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Linköping University
S-581 83 Linköping, Sweden

Abstract

It has become increasingly apparent that perception
cannot be treated in isolation from the response gen-
eration in vision systems. This is first of all because it
has emerged that many classical aspects of perception,
such as geometry, probably do not belong to the percept
domain of a vision system, but to the response domain.
Secondly, it turns out that the interpretation to be gen-
erated at a given instance is as much dependent upon
the state of the system, as the percepts impinging upon
the system. The state of the system is in consequence
the combination of the responses produced and the per-
cepts associated with these responses. Finally, a very
high degree of integration is required between different
levels of percepts and corresponding response primitives.
It is argued that information must be acquired actively
by the system itself, through response driven association
with percept transformations. After an active training,
however, the system can exhibit a reactive behavior to
passively observed percepts.

Keywords: Active Vision, Robotics, Learning, Ob-
ject Representation

1 Introduction

In robotics we have traditionally assumed a structure
according to Figure 1, where a vision system is control-
ling an actuator system. The systems were viewed as so-
phisticated perception modules, to which a few actuator
wires were attached, causing the requested responses.

Figure 1: Simplest structure of robotics control system

A major problem in the implementation of such a sys-
tem structure is that the channel between the analysis
and the response generation parts is very narrow. This
implies that the information available from the analysis

stage is not sufficiently rich to allow the definition of
a sufficiently complex response required for a complex
situation.

For this reason we want to propose a different con-
ceptual structure, which has the potential of producing
more complex responses, due to a close integration be-
tween visual interpretation and response generation [4],
as illustrated in Figure 2.

Figure 2: A stylized analysis-response structure viewed
as a pyramid .

This structure is an extension of the computing struc-
ture for vision, which we have developed over the years
[5]. The input information enters the system at the
bottom of the processing pyramid, on the left. The
interpretation of the stylized Figure 2 is that compo-
nents of an input are processed through a number of
levels, producing features of different levels of abstrac-
tion. These percept features of different levels, gener-
ated on the left hand side of the pyramid, are brought



over onto the right hand side, where they are assembled
into responses, which propagate downward, and ulti-
mately emerge at the bottom on the right hand side.
A response initiative is likely to emerge at a high level,
from where it progresses downward, through stages of
step-by-step definition. This is illustrated intuitively as
percepts being processed and combined until they are
“reflected” back and turned into emerging responses.

The number of levels involved in the generation of a
response will depend on the type of stimulus input as
well as of the particular input. In a comparison with
biological systems, a short reflex arch from input to re-
sponse may correspond to a skin touch sensor, which
will act over interneurons in the spinal cord. A complex
visual input may involve processing in several levels of
the processing pyramid, equivalent to an involvement of
the visual cortex in biological systems.

A characteristic feature of this structure is that the
output produced from the system leaves the pyramid at
the same lowest level as the input. This arrangement
has particular reasons. We believe that processing on
the percept side going upward in the pyramid, usually
contains differentiating operations upon data which is a
mixture between input space and property space. This
means that variables in the hierarchical structure may
not correspond to anything which we recognise at our
own conscious level as objects or events. In the genera-
tion of responses on the right hand side, information of
some such abstract form is propagated downward, usu-
ally through integrating operations. Only as the emerg-
ing responses reach the interface of the system to the
external world, do they have a form which is in terms
of objects as we know them. In conclusion, this is the
only level at which external phenomena make sense to
the system; be it input or output.

This mechanism has far-reaching consequences con-
cerning programming versus learning for intelligent sys-
tems. If we try to ”push” information directly into the
system at a higher level, it must have the correct repre-
sentation for this particular level, or it will be incompre-
hensible to the system. A more serious problem, which
we will deal with later, is that new information will have
to be related to old information, on terms set by the
system and organized by the system. It will require the
establishment of all attribute links and contextual links,
which in fact define the meaning of the introduced item.
It is likely that information can only be input to a sys-
tem through the ordinary channels at the lowest level
of a feature hierarchy system. Otherwise it cannot be
recognized and organized in association with responses
and other contextual attributes, which makes it usable
for the system.

In biological systems, there appear to be levels of ab-
straction in the response generation system as well, such
that responses are built up in steps over a number of

levels [14, 15, 1, 8]. Arguments can be made for the ad-
vantage of fragmentation of response generation models,
to allow the models to be shared between different re-
sponse modes.

1.1 Organization of Higher Level Pro-
cessing

It seems that there has to be two tiers of organisation
within an effective computation structure for spatial in-
formation, see Figure 3. Within the lower tier there is
an organisation of data in relation to external geometry.
This is also true for biological systems, where low level
orientation description is mapped upon the cortex in ac-
cordance with position in the visual field. Similarly for
motor functions and other features, which are mapped
correspondingly between the body and the cortex. For
technical systems, it can be assumed that computations
to produce these low level features can be made in par-
allel, and that influences on earlier levels of computation
are at least very local.

Figure 3: The two-tier pyramid

It is postulated that at some level of abstraction, lo-
cal geometrical relations become less important, and
other non-spatial and non-local relations become essen-
tial. The separation into distinctive paths for WHAT
and WHERE information is one indication of this in bi-
ological systems. This forms the upper tier of the com-
putation structure for spatial information, see Figure 3.
In this part, the computation structure has to be formed
through association based upon properties of the signals



themselves as they are driven by stimuli, rather than by
geometric adjacency. We will in this paper deal with
issues concerning computation structures for the upper
tier.

1.2 A Few Definitions

We will use the following terminology:
By selfgenerated action we denote an activity of a sys-

tem which is selfgenerated without any apparent exter-
nal influence. The action is assumed to be internally
produced in some way, often through a random noise
signal creating an activity in parts of the system.

By reaction we mean that the system performs an ac-
tivity which is initiated or modified by a set of percepts.

It should be noted that a particular action or reaction
under consideration may be composed by both selfgen-
erated active components and reactive components. A
selfgenerated high level action may well contain reactive
subcomponents available from the system’s earlier expe-
rience. The full implication of this will not be apparent
until we have dealt with the combination of established
percept-action procedures and random exploratory in-
fluences.

The structure which we will see developed, has two
major modes of operation:

• Exploratory behavior: Selfgenerated action →
Percept → Association

• Reactive behavior: Percept → Reaction

A selfgenerated action by the system causes a partic-
ular set of percepts to appear. The actions and percepts
are linked to each other in an association process.

2 Responses versus Objects –
The Curse of Generalization

There has traditionally been a belief that procedures
would be simpler if an abstraction into objects is per-
formed as an intermediary step, before a response is syn-
thesized. A great deal of the robotics field has been de-
voted to the generation of such generalized descriptions
[6]. The classical model for image analysis in robotics
has been as follows:

1. Identify what an object is

2. Deduce from the object description what action to
perform upon the object

It has become increasingly apparent that the task of
a reactive robotics system is at the fundamental level
to know what actions to perform as a particular scene
or object appears, not to point out an abstract symbol

representing the object. We are now convinced that the
opposite approach is advantageous, and that the proper
sequence of order should be:

1. Derive the action to perform upon the object from
percepts

2. Generalize from the actions what an object is, if
needed

It is again emphasized that the primary result from
processing is the production of a proper, context sensi-
tive action. The characteristic of objects is to a reactive
system, the way in which it can handle them. This is
what requires a highly integrated structure between the
input and the output sides. We can never deduce from
an object description what action can or should be per-
formed with respect to the object.

A description of object class, or any other more gen-
eralized representation, can be produced for the pur-
pose of communication, if required. This requires a sec-
ond stage, implementing the removal of certain context
specific links, but also adding other types of contextual
information, which allows the information to be inter-
preted after communication.

The preceding is apparent also from an evolutionary
point of view, in that simple organisms have built up
percept-action structures, long before they have devel-
oped any structures for generalization for communica-
tion between individuals. The first level of communi-
cation between systems is also unintentional. A system
can manipulate, observe and interpret the appearance
and the behavior of another system, just like any other
object. From a real, as well as operational point of view,
it does not know the difference. The generation of in-
tentional messages, which operationally is no different
from other types of action, will follow as soon as the
interpretational capability reaches a sufficient level.

The basic element is however action and this can be
emphasized as:

What has hampered the development of vision
over the years is the erroneous preconceived no-
tion that what the system shall do is to describe
what something is, rather than what it should
do. This is a case where consciousness and
language fool us. The earlier notion is fully
correct however, if we interpret it in the fash-
ion that what something is, is defined by what
we can do with it, not e.g. its geometrical prop-
erties.

Another common misunderstanding by people in
robotics and control is that this is an issue of estimation
and parameterization of a set of signals to obtain a de-
scription. It is instead an issue of association between



a set of actions and the related set of percepts. In that
process, however, estimation methods can be employed.

A particular response output node will be common to
objects which should evoke the same response domain
or component. This means that convergence is not to
an abstraction of object, but includes a wide class of
objects, characterized by the fact that all elements in
the set associate to the same response. Convergence is
to a response output node. For something which we
conventionally denote an object, there will be several
such response nodes or object response properties which
are activated, the combination of which we can say are
the characteristics of an object.

The difference between two objects is in consequence
the distinction between how we can and do handle the
objects. If they should be handled equivalently, there
is in our terms no difference between the objects. In
addition, properties of an object upon which we can not
act, are not of interest and associated features are only
a load on the structure.

In order for us to be able to represent an object suffi-
ciently well with the associated responses, as postulated,
it is apparent that we need a much richer response reper-
toir with which we can associate an object. This richer
repertoir of actions or responses will have to involve dif-
ferent levels of the structure and employ different modes
of manipulation as well as context.

3 Response as the Organizing
Mechanism for Behavior

A vision system receives a continuous barrage of input
signals. It is clear that the system cannot attempt to re-
late every signal to every other signal. What properties
make it possible to select a suitable subset for inclusion
to an effective linkage structure?

It has become apparent that responses and effects
thereof act as organizing mechanisms for percepts,
rather than the opposite, that percepts would somehow
converge onto appropriate response outputs. The reason
for this is that signal structure and complexity is con-
siderably simpler in the response domain than in the
percept domain, and this fact can be used as a focusing
entity on the linkage process, where the system’s own
responses act as organizing signals for the processing of
the input.

There is a classical experiment by Held and Hein,
which elegantly supports this model [7]. See Figure 4.
In the experiment, two newborn kittens are placed in
each of two baskets, which are hanging in a ”carousel”
apparatus, such that they are tied together to couple the
movements of the kittens. One of the kittens can reach
the floor with its legs, and move the assembly, while the
other one does not reach the floor and is passively towed

along. After some period of time, the kitten which can
control its movements develops normal sensory-motor
coordination, while the kitten which is passively follow-
ing the movements fails to do so until being freed for
several days. The actively moving animal experiences
changing visual stimuli as a result of its own movements.
The passive animal experiences the same stimulation,
but this is not the result of self-generated movements.

Figure 4: Experiment on active and passive perception

It is apparent that there is no basis for any estima-
tion of importance or ”meaning” of percepts locally in
a network, but that ”blind and functional rules” have
to be at work to produce what is a synergic, effective
mechanism. One of these basic rules is undoubtedly to
register how percepts are associated with responses, and
the consequences of these. This seems at first like a very
limited repertoir, which could not possibly give the rich
behavior necessary for intelligent systems. There is a
traditional belief that percepts are in some way ”under-
stood” in a system, after which suitable responses are
devised. This does however require simple units to have
an ability of ”understanding”, which is not a reasonable
demand upon local structures. This is a consequence
of the luxury of our own capability of consciousness and
verbal logical thinking; something which is not available
in systems we are trying to devise and in fact a capability
which may lead us astray in our search for fundamen-
tal principles. Rather, we have to look for simple and
robust rules, which can be compounded into sufficient
complexity to deal with complex problems in a ”blind”
but effective way.

Driving the system using response signals has two im-
portant functions:



• To simplify, learn and organize the knowledge about
the external world in the form of a linked network.

• To provide action outputs from the network gener-
ated

.
It is necesssary that the network structure generated

has an output to allow activation of other structures out-
side the network. This output is implemented by the
linkage to response signals, which are associated with
the emergence of the invariance class. If no such asso-
ciation were made, the network in question would have
no output and consequently no meaning to the structure
outside.

In further detail, we can find some major requirements
for organization:

1. A response or response equivalent signal has to be
available, for three different reasons:

• The first reason is to provide an indication of
motive; to ascertain that there are responses
which are associated to this percept in the pro-
cess of learning.

• The second reason is to provide a limitation to
the number of dependencies and links which
have to be established.

• The third reason is to provide an output path
to establish the existence of this percept struc-
ture. Without a response output path, it re-
mains an anonymous mode unable to act into
the external world.

2. Inputs must be sufficiently close in the input space
where they originate, the property space where they
are mapped and/or in time-space. This is both
an abstract and a practical computational require-
ment: It is not feasible to relate events over too
large a distance of the space considered. This puts
a requirement upon the maps of features available,
namely the requirement of locality.

From the preceding we postulate that:

The function of a response or a response aggre-
gate within an equivalence class is to produce a
set of inputs on its sensors, which similarly can
be assumed to belong to a common equivalence
class, and consequently can be linked.

In consequence we propose an even more important
postulate:

Related points in the response domain exhibit
a much larger continuity, simplicity and close-
ness than related points in the input domain.
For that reason, the organisation process has
to be driven by the response domain signals.

Driving a learning system using response signals for
organization, is a well known function from biology.
Many low level creatures have built in noise generators,
which generate muscle twitches at an early stage of de-
velopment, in order to organize the sensorial inputs of
the nervous system. More generally, it is believed that
noise and spontaneously generated neural activity is an
important component to enable organization and coor-
dinated behavior of organisms [9].

So far the discussion may have implied that we would
have a sharp division between a percept side and a re-
sponse side in the structure. This is certainly not the
case. There will be a continuous mixture of percept and
response components to various degrees in the structure.
We will for that purpose define the notion of percept
equivalent and response equivalent. A response equiva-
lent signal may emerge from a fairly complex network
structure, which itself comprises a combination of per-
cept and response components to various degree. At
low levels it may be an actual response muscle actua-
tion signal which matches or complements the low level
percept signal. At higher levels, the response comple-
ment will not be a simple muscle signal, but a very com-
plex structure, which takes into account several response
primitives in a particular sequence, as well as modifying
percepts. The designation implies a complementary sig-
nal to match the percept signal at various levels. Such a
complex response complement, which is in effect equiv-
alent to the system state, is also what we refer to as
context.

A response complement also has the property that an
activation of it may not necessarily produce a response
at the time, but rather an activation of particular sub-
structures which will be necessary for the continued pro-
cessing. It is also involved in knowledge acquisition and
prediction, where it may not produce any output.

There are other important issues of learning such as
representation of purpose, reinforcement learning, dis-
tribution of rewards, evolutionary components of learn-
ing, etc, which are important and relevant but have to
be omitted in this discussion [10, 11, 12, 13].

3.1 Response Driven Learning, Gener-
ating Association Spaces

We have earlier stated that the learning of the external
world is done through an interactive exploration of it.
An apparent question is: In order for the system to be
able to deal with objects, is it necessary for it to interact
with every single object in every respect?

It is postulated that a response driven learning ses-
sion will define a set of association spaces. The sys-
tem can then be expected to deal with objects or cases
which are sufficiently similar to what it has experienced
in the response driven learning process, through inter-



polation and extrapolation within the defined spaces.
Exactly what sufficiently similar implies is not clear at
this point. Abstractly, it must imply that an earlier de-
fined percept-response space is valid for the phenomenon
under consideration, although it may be parametrically
different from what the learning trajectory defined. In
some sense, it must imply that the problem structure or
topology is similar.

It is as well postulated that humans are subject to the
same limitations and possibilities. We can comprehend
a phenomenon which we have not experienced before, as
long as it is sufficiently similar to something of which we
have an interactive experience; i.e we can deal with it
as an interpolation or extrapolation within an already
available percept-response space. It seems likely that
at an adult age, most of the percept-response spaces
used are already available, and that most of our knowl-
edge acquisition after this deals with the implications of
particular instances as interpolations or extrapolations
within these avilable spaces. This can conceivably imply
that cases with the same problem structure or percept-
response space, may well appear very different, but we
can handle them without considerable difficulty.

Similarly, this gives us the possibility to comprehend
a phenomenon described to us in language or as a pas-
sively observed imagery, although we do not in any way
interact with the phenomenon.

The visual characteristics of an object are conse-
quently the way its appearance behaves under different
modes of responses. These are the different percept-
response invariants referred to in [3]. The crucial issue
is that these invariants are determined by the response
modes of the observing system. The associative learn-
ing system will create these invariants to “match” the
response effects. As a consequence, the ability of the
system to observe the world is given by its ability to
manipulate it. The preceding leads us again to the ba-
sic principle:

A system’s ability to interpret objects and the
external world is dependent upon its ability to
flexibly interact with it

3.2 Characterization of Single Objects

From the preceding it is apparent that we require a rel-
atively rich response structure associated with an ob-
ject. Otherwise, we have no basis for a discrimination
between objects, as well as no experience basis for suf-
ficiently flexible actions with respect to the object in
question.

The pattern of associated response actions of a par-
ticular object will be descriptive for the actual object,
much like a set of features. The important difference
is that while features generally describe properties in
the percept domain, the current description is in terms

of possible action states, or in consequence of earlier
discourse, a semantic description [3]. A sufficient de-
scriptiveness requires that actions are associated with
essentially what we would conventionally term descrip-
tive features. In the current system, rather than a de-
scription of features, we get a description of the actions
related to the features.

4 Definition of Objects Versus
Parts

We have in the preceding parts talked about the notion
of object without strictly defining it. We can as a first
approximation see an object as any discernible entity,
which can be separated from the background or other
objects. An object can be very simple or very complex,
ranging from a line to complex composite objects of var-
ious types.

How are entire objects represented in relation to their
parts? We can reasonably well see that simple prim-
itives such as lines and edges of an object are repre-
sented as such. However, as these are combined into
an object, do these combinations form an object iden-
tity of its own? Although this seems obvious there is a
fundamental dilemma:

• On one hand it seems necessary that parts are com-
bined into a closed representation

• On the other hand we know that a closed repre-
sentation forced upon the system does not in itself
solve our problems, as we would need a “more in-
telligent” system shell which looks at the structure
to form an action. We know that rather we need a
distributed representation in such a way that parts
can themselves act into the environment

For our purpose we will give an operational defini-
tion of an object, which is consistent with a system’s
fragmented local comprehension of the world:

An entity is viewed as an object which is sep-
arate from other objects or the background, if
there is an action which has a separate influ-
ence upon the particular object in relation to
other objects or the background

In earlier terms, this is a local percept-action
invariance structure

This means that if the system can perform some ac-
tion which makes certain parts of the visual field behave
differently to other parts, then the system will consider
this a separate object. This implies that another sys-
tem may well get a different division into objects. One
system may pass a shelf of books, viewing this as one



object, while a more educated system may know that it
can pull out one of the items in the shelf, which is the
object book.

We must remember that, a priori, the system has not
a clue for the division into separate objects, unless it
has already experienced them; the only possibility is to
interact and explore.

This leads to the situation that there will be several
levels of object parts, which are individually distinguish-
able, but in turn are parts of more complex objects, etc,
forming a hierarchy of several levels. An action upon
an object, which in turn acts upon another object will
appear to the system as a single object, although maybe
a complex, composite object with parts linked in ways
which may not be fully established. Again, the sys-
tem has no alternative for interpretation from its my-
opic view, and it may well make mistakes. From human
psychology it is well known how accidental coincidences
between events can lead to erroneous associations and
grave misunderstandings about how the world is related,
and to what is termed superstitious behavior.

It appears that while responses probably do not struc-
ture in levels, the invariances certainly do. Responses of
the same type can penetrate into invariances of different
levels, and thereby have different effects or meaning. On
the other hand, it appears that responses have different
time constants and scales. It is possible, however, that
response complexes may be associated with an invari-
ance and consequently assume a level.

5 Sequential Versus Simultane-
ous Interpretation of Features

The purpose of a vision system is to produce appropri-
ate responses. Given classical computer vision method-
ology, we might assume that the standard way to do
this would be to consider all percepts within a particu-
lar frame, more or less in parallel, and act accordingly.
A complication of this conceptual structure is that all
required information will never be simultaneously avail-
able in a single view of the system. This would require
that our sensor area is sufficiently large and with a large
enough resolution to provide all features of an object.
Even for a single view or frame of the image information
input to the system, the interpretation will require var-
ious focus-of-attention and eye movement mechanisms.
Even worse, not all of the information required for a
response is available in the image input at some given
time, but it resides in the system state and its history;
something which is commonly denoted context. This
means that something which we view as an object, hav-
ing a complex structure of linked invariances, will as
well have a complex structure of links outwards to the
environment representing its context. This part of the

linkage structure is as important to incorporate for an
effective vision system.

This seems to be a general problem which any flexi-
ble learning system ( including ourselves ) will have to
resolve. Actions are not solely dependent upon what is
available at the percept side of the structure, but con-
textual information as well. It also includes the prob-
lem of convergence of several sequential response paths
to a coordinated, combined result. We will see how this
can be resolved using an incremental, sequential learn-
ing of invariances at different levels, as the system moves
through its environment. The sequential acquisition is
what makes a linkage structure up and down feasible.
It could never be done using a truly parallel acquisi-
tion. It should be emphasized though that while the
acquisition of information on one hand tends to be a
sequential process due to the system’s physically lim-
ited trajectory through the world, the processing may
well be implemented in structures with a high degree of
parallellism.

6 Characterization of Multiple
Objects

We have seen earlier how percept-response associations
can be used to keep track of the appearance of a single
object under different transformations. How can we now
handle multiple objects which are different, and keep
track of the distinctions? According to the dogma, we
have to have some continuous phenomenon which can
lead us between different instances of objects.

If we were going along with conventional computer
vision wisdom, we would try to find ways to go con-
tinuously from one object to another in the percept
space. This is in fact what is underlying the work by
Biederman[2] and others. Different objects are seen as
parametric modifications of generic shapes.

It now turns out that it is not in the object percept
space we can obtain a continuous transition, because
there are really no physical or mass restrictions which
demand this. The restrictions appear only as we try to
manipulate an object:

We can never find continuity in percept space,
but we can find continuity in response space

There is probably no reason to expect or require con-
tinuity among object properties or any aspect of the
perceptual world, except for some constancies. The pro-
vision for constancy does not reside in the perceptual do-
main, but in the response domain. It may, however, in
certain cases map in a more simpler way to the percept
domain, which makes us interpret it as a perceptual con-
stancy. A continuous transition between different object



classes in the percept domain is not any “natural pro-
cess”, unless we include a physical deformation which is
caused by the observer. We can however hardly imagine
such a process in practical situations. This is equivalent
to finding a metric in the object representation space.

How can we find a continuity in response space, which
links us to different objects? We ask ourselves what con-
tinuity is in the response space? It implies that a tran-
sition is related to a physical power/mass restriction,
even if it is very fast such as in the case of switching the
attention using an eye movement.

It is postulated that objects are associated with
switches of attention in the view space. Eye movements
and other mechanisms to switch the attention are ap-
propriate mechanisms to go from one object to another.
This implies that a system will “walk along”, observe
different objects along the route; manipulate them and
learn their properties. This means that an object at the
outset is related to a particular position in the system’s
observed space, and there are no free floating general-
ized objects.

A consequence of this is that we do not primarily deal
with an object in its isolated generality, but an object
at a particular place and a particular context. This
is totally consistent with the view-based representation,
where we have seen that we never represent an object as
a generalization, but object-at-a-particular-view. Con-
textual information has to be maintained, and a gener-
alization of this rule is:

Objects, phenomena, etc. are never repre-
sented in an isolated generalization, but are at-
tached to a background or context

The preceding emphasizes continuity in the response
domain, but this is necessary only during response acti-
vated learning, as we have seen earlier for similar mech-
anisms. This implies that after the process of learning, a
known object can be recognized as a static phenomenon,
appearing out of context or in a different context. This
is analogous to the earlier discussion, where we are able
to recognize an object statically in a particular orienta-
tion, if its continuous transformations have been learned
in a dynamic process.

For generalization, we can observe different levels in
this dynamic-learning versus static-perception hierar-
chy:

• Level 2: Appearance of object in a particular con-
text

• Level 1: Appearance of object at a particular angle

or

• Level 2: Object-at-a-particular-position

• Level 1: Object-at-a-particular-view

The identification of a particular object will in return
evoke the context in which the object was learned, or
the state of the system at that time. We can see that an
important characterizing link of an object is the context
in which the object has once been observed.

The preceding implies that we cannot simply present
the system with a sequence of different objects to be
learned. Objects must in the learning process be dif-
ferentiated by some continuous state variable which de-
scribes in some, at least superficial, way a position, state
or context to be associated with the object in the learn-
ing process. The reference will in such a case be some-
thing like: “The object we had in that position”. This
observation state is conceivably an important part of the
object description, although a recognition can be done
in other contexts.
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