

Interaction with an autonomous agent

Jim Little Laboratory for Computational Intelligence Computer Science University of British Columbia Vancouver BC Canada

Observing people

Jim Little Work with Jeff Boyd and Jesse Hoey

 Detection and recognition of action type from motion characteristics
 Biometrics: recognizing persons by

 fingerprint, retinal scan, iris, motion

 Surveillance and monitoring
 Situation awareness

Action and Motion

Recognizing people by their gait
Identifying gestures and expressions
Analyzing image sequences to identify activities of players from their trajectories –

tracking and identification of context

Recognizing People by Their Gait: The Shape of Motion

James J. LittleJeffrey E. Boyd

We have developed a novel vision system that can recognize people by the way they walk. The system computes optical flow for an image sequence of a person walking, and then characterizes the shape of the motion with a set of sinusoidally-varying scalars. Feature vectors composed of the phases of the sinusoids are able to discriminate among people.

Apparatus

Input Sequence

Optical Flow Optical flow (Little, Bulthoff and Poggio): n frames of (u, v) data, where u is the x flow and v is the y flow.

Points (white) where flow is non-zero.

Magnitude of flow

U component of flow (xdirection)

V component of flow (ydirection)

Fitting Ellipses to motion

X and Y position over time

Stereo Features

Simple Gestures

B/W image

Hue: from RGB

Binarized

Local analysis of shape

Jose: the Robot Waiter

Representation and Recognition of Complex Human Motion Jesse Hoey Jim Little Computer Science University of British Columbia

Why human motion?

Human-Computer interaction
Psychological research
Video coding, search

It's hard because:

Many types of motion
Articulated, non-rigid motion
Different scales

Our goals

 Find a general representation for any type of motion at any scale: Zernike polynomials
 Identify actions in motion sequences by

extracting a low-dimensional feature vector for high-level processing

Zernike Polynomials

 $U_n^m(\rho,\theta) = R_n^m(\rho,\theta)e^{im\theta}$

$$R_n^m(\rho) = \sum_{l=0}^{(n-m)/2} \frac{(-1)^l (n-l)!}{l! [\frac{1}{2}(n+|m|)-1]! [\frac{1}{2}(n-|m|)-l]!} \rho^{n-2l}$$

Examples:

- nmZP001translation
- 1 1 $\rho \cos(\theta)$ affine
- 3 1 $(3\rho^3 2\rho)\cos(\theta)$
- 3 3 $(3\rho^3 2\rho)\cos(3\theta)$

n: radial spatial frequency m:angular spatial frequency

Optical Flow Method

- Gradient based $I_x u + I_v v + It = 0$ Graduated non-convexity with robust error norm Locally smooth Preserves discontinuities (Black & Anandan, CVIU 63(1) 1996)

Optical Flow

t=0

Zernike Basis

Complete, orthogonal, basis of Zernike polynomials (ZPs) defined on the unit disk Can write any sufficiently smooth 2D function as a sum of Zernike polynomials - dot product of flows with ZPs \rightarrow vector - Simple flows (affine) \rightarrow 6D vector (2 ZPs) Complex flows \rightarrow higher dimensional vectors

Project onto Zernike Basis

Create Z_1 and Z_2, Zernike features
For optical flow shown above
Map into temporal model
Each state S_I depends on Z_i

Temporal Model

Constant flow in temporal slices

- Model temporal progression with continuous density hidden Markov model
- Build Hidden Markov Model (HMM) for each motion type

 Classify new sequences as maximum likelihood HMM

Results

Facial expressions with no rigid motion, only deformation
Facial expressions with head motion
Facial expression database
Lip-reading

Facial expression with significant rigid head motion 1 subject - 5 expressions

Translation (1 ZP):

Affine (2 ZPs):

First 7 ZPs

PCA (7 components: 2-9)

40% 69%

94%

91%

Facial expression -no rigid head motion -72 subjects - 6 expressions*

*Cohn-Kanade Facial Expression Database

 Affine (2 ZPs):
 71%

 First 7 ZPs
 90%

(267 sequences, 4604 frames)

Lip-Reading - Tulips1 database - 12 subjects - 4 words

 Affine (2 ZPs):
 66%

 First 7 ZPs
 76%

 2,4,8,9,10,14,22:
 79%

 (96 sequences 835 frames)

Facial expression - no rigid head motion -1 subject - 5 expressions

Translation (1 ZP): Affine (2 ZPs): First 7 ZPs 66%

98%

100%

Summary

Zernike polynomials are an effective modelfree basis for representing optical flow Typical flows – faces, lips – can be well represented in the Zernike basis Learning HMM models of flow leads to recognition rates exceeding affine bases Outperforms PCA (model-based) analysis