
An Associative Perception-Action Structure
Using a Localized Space Variant

Information Representation

Gösta H Granlund

Computer Vision Laboratory, Department of Electrical Engineering,
Linköping University, SE-581 83 Linköping, Sweden

gosta@isy.liu.se

Abstract. Most of the processing in vision today uses spatially invari-
ant operations. This gives efficient and compact computing structures,
with the conventional convenient separation between data and opera-
tions. This also goes well with conventional Cartesian representation of
data.
Currently, there is a trend towards context dependent processing in var-
ious forms. This implies that operations will no longer be spatially in-
variant, but vary over the image dependent upon the image content.
There are many ways in which such a contextual control can be im-
plemented. Mechanisms can be added for the modification of operator
behavior within the conventional computing structure. This has been
done e.g. for the implementation of adaptive filtering.
In order to obtain sufficient flexibilility and power in the computing
structure, it is necessary to go further than that. To achieve sufficiently
good adaptivity, it is necessary to ensure that sufficiently complex control
strategies can be represented. It is becoming increasingly apparent that
this can not be achieved through prescription or program specification
of rules. The reason being that these rules will be dauntingly complex
and can not be be dealt with in sufficient detail.
At the same time that we require the implementation of a spatially vari-
ant processing, this implies the requirement for a spatially variant in-
formation representation. Otherwise a sufficiently effective and flexible
contextual control can not be implemented.
This paper outlines a new structure for effective space variant processing.
It utilises a new type of localized information representation, which can
be viewed as outputs from band pass filters such as wavelets. A unique
and important feature is that convex regions can be built up from a
single layer of associating nodes. The specification of operations is made
through learning or action controlled association.

1 Introduction

Most of the processing in vision today uses spatially invariant operations. This
gives efficient and compact computing structures, with the conventional conve-
nient separation between data and operations. This also goes well with conven-
tional Cartesian representation of data.

Currently, there is a trend towards context dependent processing in various
forms. This implies that operations will no longer be spatially invariant, but vary
over the image dependent upon the image content.

There are many ways in which such a contextual control can be implemented.
Mechanisms can be added for the modification of operator behavior within the
conventional computing structure. This has been done e.g. for the implementa-
tion of adaptive filtering [5].

In order to obtain sufficient flexibilility and power in the computing structure,
it is necessary to go further than that. To achieve sufficiently good adaptivity,
it is necessary to ensure that sufficiently complex control strategies can be rep-
resented. It is becoming increasingly apparent that this can not be achieved
through prescription or program specification of rules. The reason being that
these rules will be dauntingly complex and can not be be dealt with in sufficient
detail.

At the same time that we require the implementation of a spatially variant
processing, this implies the requirement for a spatially variant information rep-
resentation. Otherwise a sufficiently effective and flexible contextual control can
not be implemented[2].

Most information representation in vision today is in the form of iconic ar-
rays, representing the pattern of intensity and color or some function of this, such
as edges, lines, convexity, etc. This is advantageous and easily manageable for
stereotypical situations of images having the same resolution, size, and other typ-
ical properties. Increasingly, various demands upon flexibility and performance
are appearing, which makes the use of array representation less attractive.

The increasing use of actively controlled and multiple sensors requires a more
flexible processing and representation structure. The data which arrives from
the sensor(s) is often in the form of image patches of different sizes, rather than
frame data in a regular stream. These patches may cover different parts of the
scene at various resolutions. Some such patches may in fact be image sequence
volumes, at a suitable time sampling of a particular region of the scene, to allow
estimation of the motion of objects [6]. The information from all such various
types of patches has to be combined in some suitable form in a data structure.

The conventional iconic array form of image information is impractical as it
has to be searched and processed every time some action is to be performed. It
is desirable to have the information in some partly interpreted form to fulfill its
purpose to rapidly evoke actions. Information in interpreted form, implies that it
should be represented in terms of content or semantic information, rather than in
terms of array values. Content and semantics implies relations between units of
information or symbols. For that reason it is useful to represent the information
as relations between objects or as linked objects. The discussion of methods for
representation of objects as linked structures will be the subject of most of this
paper, but we can already observe how some important properties of a desirable
representation relate to shortcomings of conventional array representations:

– An array implies a given size frame, which can not easily be extended to
incorporate a partially overlapping frame

– Features of interest may be very sparse over parts of an array, leaving a large
number of unused positions in the array

– A description of additional detail can not easily be added to a particular
part of an array

The following sections of this paper outline a new structure for effective space
variant processing. It utilises a new type of localized information representation.
The specification of operations is made through learning or action controlled
association.

2 Channel Information Representation

A continuous representation of similarity requires that we have a metric or dis-
tance measure between items. For this purpose, information is in the associative
structure expressed in terms of a channel representation[9, 4]. See Figure 1.

Fig. 1. Channel representation of some property as a function of match between filter
and input pattern

Each channel represents a particular property measured at a particular po-
sition of the input space. We can view such a channel as the output from some
band pass filter sensor for some property /citeg78a. An appropriate object evokes
an output from the activated channel, corresponding to the match between the
object presented and the properties of the filter, characterizing the passband of
the channel. This resembles the function of biological neural feature channels.
There are in biological vision several examples available for such properties; edge
and line detectors, orientation detectors, etc [3, 8].

If we view the channel output as derived from a band pass filter, we can
establish a measure of distance or similarity in terms of the parameters of this
filter. See Figure 1. For a conventional, linear simple band pass filter, the phase
distance between the flanks is a constant π/2. Different filters will have different
band widths, but we can view this as a standard unit of similarity or distance,
with respect to a particular channel filter.

2.1 Sequentially ordered channels

There are several envelope functions with the general appearance of Figure 1,
such as Gaussian and trigonometric functions. Functions which are continu-
ous and have continuous derivatives within the resolution range are of inter-
est. For the introductory discussion of channel representation, we assume the
representation of a single scalar variable x, as an ordered one-dimensional se-
quence of band pass function envelopes xk, which represent limited intervals, say
k − 3

2 ≤ x ≤ k + 3
2 , of a scalar variable x. A class of functions which has some

attractive properties for analysis is

xk(x) = pk(x) =
{

cos2(π
3 (x − k)) if k − 3

2 ≤ x ≤ k + 3
2

0 otherwise (1)

The scalar variable x can be seen as cut up into a number of local but
partially overlapping intervals, k − 3

2 ≤ x ≤ k + 3
2 , where the center of each

interval corresponds to x = k. It should be observed that we use the notation of
x without subscript for the scalar variable and xk with subscript for the channel
representation of scalar variable x. The channel output signals which belong to
a particular set are bundled together, to form a vector which is represented in
boldface:

x = [x1 x2 . . . xk . . . xK]T (2)

We assume for conceptual simplicity that the numbers k are consecutive
integers, directly corresponding to the numbers of consecutive channels. This
allows a more consistent treatment and a better understanding of mechanisms.
We are obviously free to scale and translate the actual input variable in any
desired way, as we map it onto the set of channels. An actual scalar variable ξ
can be scaled and translated in the desired way

x = scale · (ξ − translation) (3)

to fit the interval spanned by the entire set of channels {xk}. We will later
see how other nonlinear scaling transformations can be made.

With each channel center representing consecutive integers, the distance be-
tween two adjacent channels in terms of the variable x is one unit. From Equa-
tion 1 it is apparent that the distance in terms of angle is π

3 or 60◦. We will in
subsequent discussions refer to this as the typical channel distance of π

3 or 60◦.
In Figure 2 we have a one-dimensional set of 13 sequentially ordered channels.

The position of each channel is indicated by the dashed lines. It is designed to
provide a channel representation of scalars within a range 0 ≤ x ≤ 10. To provide
a continuous representation at the boundaries of this interval, the set of channels
is padded with an extra channel at each end. Components from these channels
are required to perform a reliable reconstruction back to a scalar value from the
vector representation. In order to start adapting ourselves to the major purpose
of processing of spatial data, we can view Figure 2 as a one-dimensional image

Fig. 2. Channel representation of a scalar x = 7

with a single simple object in the form of a dot. The channels are scaled to unit
resolution between the filter centers, and the center values correspond to values

k = [−1 0 1 2 3 4 5 6 7 8 9 10 11]T (4)

If the set of channels is activated by a scalar x = 7, represented by a point at
position x = 7, we will obtain a situation as indicated in Figure 2. We assume
that the output of a channel is given by the position of the point x = 7 within
its band pass function, according to Equation 1. The channels activated are
indicated by the solid line curves. The scalar x = 7 will produce the vector x as
indicated in Figure 2.

Below are a few additional examples which hopefully will shed some light on
the representation, in particular at the boundaries. We still assume a set of 13
channels which are used to represent scalar values in the interval between 0 and
10.

x = 0.0 ⇒ x = [0.25 1.0 0.25 0 0 0 0 0 0 0 0 0 0]T

x = 3.73 ⇒ x = [0 0 0 0 0.52 0.92 0.06 0 0 0 0 0 0]T

x = 9.0 ⇒ x = [0 0 0 0 0 0 0 0 0 0.25 1.0 0.25 0]T

x = 10.0 ⇒ x = [0 0 0 0 0 0 0 0 0 0 0.25 1.0 0.25]T
(5)

We can clearly see the necessity for padding with extra channels at the bound-
aries. Under the conditions stated earlier, we have the following values of xk

within an interval k − 3
2 ≤ x ≤ k + 3

2 :

xk(k − 3
2) = cos2(−π

2) = 0
xk(k − 1) = cos2(−π

3) = 0.25
xk(k) = cos2(0) = 1
xk(k + 1) = cos2(π

3) = 0.25
xk(k + 3

2) = cos2(π
2) = 0

(6)

In relation to this, it can be shown that

∑
k

xk(x) = 1.5 if − 1
2
≤ x ≤ K − 1

2
(7)

where K is the last channel used for padding. This consequently gives a
margin of 1/2 outside the second last channel. This means that the sum of all
channel contributions over the entire channel set from the activation by a single
scalar x is 1.5, as long as x is within the definition range of the entire set. Related
properties are:

xk(k − 1) + xk(k) + xk(k + 1) = xk−1(k) + xk(k) + xk+1(k) = 1.5 (8)

Most components of x are zero, with only two or three non-zero components
representing the scalar value x as discussed earlier.

An array may be activated by more than one value or stimulus. In Figure 3 we
have two scalars, at x = 1 and x = 7. It is apparent that as the difference between
the two scalars decreases, there is going to be overlap and interference between
the contributions. This indicates a need to worry about proper resolution, like
for any sampling process. Still, the representation gives us the possibility to keep
track of multiple events within a single variable, without their superimposing,
something which a Cartesian representation does not allow.

2.2 Two-dimensional channels

Most of the information we want to deal with as input is two-dimensional, or pos-
sibly of even higher dimensionality. For that reason we will extend the definition
to two dimensions, x and y:

pkl(x, y) =

{
cos2(π

3

√
(x − k)2 + (y − l)2)

if k − 3
2 ≤ x ≤ k + 3

2 , l − 3
2 ≤ y ≤ l + 3

2
0 otherwise

(9)

The arrangement of sequential integer ordering with respect to k and l is
similar to the one-dimensional case. The output from a channel is now dependent
upon the distance, d = π

3

√
(x − k)2 + (y − l)2 from the center of a particular

channel at position (k, l) in the array.
As we will see later, good functionality requires that there are several non-

zero outputs generated from a sensor array. As we in this case are dealing with
point objects, this requires that there is an overlap between the transfer functions

Fig. 3. Channel representation of two scalars at x = 1 and x = 7

of the different detectors. When the object is a line, or other spatially extended
object, no overlap is required. Rather we will see that receptive fields of sensors
normally only have to cover parts of the array.

So far, we have only dealt with the position dependent component of the
channel band pass function. Generally, there is as well a component dependent
upon some property of the sensor, such as dominant orientation, color, curvature,
etc. Equation 9 will then take on the general form:

pklm(x, y, φ) = pkl(x, y)pm(φ) =

{
cos2(π

3

√
(x − k)2 + (y − l)2) pm(φ)

if k − 3
2 ≤ x ≤ k + 3

2 , l − 3
2 ≤ y ≤ l + 3

2
0 otherwise

(10)
As this property is often modular and e.g. representing an angle, it has been

given an argument φ. Because the use of modular channel sets is not restricted
to this application, we will give it a somewhat more extensive treatment.

3 Modular Channel Sets

There are several situations where it is desirable to represent a modular or cir-
cular variable, such as angle, in a channel representation. There are two different
cases of interest:

– Modular channel distance π
3

– Modular channel distance π
4

Of these, we will only deal with the first one:

3.1 Modular channel distance π
3

The structure easiest to deal with has a channel distance of π
3 , similarly to

the earlier treatment. In this case, the least complex structure contains three
channels in a modular arrangement:

φm(φ) = pm(φ) =
{

cos2(φ − mπ
3) if | φ − mπ

3 |≤ π
2 m = 0, 1, 2;

0 otherwise (11)

The scalar variable φ will be represented by a vector

φ = [φ0 φ1 φ2]T = {φm} m = 0, 1, 2 (12)

As earlier, we use the notation of φ without subscript for the scalar variable
and φm with subscript for the channel representation of scalar variable φ. The
channels which belong to a particular set are bundled together, to form a vector
which is represented in boldface, to the extent that this type font is available.

The modular arrangement implies that as the scalar argument increases from
2π
3 it will not activate a fourth channel but map back into channel 1, which is

equivalent to the dashed channel curve in Figure 4. This is the minimum number
of channels which will provide a continuous representation of a modular variable.
It is for example useful for the representation of orientation of lines and edges. It
can be shown that this is the minimum number of filter components which give
an unambiguous representation of orientation in two dimensions [5]. If we view
the distance between adjacent channels to π

3 or 60◦ like in the earlier discussion,
this implies that the total modulus for 3 channels is π or 180◦. This is well suited
for representation of “double angle” [5] features such as the orientation of a line.
If it is desired to represent a variable with modulus 2π or 360◦, the variable φ can
be substituted by φ/2 in Equation 11 above. Any different desired modulus can
be scaled accordingly. There are several different ways to express the scaling. In
this presentation we have tried to maintain the argument in terms of the cos2()
function as a reference.

Assuming a resolution of a 10 to 20 levels per channel, this will give a total
resolution of 3◦ to 6◦ given modulus 180◦ and a total resolution of 6◦ to 12◦ given
modulus 360◦. This is sufficient for many applications. The modular arrangement
is illustrated in Figure 4.

If a higher resolution is desired, more channels can be added in the modular
set as required. There are several ways to express the scaling, such as in constant
modulus or in constant channel argument. The way selected here is in terms of
constant argument of the cos2() function. This gives a variable modulus for
the entire system, but makes it easy to keep track of the type of system. The
generalized version becomes:

φm(φ) = pm(φ) =
{

cos2(φ − mπ
3) if | φ − mπ

3 |≤ π
2 m = 0, 1, . . . ,M − 1

0 otherwise
(13)

Fig. 4. Three component modular channel vector set

The scalar variable φ will be represented by a vector

φ = [φ0 φ1 . . . φM−1]T = {φm} m = 0, 1, . . . ,M − 1 modulus M
π

3
(14)

4 Variable Resolution Channel Representation

In the preceding discussion we have assumed a constant or linear mapping and
resolution for the variable in question to the channel vector representation. There
are however several occasions where a nonlinear mapping is desired.

4.1 Logarithmic channel representation

In many cases it will be useful to have a representation whose resolution and
accuracy varies with respect to the value of the variable. As an example, we can
take the estimated distance z to an object, where we typically may require a
constant relative accuracy within the range.

We can obtain this using a logaritmic mapping to the channel representation.

zk(z) =
{

cos2(π
3 (b log(z − z0) − k)) if k − 3

2 ≤ b log(z − z0) ≤ k + 3
2

0 otherwise
(15)

It is convenient to view the process of scaling as a mapping to the integer
vector set. There are two cases of scaling which are particularly convenient to
use:

– One octave per channel. This can for example be achieved by using a map-
ping x = 2log(z−z0), where z0 is a translation variable to obtain the proper
scaling for z.

– One decade per two channels. This can for example be achieved by using a
mapping x = 10log(z − z0)/2, where z0 is a translation variable to obtain
the proper scaling for z.

4.2 Arbitrary function mapping

A mapping with an arbitrary function x = f(z) can be used, as long as it is
strictly monotonous. It is possible to employ such a function to obtain a variable
resolution in different parts of a scene, dependent upon the density of features
or the required density of actions.

4.3 Foveal arrangement of sensor channels

A non-uniform arrangement of sensors with a large potential is the foveal struc-
ture. See Figure 5. A foveal window, has a high density of sensors with a small
scale near the center of the window. More peripherally, the density decreases at
the same time as scale or size of sensors increases. This is similar to the sensor
arrangement in the human retina.

The low level orientation outputs from the sensor channels will be produced
from the usual procedures. They should have a bandwidth, which corresponds
to the size of the sensor channel field, as illustrated in Figure 5. This implies
a representation of high spatial frequencies in the center and low frequencies in
the periphery.

Fig. 5. Foveal arrangement of channels in sensor window

As the computing structure can easily deal with a non-uniform arangement
of sensors, there is a great deal which speaks in favor of a foveal arrangement of
sensors. It provides a high resolution at the center of the visual field. While the
lower resolution towards the periphery does not provide detailed information, it
is sufficient to relate the high resolution description to its background, as well
as to guide the attentive search mechanism to regions of interest.

5 Arrangement of Channels

The abstract function of this associative structure is to produce a mapping
between a set of arbitrarily arranged channels for feature variables, and a set of
sequentially ordered channels for response variables. This constitutes a process
of recognition.

We assume two distinctly different categories of channel representations:

1. Sequentially ordered channels for response variables
2. Arbitrarily arranged channels for sensor and feature variables

What we have been dealing with so far, can be said to imply the first cate-
gory of response variables. This reflects the fundamental property that response
states are defined along, at least locally, one-dimensional spaces. We assume an
availability of consecutive, sufficiently overlapping channels which cover these
spaces.

In general, there is no requirement for a regular arrangement of channels,
be it on the input side or on the output side. The requirement of an orderly
arrangement comes as we need to interface the structure to the environment,
e.g. to determine its performance. We typically want to map the reponse out-
put channel variables back into scalar variables in order to compare them with
the reference. The mapping back into scalars is greatly facilitated by a regular
arrangement.

5.1 Arbitrarily arranged sensor channels

For sensor channels, we assume an arrangement which is typically two-dimensional,
or in general multi-dimensional. While the response space is assumed to be one-
dimensional as described above, the sensor or feature space is assumed to be
populated with arbitrarily arranged detectors, where we have no guarantee for
overlap or completeness. See Figure 6. As we will see, there is no problem for the
associative structure to use an arbitrarily arranged array of input channels, as
long as it is stable over time, because an important part of the learning process
is to establish the identity of input sensor or feature channels.

The preferential orientation sensitivity of a sensor is indicated as a line seg-
ment, and the extent of the spatial sensitivity function is indicated by the size
of the circle. As indicated in this figure, detectors for orientation may typically
have no overlap, but rather be at some distance from each other. The reason is
that an expected object, such as a line, has an extent, which makes it likely that
it will still activate a number of sensor channels

Like any other analysis procedure, this one will not be able to analyze an
entire image of say 512·512 elements in one single bite. It is necessary to limit the
size of a processing window onto the image. We assume that a sensor map window
contains 40 ·40 = 1.6 ·103 orientation detectors, distributed as a two-dimensional
array. Each orientation detector contains a combination of an edge and a line
detector to produce a quadrature bandpass output. Detectors are assumed to be

Fig. 6. Example of random arrangement of orientation detectors over space.

distributed such that we only have one detector for some preferred orientation
within some neighborhood. This will give a lower effective resolution with respect
to orientation over the array, corresponding to around 20 · 20 = 400 orientation
detectors with a full orientation range. Detectors will have to be distributed
in an arrangement such that we do not have the situation that there are only
detectors of a particular orientation along a certain line, something which may
happen with certain simple, regular arrangements.

Given no overlap between sensors, the reader may suspect that there will be
situations, where an applied line will not give an output from any sensor. This
is true, e.g. when a line is horizontal or vertical in a regular array. It is however
no problem to deal with such situations, but we will leave out this case from the
present discussion.

The channel representation has an elegant way to represent the non-existence
of information, which is something totally different from the value 0. This is
very different from the representation in a common Cartesian array, where all
positions are assumed to have values, which are as well reliable. The channel
representation does not require such a continuity, neither spatially, nor in terms
of magnitude. This allows for the creation of a more redundant representation.

6 Feature Vector Set for Associative Machinery

A sensor channel will be activated depending upon how the type of stimulus
matches, and how its position matches. The application of a line upon an array
as indicated in Figure 6, will evoke responses from a number of sensors along
the lenghth of the line.

All sensor channels which we earlier may have considered as different vector
sets, with different indices, will now be combined into a single vector. We can
obviously concatenate rows or columns after each other for an array such as
in Figure 6; we can freely concatenate vectors from different sensor modalities
one after the other. We will in the ensuing treatment for simplicity assume that
all sensor channels to be considered, are bundled together into a single sensor
channel vector set:

x = [x1 x2 . . . xK]T k = 1, . . . ,K (16)

We can see each sensor channel as an essentially independent wire, carrying
a signal from a band pass filter, describing some property at some position of
the image. It is assumed that we have a set of such sensor channels within some
size frame of interpretation, which is a subset or window onto the image to be
be interpreted, which is substantially smaller than the entire image. The frame
of interpretation may in practise contain somewhere between 102 to 104 sensor
channels, which is equivalent to the dimensionality K of x, dependent upon
the problem and available computational resources. This vector is very sparse
however, because most sensors do not experience a matching stimulus, which
gives the vector a density, typically from 10−1 to 10−3.

A particular length of line at a particular position and orientation, will pro-
duce a stimulation pattern reflected in the vector x which is unique. As we will
see next, this vector can be brought into a form such that it can be associated
with the state vectors (length, orientation, position) related to it.

The set of features used for association, derives from the above mentioned
sensor channels, as illustrated in Figure 7.

Fig. 7. Illustration of steps in going from sensor array to feature vector

We will use the notation:

– Sensor channel vector set: x = [x1 x2 . . . xK]T = {xk} k = 1, . . . , K
– Feature channel vector set: a = [a1 a2 . . . aH]T = {ah} h = 1, . . . , H

The sensor channel vector x is an arbitrary but fixed one-dimensional ar-
rangement of the outputs from the two-dimensional sensor channel array. The
sensor channel vector x forms the basis for the feature channel vector, a, which
is to be associated with the response state. The feature vector can contain three
different functions of the sensor vector:

1. Linear components This is the sensor channel vector itself, or components
thereof. This component will later be denoted simply as x.

2. Autocovariant components These are product components of type
(x1x1, x2x2, . . . , xkxk), which are the diagonal elements of the covariance
matrix. The corresponding vector containing these components will be de-
noted as xxT

auto.
3. Covariant components These are product components of type

(x1x2, x1x3, . . . , xk−1xk), which are the off-diagonal elements of the co-
variance matrix. The corresponding vector containing these components will
be denoted as xxT

cov.

The feature vector used for association will be:

a =

 x

xxT
auto

xxT
cov

 (17)

of which in general only the last covariant components will be present. Exper-
iments indicate that the covariant feature components are the most descriptive as
they describe coincidences between events, but the existence of the others should
be kept in mind for various special purposes such as improved redundancy, low
feature density, etc.

From this stage on, we will not worry about the sensor channel vector set x,
and only use feature channel vector set, a. For that reason you will see some of
the indices recycled for new tasks, which will hopefully not lead to any confusion.

Before we go into the rest of the associative structure, and how this feature
vector is used, we will recognize the fact that we can recover the conventional
scalar meaning of data expressed as a channel vector.

7 Reconstruction of Scalar Value From Channel Vectors

It should first be made clear that this computing structure is intended for consis-
tent use of information represented as channel signals as explained earlier. Input
to a computing unit will have the channel representation, as will normally the
output. The output from one unit or computing stage will be used as input to
another one, etc.

As a system of this type has to interface to the external world, input or
output, requirements become different. For biological systems there are sensors
available which do give a representation in this form, as well as that output
actuators in the form of muscle fibers can directly use the channel signal repre-
sentation.

For technical systems, it will be necessary to provide interfaces which convert
between the conventional high resolution cartesian signal representation and
the channel representation. We have in the introduction discussed how this is
accomplished for input signals. We will now look at how this can be done for
output signals as well. Output signals which will be used to drive a motor or
similar device, or for visualization of system states.

The output from a single channel uk of a response vector u, will not provide
an unambiguous representation of the corresponding scalar signal u, as there will
be an ambiguity in terms of the position of u with respect to the center of the
activated channel uk. This ambiguity can be resolved in the combination with
adjacent channel responses within the response vector u = {uk}. By using a suf-
ficiently dense representation in terms of channels, we can employ the knowledge
of a particular similarity or distance between different channel contributions.

It can be shown that if the distance between adjacent channels is 60◦ or less,
we can easily obtain an approximative reconstruction of the value of u as a linear
phase. Reconstruction of the scalar value ue which corresponds to a particular
response vector u, formally denoted as sconv:

ue = sconv(u) = sconv({uk}) k = 1, . . . , K (18)

can, given the earlier discussion, be implemented in several ways. We will
however leave out the details of the computation in this context.

8 System Structure for Training

The general aspects of training are obviously related to the current large field
of Neural Networks [7]. Training of a system implies that it is exposed to a
succession of pairs of samples of a feature vector a and a corresponding response
vector u.

There are several ways in which this training can be done, but typically one
can identify a training structure as indicated in Figure 8.

The Pseudorandom Training Sequencer supplies transformation parameters
of a training pattern to the system. The most characteristic property of this
is that the output variables are guaranteed to vary continuously. The training
variables have to cover the space over which the system is expected to operate.
The Pseudorandom Training Sequencer is expected to produce its output in
conventional digital formats.

The training data is input to the External World Simulator or interface.
There it is generating the particular transformations or modes of variation for
patterns, that the system is supposed to learn. This can be the generation of
movements of the system itself, which will modify the precepts available

Fig. 8. System structure as set up for training, in interaction with the environment

The Geometric Mapper will in the general case produce a two-dimensional
projection from a three-dimensional world, such as to implement a camera.

The Receptor to Channel Mapper will in the general case convert an image
projected onto it, into a parallel set of channels, each channel describing some
property according to the discussion earlier.

The training data, representing transformations to the input pattern, is also
supplied to the Response to Channel Mapper, where it is converted from con-
ventional Cartesian format to the channel representation of the response state,
as discussed earlier. This information is supplied directly to the output side of
the associative computation structure.

8.1 Basic Training Procedure

The basic training procedure is to run the Pseudorandom Training Sequencer to
have it vary its output. This will have an effect onto the external world model
in that something changes. The response variables out from the Pseudorandom
Training Sequencer will also be fed to the output of the Computing Structure.

We will in this discussion assume batch mode training, which implies that
pairs of corresponding feature vectors a and response vectors u are obtained for
each one of N samples, which form matrices A and U:

{
U = [u1 u2 . . . un uN]
A = [a1 a2 . . . an . . . aN] (19)

These matrices are related by the linkage matrix C:

U = CA (20)

From this matrix equation, the coupling or linkage matrix C can be solved,
superficially expressed as

C = U/A (21)

The feature matrix A may contain tens of thousands of features, represented
by tens of thousands of samples. This implies that the method of solution has to
be chosen carefully, in order not to spend the remaining part of the millenium
solving the equation.

There are now very fast numerical methods available for an efficient solution
of such systems of linear equations. These methods utilize the sparsity of the A
and U matrices; i.e. the fact that most of the elements in the matrices are zero.
Although this is an important issue in the use of the channel representation,
it is a particular and well defined problem, which we will not deal with in this
presentation. One of the methods available is documented in a Ph.D. Thesis by
Mikael Adlers: Topics in Sparse Least Squares Problems [1].

8.2 Association as an approximation using
continuous channel functions

What happens in the computing structure during training, is that the response
channel vector u will associate with the feature channel signal vector a. The
association implies that the output response is approximated by a linear com-
bination of the feature channel signals. This is illustrated for an actual case in
Figure 9.

We can now compute the approximating function for a particular response
node k over the sample points n:

ukn =
∑

h

ckhahn (22)

The association during the training implies finding the coefficients ckh which
implement this approximation. We can see that a particular response channel
function is defined over some interval of samples, n, from the training set. We can
vary u continuously, and as different channels ..., uk−1, uk, uk+1, ... are activated,
their approximation in terms of similarly activated features ..., ai−1, ai, ai+1 can
be computed. The resulting optimization coefficients ..., ckh, ... will constitute
quantitative links in the linkage matrix C between the input feature side and the
output response side.

Taken over all response nodes, k, this is written in matrix terms as:

un = Can (23)

Fig. 9. Illustration of procedure to approximate a response channel function, uk, with
a set of feature channel functions, ah, over an interval of sample points n

For the entire training set of vectors un and an this is written in matrix form
as before:

U = CA (24)

Having somehow completed a training procedure for the entire range of values
of u, we can change the switch to output, from the training position t, in Figure
8. After this we can present an unknown pattern with feature vector a, within
the definition range as input to the system, after which the system will use the
linkage matrix derived, C, to compute the actual value of u.

u = Ca (25)

When the training is completed, the computation of the preceding expression
for an unknown vector a is extremely fast, due to the sparsity of the vectors and
matrices involved.

9 Properties of the Linkage Matrix C

We have related the set of response states U and the corresponding percept
vectors A with the matrix equation

U = CA (26)

This matrix equation does not generally have a unique solution, but it can
be underdetermined or overdetermined.

For the system to perform as desired, we require a solution with some par-
ticular properties:

1. The coefficients of matrix C shall be non-negative, as this gives a more sparse
matrix and a more robust system. A traditional unrestricted least squares
solution tends to give a full matrix with negative and positive coefficients,
which do their best to push and pull the basis functions to minimize the
error for the particular training set. A particular output may in this case be
given by the difference between two large coefficients operating upon a small
feature function, which leads to a high noise sensitivity.

2. The coefficients of matrix C shall be limited in magnitude, as this as well
gives a more robust system. One of the ways to achieve this is to set elements
of A below a certain threshold value to zero. This is related to the lower
treshold part of the S curve, often assumed for the transfer function of real
and artificial neurons.

3. Matrices A and U are sparse, and the entire system can be dealt with using
fast and efficient procedures for solution of sparse systems of equations for
values between two limits.

4. Coefficients of matrix C which are below a certain threshold shall be elim-
inated altogether, as this gives a matrix with lower density, which allows a
faster processing using sparse matrix procedures. If desired, a re-optimization
can be performed using this restricted set of coefficients.

After the linkage matrix C has been computed, we can obtain the response
state u as a function of a particular feature vector a as

u = Ca (27)

9.1 Multiple Response State Variables

So far we have only discussed the situation for a single response or state variable
u. We will normally have a number of state variables u, v, w, t, As we change
the value of the additional variable v, however, the set of features which is
involved for a particular value of u will vary, and we can suspect that different
models would be required. This is true in general, but if feature vectors exhibit a
sufficiently high degree of locality, the simple model structure proposed will still
work. In such a case, the solution for three response variables in matrix terms
can be expressed as

{
U = CuA
V = CvAW = CwA (28)

The reason why this works is again the extreme degree of locality of feature
components. This means that as v varies, new feature components move into
the mapping and old components move out transparently for the single model
available. Due to the beauty of the channel representation, this means that
channels which are not active will not disturb the matching process for those
who are active.

10 Applications of Associative Structure

As the purpose of this paper is to give a description of the principles of the
associative channel structure, we will in this context only give a few comments
on results from applications.

The structure has with great success been used to estimate various properties
in an image, ranging from description of line segments to structures containing
corners or in general curvature. There are various approaches which can be used.

The structure has also been used for a view-centered object description pro-
cedure, which is able to recognize the object car from several different angles
and also give an estimate of the view angle.

As in any other descriptive system, the mapping of certain properties are in-
variant, while others are not. In the associative procedure, the system will detect
such properties by itself, or it can be guided in the choice of such properties.

11 Concluding Remarks

Learning in any robot system or biological system does not take place in parallel
over a field of features and responses. Learning takes place along one-dimensional
trajectories in a response state space. The reason for this is that a system, like
a human or a robot, can only be at “one place at a time”. As it moves from one
place to another, which really implies from one state to another, it can only do
so continuously due to its mass and limited power resources. Consequently, the
system will move along a one-dimensional, continuous trajectory in a multidi-
mensional space. This continuity is one of the few hard facts about its world,
that the system has to its disposal to bring order into its perception of it, and
it has to make the best possible use of it.

Acknowledgements

The author wants to acknowledge the financial support of the Swedish National
Board of Technical Development, as well as of WITAS: The Wallenberg Labora-
tory for Information Technology and Autonomous Systems. Credits go to several
people in the staff of the Computer Vision Laboratory of Linköping University,
for discussions around ideas. Special thanks go to Per-Erik Forssén for his devel-
opment of a MATLAB channel computation toolbox, something which has been
invaluable in the development and tests of implementations.

References

1. M. Adlers. Topics in Sparse Least Squares Problems. PhD thesis, Linköping Uni-
versity, Linköping, Sweden, Dept. of Mathematics, 2000. Dissertation No. 634.

2. D. H. Ballard. Animate vision. Technical Report 329, Computer Science Depart-
ment, University of Rochester, Feb. 1990.

3. M. F. Bear, B. W. Connors, and M. A. Paradiso. Neuroscience. Exploring the Brain.
Williams & Wilkins, Baltimore, USA, 1996. ISBN 0–683–00488–3.

4. G. H. Granlund. The complexity of vision. Signal Processing, 74(1):101–126, April
1999. Invited paper.

5. G. H. Granlund and H. Knutsson. Signal Processing for Computer Vision. Kluwer
Academic Publishers, 1995. ISBN 0-7923-9530-1.

6. Gösta Granlund. Does Vision Inevitably Have to be Active? In Proceedings of
SCIA99, Scandinavian Conference on Image Analysis, Kangerlussuaq, Greenland,
June 7–11 1999. Also as Technical Report LiTH-ISY-R-2247.

7. S. Haykin. Neural Networks: A Comprehensive Foundation. Macmillan College
Publishing Company, 1994.

8. I. P. Howard and B. J. Rogers. Binocular Vision and Stereopsis. Number 29 in
Oxford Psychology Series. Oxford University Press, New York, 1995. ISBN 0–19–
508476–4.

9. K. Nordberg, G. Granlund, and H. Knutsson. Representation and Learning of
Invariance. In ICIP, Austin, Texas, November 1994. IEEE.

