1T a
a . (35)

As mentioned before, this model is often used in RBF-
networks and probabilistic mixture models, see [1], [15].
The corresponding sample domain normalization matrix is

Ds = diag−1(AT 1) =




1
aT
1 1

1
aT
2 1

. . .


 , (36)

and if we choose v = 1 in (27) we get

Df = diag−1(A1) =




1
a11

1
a21

. . .


 . (37)

This choice of model will be referred to as Mixed domain
normalization.

It can also be argued that a feature element which is
frequently active should have a higher confidence than a
feature element which is rarely active. This can be included
in the confidence measure by using a weighted sum of the
features, where the weight is proportional to the mean in
the sample domain:
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TABLE II

Overview of some models, together with their corresponding normalization matrices and preferred operation mode.

Normalization
mode Model

Sample
Domain

Normalization

Feature
Domain

Normalization

Operation
mode

Normalization
entirely in the
feature domain

Discrete
event
mapping

u = Ca Ds = I Df = diag−1(AAT 1)

Mixed domain
normalization

Continuous
function
mapping

x = C 1
1T a

a Ds = diag−1(AT 1) Df = diag−1(A1)

Normalization
entirely in the
sample domain

Continuous
function
mapping

x = C 1
mT

s a
a

ms = A1
Ds = diag−1(AT A1) Df = I

s(a) = mT
s a where ms = A1 =

∑
n

an . (38)

This corresponds to the sample domain normalization ma-
trix

Ds = diag−1(AT A1) =




1
mT

s a1
1

mT
s a2

. . .


 , (39)

and by using v = A1 in (27) we get

Df = I . (40)

This choice of model will be referred to as Normalization
entirely in the sample domain.

G. Summary of normalization modes

The special cases mentioned in the previous section are
summarized in table II. Note the symmetry between the
three cases. Normalization entirely in the sample domain
may be considered dual to the normalization entirely in the
feature domain.

H. Sensitivity analysis for continuous function mode

We will now make some observations concerning the in-
sensitivity to noise of the system, under the assumption of
sample normalization in continuous function mode. That
is, a response state estimate x̂n is generated from a feature
vector a according to model (17), i.e.

x̂n = C
1

wT an
an . (41)

We observe that regardless of choice of normalization vec-
tor wT , the response will be independent of any global

scaling of the features, i.e.

C
1

wT an
an = C

1
wT γan

γan . (42)

If multiplicative noise is applied, represented by a diagonal
matrix Dγ , we get

x̂n = C
1

wT Dγan
Dγan . (43)

If the choice of weights in C and w is consistent, i.e. if the
weights used to generate a response at a sample n were
to obey the relation C = x̂nwT , the network is perfectly
invariant to multiplicative noise. As we shall see in the ex-
periments to follow, the normalization comes close to this
ideal for the entire sample set, provided that the response
signal varies slowly. For such situations, the network sup-
presses multiplicative noise well.

Similarly, a sensitivity analysis can be made for discrete
event mode. We will in this presentation only refer to the
discussion in section IV for the invariances available in the
representation, and to the results from the experimental
verification in following section.

IX. Experimental Verification

We will in this section analyze the behavior and the noise
sensitivity of several variants of associative networks, both
in continuous function mode and in discrete event mode. A
generalization of the common CMU twin spiral pattern [27]
has been used, as this is often used to evaluate classification
networks. We have chosen to make the pattern more diffi-
cult in order to show that the proposed learning machinery
can represent both continuous function mappings (regres-
sion) and mappings to discrete classes (classification). The
robustness is analyzed with respect to three types of noise:
additive, multiplicative, and impulse noise on the feature
vector.
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Fig. 12. Desired response function. Black to White correspond to
values of x3 ∈ [−1, 1].

A. Experimental setup

In the experiments, a three dimensional state space X ⊂
R

3 is used. The sensor space A ⊂ R
2, and the response

space R ⊂ R are orthogonal projections of the state space.
The network is trained to perform the mapping f : A → R
which is depicted in figure 12. Note that this mapping can
be seen as a surface of points x ∈ R

3, with x3 = f(x1, x2).
The analytic expression for f(x1, x2) is:

fs(r, ϕ) = (1/
√

2− r) cos(ϕ +
√

1000r)

f(r, ϕ) =

{
fs(r, ϕ) if mod(ϕ +

√
1000r, 2π) < π

sign(fs(r, ϕ)) otherwise.
(44)

Variables r =
√

x2
1 + x2

2 and ϕ = tan−1(x1, x2) are the
polar coordinates in sensor space A. As can be seen in
the figure, the mapping contains both smooth parts (given
by the cos function) and discontinuities (introduced by the
sign function). The pattern is intended to demonstrate the
following properties:

1. The ability to approximate piecewise continuous sur-
faces.
2. The ability to describe discontinuities (i.e. assignment
into discrete classes).
3. The transition between interpolation and representation
of a discontinuity.
4. The inherent approximation introduced by the sensor
channels.

As sensor channels, a variant of the channels prescribed
in expression (11) is used:

Bh(x) =

{
cos2(ωd) if ωd ≤ π

2

0 otherwise
(45)

where d =
√

(x− xh)T M(x− xh), (46)

and M = diag(1 1 0). In the experiments H = 2000
such sensors are used, with random positions {xh}H1 inside
the box ([−0.5, 0.5], [−0.5, 0.5]) ⊂ A. The sensors have
channel widths of ω = π/0.14 giving each an active domain
with radius 0.07. Thus, for each state xn, a feature vector
an =

(
B1(xn) B2(xn) . . . BH(xn)

)T is obtained.
During training, random samples of the state vector xn ∈

X on the surface f : A → R are generated, and used to
obtain pairs {fn, an} using (44) and (45). The training
sets are stored in the matrices f , and A respectively. The
performance is then evaluated on a regular sampling grid.
This has the advantage that performance can be visualized
as an image. Since real valued positions x ∈ X are used,
the training and evaluation sets are disjoint.

The mean absolute error (MAE) between the network
output and the ground truth (44), is used as a performance
measure,

εMAE =
1
N

N∑
n=1

|f(xn)− can| , (47)

or, for discrete event mode

εMAE =
1
N

N∑
n=1

|f(xn)− dec(Can)| . (48)

The rationale for using this error measure is that it is
roughly proportional to the number of misclassifications
along the black-to-white boundary, in contrast to RMSE
which is proportional to the number of misclassifications
squared.

B. Associative network variants

We will demonstrate the behavior of the following five
variants of associative networks:

1. Mixed domain normalization bipolar network

This network uses the model

f̂ =
1

1T a
ca .

This model is often used in RBF-networks and probabilistic
mixture models, see [1], [15]. This network is optimized
according to

c = arg min
c
‖f − cADs‖2 + γ‖c‖2 . (49)

In the experiments, the explicit solution is used, i.e.
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c = fADs(ADsDT
s AT + γI)−1 . (50)

Note that for larger systems, it is more efficient to replace
(50) with a gradient descent method.
2. Mixed domain normalization monopolar network
Same as above, but with a monopolar constraint on c, in-
stead of the Tikhonov regularization used above.
3. Sample domain normalization monopolar net-
work
This network uses the model

f̂ =
1

mT
s a

ca ,

where ms is computed from the training set sensor channels
according to ms = A1.
4. Uniform sample confidence monopolar network
This network uses the model

f̂ =
1

wT a
ca ,

where the mapping w is trained to produce the response 1
for all samples, see (34).
5. Discrete event mode monopolar network
This network uses the model

û = Ca ⇔ f̂ = dec(Ca) ,

with K = 7 channels. The responses should describe the
interval [−1, 1] so the decoding step involves a linear map-
ping, see (7).

C. Varied number of samples

As a demonstration of the generalization abilities of the
networks we will first vary the number of samples. The
monopolar networks are optimized according to section
VIII, with 50 iterations. For the bipolar network we have
used γ = 0.005. This value is chosen to give the same er-
ror on the training set as in network #2 using N = 500
samples.

The performance on the regular grid is demonstrated in
figure 13 for the bipolar network (#1), and in figure 14 for
the discrete event network (#5).

If we look at the center of the spiral, we see that both
networks fail to describe the fine details of the spiral, al-
though #1 is doing slightly better. For the discrete event
network, the failure is a direct consequence of the feature
channel sizes. For the bipolar network it is a combined con-
sequence of the size and density of the feature channels.

We can also observe that the discrete event network is
significantly better at dealing with the discontinuities. This
is also reflected in the error measures, see figure 15. For
very low numbers of samples, when both networks clearly
fail, the bipolar network is slightly better. We have also
plotted the performance of the monopolar mappings in con-
tinuous function mode. As can be seen in the plot, these are
all slightly worse off than the bipolar network. All three

Fig. 13. Performance of bipolar network (#1) under varied number
of samples. Top left to bottom right: N = 63, 125, 250, 500, 1000,
2000, 4000, 8000.

Fig. 14. Performance of discrete event network (#5) under varied
number of samples. Top left to bottom right: N = 63, 125, 250, 500,
1000, 2000, 4000, 8000.

monopolar continuous function mode variants have simi-
lar performances on this setup. Differences appear mainly
when the sample density becomes non-uniform (not shown
here).

D. Varied number of channels

The relationship between the sizes of feature and re-
sponse channels is important for the performance of the
network. The distance between the channels also deter-
mines where the decision between interpolation and intro-
duction of a discontinuity is made. We will now demon-
strate these two effects by varying the number of channels
in the range [3 . . . 14], and keeping the number of samples
high, N = 8000.

As can be seen in figure 16, a low number of channels
gives a smooth response function. For K = 3 no discon-
tinuity is introduced at all, since there is only one inter-
val for the local reconstruction (see section IV-E). As the
number of channels is increased, the number of disconti-
nuities increases. Initially this is an advantage, but for a
large number of channels, the response function becomes
increasingly patchy (see figure 16). In practice, there is
thus a trade-off between description of discontinuities, and
patchiness. This trade-off is also evident if MAE is plotted
against the number of channels, see figure 17 left.

In figure 17, right part, error curves for smaller numbers
of samples have been plotted. It can be seen that, for a
given number of samples, the optimal choice of channels
varies. Better performance is obtained for a small number
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Fig. 15. MAE under varied number of samples. Solid thick is #5,
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Fig. 16. Performance of discrete event network (#5) under varied
number of channels. Top left to bottom right: K = 3 to K = 14

of channels, when fewer samples are used. The standard
way to interpret this result is that a high number of re-
sponse channels allows a more complex model, which re-
quires more samples.

If we plot the number of non-zero coefficients in the link-
age matrix C, we also see that there is an optimal number
of channels, see figure 18. Note that although the size of C
is between 3 and 14 times larger than in continuous func-
tion mode, the number of links only increases by a factor
2.1 to 2.5.

E. Noise sensitivity

We will now demonstrate the performance of the asso-
ciative networks when the feature set is noisy. We will use
the following noise models:

1. Additive noise: A random value is added to each fea-
ture value, i.e.

a∗
n = an + η ,

with ηk ∈ rect[−p, p], and the parameter p is varied in the
range [0, 0.1].
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Fig. 17. MAE under varied number of channels. Left MAE for
N = 8000. Right MAE for N = 63, 125, 250, 500, 1000, 2000, 4000,
and 8000.
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Fig. 18. Number of non-zero coefficients under varied number of
channels. Compare this with 2000 non-zero coefficients for the con-
tinuous function networks.

2. Multiplicative noise: Each feature value is multiplied
with a random value, i.e.

a∗
n = Dηan ,

where Dη is a diagonal matrix with with (Dη)kk = ηk ∈
rect[1−p, 1+p], and the parameter p is varied in the range
[0, 1].
3. Impulse noise: A fraction of the features is set to 1,
i.e.

ak,∗
n =

{
1 if fr < p where fr ∈ rect(0, 1)
ak

n otherwise,

and the parameter p is varied in the range [0, 0.01].
The results of the experiments are shown in figure 19. We

have consistently used N = 4000 samples for evaluation,
and corrupted them with noise according to the discussion
above. In order to make the amount of regularization com-
parable we have optimized the γ parameter for network #1
to give the same error on the training set as network #2
at N = 4000 samples. This gave γ = 0.08.

As can be seen from the additive noise experiment, net-
work #5 has a different slope for its dependence upon noise
level. The other networks are comparable, and differences
are mainly due to how well the networks are able to repre-
sent the pattern in the first place (see section IX-C). For
the multiplicative noise case, we see that the slope is sim-
ilar for all networks. Thus we can conclude that the mul-
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Fig. 19. Noise sensitivity. Top to bottom: additive noise, multiplica-
tive noise, and impulse noise. Solid thick is #5, and dashed is #1.
Solid thin are #2,#3, and #4.

tiplicative noise behavior is comparable for all tested net-
works. For the impulse noise case we can see that for small
amounts of noise, network #5 has a less steep slope than
the others. For larger amounts of noise however, all net-
works seem to behave in a similar manner.

The purpose of these experiments has been to demon-
strate the abilities of the associative networks to generalize,
and to cope with various kinds of sensor noise. Several ex-
periments using image features as inputs have been made,
but have to be excluded from this presentation. For details
of such experiments, the reader is directed to [28], [4], [3].

X. Concluding Remarks

As shown in the experimental section, the channel learn-
ing architecture running in discrete event mode is able to
describe simultaneously continuous and transiential phe-
nomena, while still being better than or as good as a linear

network at suppressing noise. An increase in the number
of response channels does not cause an explosion in the
number of used links. Rather, it remains fairly stable at
approximately twice the number of links required for a con-
tinuous function mapping. This is a direct consequence of
the monopolar constraint.

The training procedure shows a fast convergence. In
the experiments described, a mere 50 iterations have been
required. The fast convergence is due to the monopolar
constraint, locality of the features and responses, and the
choice of preconditioner in the Landweber method.

The learning architecture using channel information also
deals properly with the perceptual aliasing problem, that
is, it does not attempt to merge or average conflicting state-
ments, but rather passes them on to the next processing
level. This allows a second processing stage to resolve the
perceptual aliasing, using additional information not avail-
able at the lower level.

The ability of the architecture to handle a large number
of models in separate or loosely coupled domains of the
state space, promises systems with a combination of the
continuous mapping of control systems with the state com-
plexity we have become familiar with from digital systems.
Such systems can be used for the implementation of ex-
tremely complex, contextually controlled mapping model
structures. One such application is for view based object
recognition in computer vision [28].
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XII. Appendix: Implementation in Matlab

In order to support the claims made in the text, and
to allow a smooth introduction into the use of the learn-
ing associative network, there is a toolbox available on the
web-site of the Computer Vision Lab [29]. The toolbox is
implemented in Matlab, and includes optimization rou-
tines, methods for channel encoding of scalars, a simple
generative model, and a data set for experimentation. To
demonstrate the function of the toolbox, a program which
performs the experiments described in section IX is also
included. For full scale software implementations, readers
are asked to contact the authors.
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[7] Michael Felsberg, Hanno Scharr, and Per-Erik Forssén, “The
B-spline channel representation: Channel algebra and chan-
nel based diffusion filtering”, Tech. Rep. LiTH-ISY-R-2461,
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