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Abstract

A method for unrestricted recognition of 3-D objects has
been developed. By unrestricted, we imply that the recog-
nition shall be done independently of object position, scale,
orientation and pose, against a structured background. It
shall not assume any preceding segmentation and allow a
reasonable degree of occlusion.

The method uses a hierarchy of triplet feature invariants,
which are at each level defined by a learning procedure.
In the feed-back learning procedure, percepts are mapped
upon system states. The method uses a learning architecture
employing channel information representation.

1 Introduction

The classical model for object identification consists of
two steps:

1. Segmentation of object from background

2. Recognition of the segmented object

Figure 1. Classical model for object identifi-
cation

The implicit assumption for this approach is that it
should be possible to determine what pixels belong to a par-
ticular object, although the object is not known. This strat-
egy may work in exceptionally simple cases, where there

are universally distinguishable features, such as a distinc-
tive color of an entire object, or the object has a known
density which makes it stand out from a homogenous back-
ground. In most cases of interest, this is an unrealistic as-
sumption. Objects generally do not have homogenous re-
gions or universally distinctive features. Rather they may
appear towards a structured background of a similar char-
acter, or mixed with other similar objects.

This classical strategy is consequently not usable for any
situation of realistic complexity in vision: It is not possible
to find with any confidence the pixels which constitute an
object before the object has been recognized. This consti-
tutes the fundamental inverse problem of vision. It is neces-
sary to somehow perform a segmentation and a recognition
in the same process.

The case considered here is the recognition of a 3-D ob-
ject given a 2-D projection, such as a camera image. This
gives in addition a large variation in the appearances of just
a single object. Various approaches to this problem have
been explored: [10, 11, 9, 16, 13, 14, 18, 19, 12, 1, 17, 15].

A major problem has been to get a sufficient resolving
power from the primitives used, to potentially deal with a
large number of objects in several views. This is what the
proposed hieararchical structure of primitives is intended to
resolve.

Object identification is an inverse problem, in that a hy-
pothesis of structure first has to be made, against which the
measurements performed are interpreted. The earlier for-
mulation has certain relevance in that it suggests that recog-
nition implies a two-step process:

1. Postulation of a certain model

2. Performing measurements, and comparing these with
a reference, under the assumption of the particular
model



Var Object characterization

� Object class

� Horisontal position of object

� Vertical position of object

� Horisontal pose angle of object

� Vertical pose angle of object

� Orientation of object in image plane

s Scale or size of object

Table 1. Parameters of variation.

The main issue is how to select hypothetical models
which are descriptive; models which can deal with a struc-
ture of reasonable complexity and can be handled efficiently
computationally.

In order to use learning for the acquisition of models of
sufficiently complex objects, a new structure has been de-
veloped using a hierarchy of partially invariant triplet prim-
itives, describing an object in a view-centered fashion [4].
The objective is to assign objects to a class, but it is believed
that this requires a simultaneous estimation of some sub-
set of its parameters of variation [3], according to Table 1.
These can also be viewed as system states to be estimated.

2 Characteristics of Model Structure

It has for a long time been believed in vision research that
a robotics system should have a structure like in Figure 2a.
The first part should use the incoming image information
to produce adescription of the image, where different ob-
jects are recognized and assigned to the proper categories,
together with information about position and other relevant
parameters. A second unit would now use this information
to produce actions into the physical world, e.g. to imple-
ment a robot.

This structure has not worked out very well for a number
of reasons, which we will have to omit in this discussion,
but reference is made to [3, 4]. It turns out that in fact the
order between the parts shall be theopposite. See Figure
2b).

The first part of the system is a reactive percept-to-action
mapper. After this follows if necessary for the application
a part which performs a symbolic processing for catego-

Figure 2. a) Classical robotics model. b)
Perception-Action robotics model

rization and reasoning, in brief what we refer to as AI, and
communication.

The distinctive characteristic of this structure is that per-
cepts are mapped directly ontoactions or system states,
rather than descriptions, as it was the case in Figure 2a).
The reason is that this strategy allows the system to learn
objects and other aspects of the environment by itself. De-
scriptions, of which assignment to category is one example,
are generated in the symbolic part of the structure, for com-
munication to other systems or for use in symbolic reason-
ing.

An important issue is that learning of an object is not just
to identify its category, but to identify its position, pose, ori-
entation, and to learn what action complexes it can be linked
to for handling. This is what understanding of an object
implies. This information can later be used as contextual
parameters.

The model structure developed, has a number of charac-
teristics:

1. Models shall be fragmentable such that a certain model
can be a part of a more complex or higher order model.
Due to this recursive character, we will simply denote
them all models, be it parts or combinations.

2. Learning of models shall proceed from lower levels to
higher levels.

3. Acquired lower level models shall be usable as parts of
several different higher order models.

4. A particular model is only acquired once, and its first
occurrence is used as the representation of that model.

2.1 Triplet Models

The basic model orprimitive consists of a set of� point
features,� �, at positions��, joined to form atriplet. See
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Figure 3.

Figure 3. a) Triplet with parameters indicated.
b) Triplet rotated to normalized orientation.

Point features are vectors, representing sparse, localized
properties of an image such as corners, curvature, centers
of homogeneous regions, mid-points of lines, etc. A point
feature,��, can also represent an entire lower level triplet at-
tached, whereby multi-level triplets are formed. See Figure
4.

Figure 4. Two levels of triplets, with relational
parameters indicated.

There are many ways in which a number of points can be
brought into groups. The triplet structure has some attrac-
tive properties to ensure a certain degree of uniqueness:

� It allows a unique ordering of the feature points, which
is implemented such that the triplet is ”right oriented”,
i.e. that the angle� � �, as defined in Figure 3.

� The triplet structure allows us to define a scale invari-
ant structure parameter	 � �����

�����

� The distance between the two feature points not con-
nected by the triplet, must be shorter than the two other
distances between feature points, see Figure 3.

� The triplet can be brought into a ”normal orientation”
by aligning leg
� to make� � �, see Figure 3 a) and
b).

The preceding properties together with the hierarchical
arrangement of triplets make the following parameter vari-
ationstrivial:

� Orientation in the image plane

� Scale

� Object position in� and�

as this reduces the dimensionality of the total system,
such that the variations in these parameters can be handled
without extending the training space. This implies effec-
tively an invariance of the primitives with respect to these
parameters.

To decrease the combinatorial complexity and to im-
prove the robustness, additional restrictions, grouping rules
and criteria for acceptance of triplets have been devised.
Only two will be mentioned here:

� Spatial grouping range: We expect primitives to in-
crease in spatial size going towards higher levels. Two
point feature vectors��� �� with positions����� can be
connected as a part of a triplet if��� � ��� � ��� �
���, where������� are the minimal and maxi-
mal allowed distance thresholds between the features,
respectively. Mechanisms for adaptative generation of
these tresholds are not trivial, but outside the scope of
this presentation.

� Object closure criteria: Tests for homogeneity such
as similar density or color inside the triplets, to indicate
parts of a common object or region. Tests for texture
or conflicting structures may reject the hypothesis of
primitive, or constitute an additional descriptive fea-
ture.

3 Channel Information Representation

The information representation used for all parameters
is a monopolar channel representation [5]. The channel
representation implies a mapping of signals into a higher-
dimensional space, in such a way that it introduces locality
in the information representation with respect to all dimen-
sions; geometric space as well as property space. This al-
lows a generation of different models for different parts of
the input feature space. For the simultaneous representation
of two values of a 1-D scalar variable, it may appear as in
Figure 5.

A 2-D version of this representation is directly available
from wavelets or filter outputs. For a more extensive dis-
cussion, see [5].
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Figure 5. Channel representation as a vector
�, of two scalars � � � and � � � .

The monopolar property implies that data only utilizes
one polarity, e.g. only positive values, in addition to zero.
This allows zero to represent not just another value, such as
temperature zero as opposed to other values of the tempera-
ture, but to representno information. In our case with local
point features, only limited parts of the spatial domain will
have non-zero contributions. This provides the basis for a
sparse representation, which gives improved efficiency in
storage and better performance in processing.

The locality allows for a fast convergence in the opti-
mization process to solve for the linkage matrices [5].

4 First Level Triplets

The first level triplet provides the interface between the
feature set used and the triplet structure. The image features
used in the subsequent example are curvature features [6, 8],
but any local interest points or sparse features representable
in a single vector can be used. See Figure 6. Curvature
is originally represented by a complex number, where the
argument gives the direction to the center of curvature. The
angle between this complex number and the triplets first leg

� (performing orientation normalization) is channel coded
to give a feature vector��.

A triplet can be characterized in a number of equivalent
fashions [7]. The components used are as illustrated in Fig-
ure 3.

� ��: Point feature vectors,� � �� �� �, each one coded
with �� channels.

� �: Angle between triplet legs 1 and 2, coded with��
channels.

� �: Relative length of triplet legs,	 � �����

�����

, coded
with �� channels.

50 100 150 200 250

50

100

150

200

250

Figure 6. Example of sparse curvature fea-
tures.

A triplet will be represented by the Kronecker product,
�, between the preceding components:

� � �� � �� � �� ��� � (1)

We denote� atriplet vector. Feature vectors�� as well as
the other parameters may typically each be represented by
8 - 12 channels. For a case where�� � �� � �� � �, we
obtain for� an�� � ��� �

����� � �� � ���	� channels
or components. This may seem like a large number, but the
sparse character of the representation makes computations
fast.

5 Mapping to Dynamic Binding Variables
in the Form of System States

From the purely geometric and feature related entities,
it is desired to map into variables that are object-related.
These are variables which fulfill two requirements:

� They change as a consequence of manipulation of the
object, which is essential

� They can be expected to be shared with, or at least cou-
pled to, other primitives at the same level, or at a dif-
ferent level

If primitives are part of the same object, they will be sub-
jected to transformations which may not be identical, but
coupled. This allows us to build up more complex models
of connected primitives. This is a variety of the classical
binding problem [2].
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Object states which may be suitable as dynamic binding
variables can be found in Table 1. Suitable choices are all
or a subset of a state vector�:

� �

�
���

��
��
��
���

�
��� � ��

�
���

�

�

�


�

�
��� (2)

where�� stands for channel coding of the scalar vari-
ables. Vector components�� and���

can be viewed as
local varieties of� and�.

We can view the triplet vector� as a function� of the
total system state vector�:

� � ���� (3)

We assume that the system state,�, can be expressed as
a linear mapping:

� � �� (4)

where� is a linkage or mapping matrix to be determined.
In a training procedure, observation pairs�����������, for
a total of� samples, constitute matrices� and�. Matrix
� is the solution of

� � ��� (5)

The linkage matrix� contains hundreds or thousands of
different models, each one valid within some subspace of
the vector space of� mapping onto some subspace of the
vector space of�. The effect of the fragmentation into the
channel representation is to generate separable subspaces
for the original, scalar variables. In addition, this leads to a
fast optimization.

The details of this solution procedure will be omitted in
this presentation, but further details are given in [5].

6 Higher Level Triplets

The generic structure assumes a higher level triplet,
which has lower level triplets attached at its nodes,
each one described by the vector��. Specifically in
the higher level triplets, the feature vectors� �

�
are con-

structed by combining the following channel coded fea-
tures:
������ � 
������ � 
������ � 
�������

���� ��
�
� where� is the level

of the triplet,�� is the relative orientation between the level

� triplet and level��� triplet and�� �
��
�
��

���

�

��
�
��

���

�

, see Fig-

ure 4. Currently the combination is done in the following
way

��
�
�

�
���


������


������


������


�������

�
���� ��� � �

�
� (6)

but there are other possibilities given the computational
complexity accepted.

Feature vectors,��, may contain certain components,
which are orientation dependent, and will likewise be sub-
jected to the orientation normalization of the triplet.

7 Mapping for Higher Level Triplets

In this case, a triplet vector is generated which issepa-
rate for each one of the three nodes:

��� � ��� ��
� � �

� � � �� �� � (7)

A training process generates one linkage matrix�� for
each one of the nodes.

� � ���� � � �� �� � (8)

In the recognition phase, estimates can be computed for
the state variables:


�� � ���� � � �� �� � (9)

What this means is that a feature vector�� is interpreted
under the contextual restriction or modification� � �.
Given that we deal with measurements upon the same ob-
ject, there are parameters which should be estimated to the
same value, e.g. the pose angles� and�.

In an ideal case, such state estimates should all be equal:


��� � 
��� � 
��� (10)


��� � 
��� � 
��� (11)

In reality there is noise, which requires a consistency
check between the tree statements, and confidence measures
can be derived from the similarity of statements. This can be
seen as the generic procedure for higher level triplets where
the use of consistency checking reduces the complexity in
the mapping from each feature vector. For first level triplets,
the feature complexity is generally lower, which allows the
mapping described earlier.
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8 Removal of Multiple Models

A model constitutes a subset of the linkage matrix�,
which maps a subset of vectors���� onto a corresponding
subset of state vectors����, such that for each sample��
there exists at least another sample��, such that:

� ����������� �

��������������
� �� (12)

and

� ����������� �

��������������
� �� (13)

Subsets of samples which fulfill this requirement and
form a group of connected samples, form patches in both
spaces with a continuous mapping. The sparse and local-
ized representation allows a linkage matrix�, to contain
thousands of different models which are each continuous
but form discrete patches in both spaces. We have to omit
a detailed discussion of this fitting using localized, continu-
ous models.

Every model in the set must be unambiguous in that it
maps only onto a single state� for a given input�. On the
other hand, different inputs,�, may map onto the same state
�. This can be resolved by removing a later appearing fea-
ture vector����� and state vector����� from the training
set, where inequality 12 is satisfied but not inequality 13.

The preceding procedure allows us to use lower level
models in the assembly of higher level models for entirely
different objects. In this case, the intermediary triplet output
variables, will have nothing to do with the actual parameters
in the current training, but act as an object identity in a “lo-
cal language” which is retransformed in the training to the
next level triplet.

9 Responses

The number of responses obtained from an object de-
pends on the density of appropriate features and the restric-
tion criteria applied. The strategy is to select the criteria to
permit a sufficient number of responses which can cluster
to robust estimates of rotation and scale.

Fundamental to the strategy is that several of the hypo-
thetical models may be erroneous, but there should be a suf-
ficient number of selected hypothetical models which are
correct. The way they know that they are correct is that
they are saying the same thing. In more precise terms this
means that outputs cluster.

9.1 Clustering of the responses pose-x ( 
����) and
pose-y (
����)

If a known object is present, there should be a clus-
ter of estimates around the object’s pose-x and pose-y an-
gles. A confidence measure is computed, dependent upon
the spread of the cluster. Each cluster with a confidence
above some threshold indicates an object with the pose an-
gles given by the cluster position. The position(s) of the
object(s) is then estimated by making the same clustering
on the positions of the triplets giving the responses in the
clusters. This gives the ability to find several objects with
the same pose angles in the same image.

If a certain multi-level triplet gives a statement which is
consistent with that of most other triplets (near the center of
the cluster), we believe that it ”belongs” to the object under
examination. This triplet can then be used to make other
statements about the object such as its class, its orientation
or scale. This means that the triplet is trained to map onto
these variables.

9.2 Clustering of the responses orientation 
����
and length 

�

The clustering of the orientation and length responses
are made separately and only on the responses from highest
order triplets remaining after the global clustering of pose-
x and pose-y. The orientation estimates of the object are
obtained by first calculating the difference between the ori-
entation responses and the corresponding orientations of the
triplets in the image����.


���� � 
����� ���� (14)

To get a unique angle, modulo�� of 
���� is calculated.
This angle gives the orientation of the triplet compared to
the orientation of the triplet during the training, and should
consequently be the same for all responses obtained from
the object. The position of the cluster formed from all sam-
ples, gives the orientation.

The scale is estimated in a similar way by dividing the
derived estimate for

� by the triplet length
�


���� �


����


����
(15)


���� is channel coded and the scale estimate is obtained
with a least squares fit for the estimates close to the cluster


� �

�
	


����
�����
	 
����

�
(16)
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10 Experiments

The recognition structure has been trained on computer
generated images of a car. Since the triplet representation
is invariant to translation, rotation and scale it is only nec-
essary to train for different pose angles (�� �), see Figure
7. The pose angles are varied with 5 degree increments be-
tween 50-90 degrees for� and between�� ��� degrees for
�, which gives 333 images. With about 20 first level triplets
in each image this gives 5781 first level triplets and 27750
second level triplet structures.

Figure 7. Object training setup. �� � are the
two pose angles.

The evaluation images are generated to be different from
the training set with 2.5 degrees added to the earlier pose
angles. One of the evaluation images together with the ob-
tained pose estimates are shown in Figure 8. The orienta-
tion estimates and the scale estimates are shown in Figure
9. One can see that the estimates of the pose angles and
the orientation are quite stable while the scale estimates are
more noisy. The estimates are then clustered to give the
pose, orientation and scale of the object. The resulting es-
timation errors for this image are���Æ� ���Æ� ���Æ and���
for pose-x, pose-y, orientation and scale respectively. The
average estimation errors for these estimates for the evalua-
tion images are given in table 2.

Since the curvature features are not totally scale invari-
ant we will not get as good estimates if we scale the object.
Figure 10 shows the car rotated 60 degrees and scaled 20�.
The image size is kept constant while scaling the object, so
occlusion will occur and affect the estimates as well. Figure
11 shows the orientation and scale estimates. The estima-
tion errors for this image are���Æ�����Æ� ��Æ and�����
for pose-x, pose-y, orientation and scale respectively. The

Estimate Average error
pose-x ���Æ

pose-y ���Æ

Orientation ���Æ

Scale ����

Table 2. Average error for evaluation images.

Estimate Average error
pose-x ���Æ

pose-y ���Æ

Orientation 	��Æ

Scale ����

Table 3. Average error for evaluation images
scaled 10% and rotated 60 degrees.

average estimation errors for the object rotated 60 degrees
and scaled 10� are shown in table 3.

In Figure 12 two car objects have been inserted in a nat-
ural, structured background. In addition, the illumination
has been changed and partial occlusion between the objects
occurs. One can see that the background has very little in-
fluence on the results. The obtained estimation errors are
for the right car����Æ� ��Æ� ��	Æ� ���� and for the left car
���	Æ� ���Æ� ���Æ� �� for the pose-x, pose-y, orientation
and scale respectively.

11 Recognition of Object Class

In the preceding presentation, there has for reasons of
space, not been much discussion about mapping into object
class. This can however be implemented in the same fashion
as earlier described for the properties orientation and length.

The crucial thing is the use of the dynamic binding pa-
rameters to establish if correct hypothetical models for dif-
ferent levels have been selected. If this is proved to be true,
we can use the same triplet models to map onto a suitable
class membership variable. While the recognition of multi-
ple objects is not trivial, in that it requires a larger data set
with increased risk for confusion, we believe that the crucial
mechanisms are those discussed in more detail in the pa-
per. What gives us a benefit with this approach is that lower
level models earlier acquired, can be used in the recognition
of other objects. This means that learning of objects can be
made in an incremental fashion. This in turn means that the
complexity of data expands at a rate less than linear, with re-
spect to the number of objects. How much less it expands,
is an issue which has to be left out from this presentation.
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Figure 8. Example of triplets found in a certain
pose. The lines are the first level triplets, the
small circles indicates the accepted triplets
and the large circle is the estimated position
of the object. The cluster for the estimated
pose parameters is given in the lower part of
the figure.
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