Interaction with an autonomous agent

Jim Little
Laboratory for
Computational Intelligence
Computer Science
University of British Columbia
Vancouver BC Canada

Observing people

Jim Little
Work with Jeff Boyd and Jesse Hoey
Activities

Detection and recognition of action type from motion characteristics
Biometrics: recognizing persons by

- fingerprint, retinal scan, iris, motion
- Surveillance and monitoring

Situation awareness

Action annd Motion

Recognizing people by their gait Identifying gestures and expressions

- Analyzing image sequences to identify activities of players from their trajectories tracking and identification of context

Pecognizing People by Their Geit: The Shape of Motion

James J. Little

Jeffrey E. Boyd

Overvjew

We have developed a novel vision system that can recognize people by the way they walk. The system computes optical flow for an image sequence of a person walking, and then characterizes the shape of the motion with a set of sinusoidally-varying scalars. Feature vectors composed of the phases of the sinusoids are able to discriminate among people.

Apparatus

Input Sequence

Opticel Flow

 Optical flow (Little, Bulthoff and Poggio): n frames of (u, v) data, where u is the x flow and v is the y flow.Points (white) where flow is non-zero.

Magriitude of flow

U componenit of flow (κ^{-} directions)

V componenit of flow (y-

 directions)

X and Y position over tirsıe

Scalar Sigraals

Stereo Features

Scaiterplot

B/W image
Hue: from RGB

Biriarized

Local analysis of shape

Jose: the Robot Whaiter

Representation and Recognition of Complex Human Motion Jesse Hoey Jim Little

Computer Science

University of British Columbia

Wh'ıy hussıan rnotion?

- Human-Computer interaction

- Psychological research
- Video coding, search

It's hard because:

- Many types of motion
- Articulated, non-rigid motion
- Different scales

Our goals

Find a general representation for any type of motion at any scale: Zernike polynomials Identify actions in motion sequences by extracting a low-dimensional feature vector for high-level processing

Zernike Polynomials

$\mathrm{U}_{\mathrm{n}}^{\mathrm{m}}(\rho, \theta)=\mathrm{R}_{\mathrm{n}}^{\mathrm{m}}(\rho, \theta) \mathrm{e}^{\mathrm{im} \theta}$

Examples:

n	m	ZP	
0	0	1	translation
1	1	$\rho \cos (\theta)$	affine
3	1	$\left(3 p^{3}-2 \rho\right) \cos (\theta)$	n: radial spatial frequency
3	3	$\left(3 p^{3}-2 \rho\right) \cos (3 \theta)$	m:angular spatial frequency

Opitceal Flow JJeínod

Gradient based $\mathrm{I}_{\mathrm{x}} \mathrm{u}+\mathrm{I}_{\mathrm{y}} \mathrm{v}+\mathrm{It}=0$

Graduated non-convexity with robust error norm

Locally smooth

Preserves discontinuities

(Black \& Anandan, CVIU 63(1) 1996)

Optjcal Flow

$$
t=0 \quad t=1
$$

$\mathrm{n}=4 \mathrm{~m}=0$ (radial only)

$\mathrm{n}=4 \mathrm{~m}=2$

Reconstiveteo fows.
original flow field

affine flow
first 49 ZPs

Zerrajse Ēelsis

Complete, orthogonal, basis of Zersilise polysiossijels (ZPs) defined on the unit disk
Can write any sufficiently smooth 2D function as a sum of Zernike polynomials dot product of flows with ZPs \rightarrow vector - Simple flows (affine) \rightarrow 6D vector (2 ZPs) Complex flows \rightarrow higher dimensional vectors

Project onito Zernike Basis

Create $Z_{-} 1$ and Z_{2} 2, Zernike features For optical flow shown above
Map into temporal model

- Each state S_I depends on Z_i
-「essijos'al IMJodel

Constant flow in temporal slices

Model temporal progression with continuous density hidden Markov model

- Build Hidden Markov Model (HMM) for each motion type

Classify new sequences as maximum likelihood HMM
resulis

Facial expressions with no rigid motion,

 only deformation- Facial expressions with head motion
- Facial expression database

Lip-reading

гaclal expression
 - with significeant rigid head motion
 - 1 subject - 5 expressions

Translation (1 ZP):
40\%
Affine (2 ZPs):
69\%
First 7 ZPs
94\%

PCA (7 comnonents: 2-9)
91%

$$
\begin{aligned}
& \text { Faclal expression } \\
& \text {-nio rigid head motion } \\
& -72 \text { subjectis - }-6 \text { expressions* }
\end{aligned}
$$

*Cohn-Kanade Facial Expression Database

Affine (2 ZPs): 71\%
(267 sequences, 4604 frames)
First 7 ZPs
90%

LJp-Reading

$$
\begin{aligned}
& \text { - Tulips } 1 \text { daital.base } \\
& \text { - } 12 \text { subjects - } 4 \text { words }
\end{aligned}
$$

Affine (2 ZPs):
 66\%

First 7 ZPs
76\%
2,4,8,9,10,14,22: 79\%
(06 semilences 835 frames)

$$
\begin{aligned}
& \text { Felcifd expression } \\
& \text { - no rigjd head motion } \\
& \text {-1 subject - } 5 \text { expressions }
\end{aligned}
$$

Translation (1 ZP):
66%
Affine (2 ZPs):
98\%
First 7 ZPs
100%

Sursissienry

Zernike polynomials are an effective modelfree basis for representing optical flow

- Typical flows - faces, lips - can be well represented in the Zernike basis
- Learning HMM models of flow leads to recognition rates exceeding affine bases
」 Outperforms PCA (model-based) analysis

