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OverviewOverview

Local Invariant Features for Object Recognition Local Invariant Features for Object Recognition 
–– David Lowe UBCDavid Lowe UBC
–– What features we use for landmarksWhat features we use for landmarks

VisionVision--based Mapping with Backward Correctionbased Mapping with Backward Correction
–– Stephen Se MDR, David Lowe, Jim Little UBCStephen Se MDR, David Lowe, Jim Little UBC
–– How we use visual landmarks to create a mapHow we use visual landmarks to create a map

Global Localization using Distinctive Visual FeaturesGlobal Localization using Distinctive Visual Features
–– Stephen Se MDR, David Lowe, Jim Little UBCStephen Se MDR, David Lowe, Jim Little UBC
–– How a robot finds where it is in a mapHow a robot finds where it is in a map



Local Invariant Features forLocal Invariant Features for
Object RecognitionObject Recognition

David Lowe UBCDavid Lowe UBC



Feature DetectionFeature Detection

Much faster than template matchingMuch faster than template matching
History:History:
–– Edge segments: Roberts (65), Grimson (84)Edge segments: Roberts (65), Grimson (84)
–– Groupings: Lowe (87), Nelson (97)Groupings: Lowe (87), Nelson (97)
–– Regions, Color: Jacobs (93), Swain (91)Regions, Color: Jacobs (93), Swain (91)

Problem:Problem: hard to find features that are frequent, stable, hard to find features that are frequent, stable, 
and distinctiveand distinctive



Invariant Local FeaturesInvariant Local Features

Image content is transformed into local feature coordinates Image content is transformed into local feature coordinates 
that are invariant to translation, rotation, scale, and other that are invariant to translation, rotation, scale, and other 
imaging parametersimaging parameters

SIFT Features



Advantages of invariant local featuresAdvantages of invariant local features

Locality:Locality: features are local, so robust to occlusion and clutter (no features are local, so robust to occlusion and clutter (no 
prior segmentation)prior segmentation)

Distinctiveness:Distinctiveness: individual features can be matched to a large individual features can be matched to a large 
database of objectsdatabase of objects

Quantity:Quantity: many features can be generated for even small objectsmany features can be generated for even small objects

Efficiency:Efficiency: close to realclose to real--time performancetime performance

Extensibility:Extensibility: can easily be extended to wide range of differing can easily be extended to wide range of differing 
feature types, with each adding robustnessfeature types, with each adding robustness



HistoryHistory
Torr & Murray (93); Zhang, Deriche, Faugeras, Luong (94)Torr & Murray (93); Zhang, Deriche, Faugeras, Luong (94)

–– Apply Harris corner detector for feature locationsApply Harris corner detector for feature locations
–– Match nearby points using proximity and Match nearby points using proximity and 

correlation applied at corner locationscorrelation applied at corner locations
–– Only invariant to feature translationOnly invariant to feature translation

Schmid & Mohr (96)Schmid & Mohr (96)

–– Compute rotational invariants at Harris corners Compute rotational invariants at Harris corners 
that are also distinctivethat are also distinctive

–– Demonstrated object recognition with high clutter Demonstrated object recognition with high clutter 
and occlusionand occlusion

–– Still needed: invariance to scale and 3D Still needed: invariance to scale and 3D 
viewpoint, model fittingviewpoint, model fitting



Zhang, Deriche, Faugeras, Zhang, Deriche, Faugeras, LuongLuong (95)(95)
Apply Harris corner detectorApply Harris corner detector
Match points by correlating only at corner points Match points by correlating only at corner points 
Derive epipolar alignment using robust leastDerive epipolar alignment using robust least--squaressquares



CordeliaCordelia Schmid & Roger Mohr (97)Schmid & Roger Mohr (97)
Apply Harris corner detectorApply Harris corner detector
Use rotational invariants at corner Use rotational invariants at corner 
pointspoints
–– However, not scale invariant.  However, not scale invariant.  

Sensitive to viewpoint and Sensitive to viewpoint and 
illumination change. illumination change. 



Build ScaleBuild Scale--Space DOG PyramidSpace DOG Pyramid

Most efficient function is to compute difference of Gaussian pyrMost efficient function is to compute difference of Gaussian pyramid amid 
(Burt)(Burt)
Single blur by Single blur by √√2 used for DOG and resampling2 used for DOG and resampling

Blur 
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Blur 
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Key point localizationKey point localization

Detect maxima and minima of Detect maxima and minima of 
difference of Gaussian in scale difference of Gaussian in scale 
spacespace
Remove points with low stability Remove points with low stability 
(minimum contrast required in all (minimum contrast required in all 
directions)directions)

Blur 

Res ample

Subtra ct



Select canonical orientationSelect canonical orientation

Create histogram of local Create histogram of local 
gradient directions computed gradient directions computed 
at selected scaleat selected scale
Assign canonical orientation Assign canonical orientation 
at peak of smoothed at peak of smoothed 
histogramhistogram
Each key specifies stable 2D Each key specifies stable 2D 
coordinates (x, y, scale, coordinates (x, y, scale, 
orientation)orientation)

0 2π



Testing for stabilityTesting for stability

Check for stability Check for stability 
following affine following affine 
projection, change of projection, change of 
brightness and contrast, brightness and contrast, 
and addition of noiseand addition of noise
This Figure shows only This Figure shows only 
2 octaves.  Typical 2 octaves.  Typical 
image produces 1000 image produces 1000 
keys.keys.



Statistics for stability testingStatistics for stability testing

Applied to 20 diverse images with 15,000 keysApplied to 20 diverse images with 15,000 keys



Creating features stable to viewpoint Creating features stable to viewpoint 
changechange

Edelman, Intrator & Poggio (97) showed that complex cell outputsEdelman, Intrator & Poggio (97) showed that complex cell outputs are are 
better for 3D recognition than simple correlationbetter for 3D recognition than simple correlation



Stability to viewpoint changeStability to viewpoint change

Classification of rotated 3D models (Edelman 97):Classification of rotated 3D models (Edelman 97):
–– Complex cells: 94% Complex cells: 94% vsvs simple cells: 35%simple cells: 35%



SIFT vector formationSIFT vector formation
Thresholded image gradients are sampled over 16x16 array of Thresholded image gradients are sampled over 16x16 array of 
locations in scale spacelocations in scale space
Create array of orientation histogramsCreate array of orientation histograms
8 orientations x 4x4 histogram array = 128 dimensions8 orientations x 4x4 histogram array = 128 dimensions



Feature stabilityFeature stability
Match features after random change in image scale & Match features after random change in image scale & 
orientation, with 2% image noise, and affine distortionorientation, with 2% image noise, and affine distortion
Find nearest neighbor in database of 30,000 featuresFind nearest neighbor in database of 30,000 features



Distinctiveness of featuresDistinctiveness of features
Vary size of database of features, with 30 degree affine Vary size of database of features, with 30 degree affine 
change, 2% image noisechange, 2% image noise
Measure % correct for single nearest neighbor matchMeasure % correct for single nearest neighbor match



Detecting 0.1% inliers among 99.9% Detecting 0.1% inliers among 99.9% 
outliersoutliers

Hypotheses are generated by matching each feature to nearest Hypotheses are generated by matching each feature to nearest 
neighbor vectors in database neighbor vectors in database 

–– Use bestUse best--binbin--first (Beis & Lowe, 97) first (Beis & Lowe, 97) 
modification to kmodification to k--d tree algorithmd tree algorithm

Need to recognize clusters of just 4 consistent features among Need to recognize clusters of just 4 consistent features among 
4000 feature match hypotheses4000 feature match hypotheses
LMS or RANSAC would be hopeless!LMS or RANSAC would be hopeless!
Generalized Hough transformGeneralized Hough transform

–– Hash each key according to model ID and Hash each key according to model ID and 
pose, allowing for error in similarity pose, allowing for error in similarity 
approximationapproximation

–– SecondSecond--level hashing avoids need to form level hashing avoids need to form 
empty binsempty bins



Probability of correct matchProbability of correct match
Compare distance of Compare distance of nearestnearest neighbor to neighbor to secondsecond nearest neighbor nearest neighbor 
(from different object)(from different object)
Threshold of 0.8 provides excellent separationThreshold of 0.8 provides excellent separation



Model verificationModel verification

Examine all clusters in Hough transform with at least 3 Examine all clusters in Hough transform with at least 3 
featuresfeatures
Perform leastPerform least--squares fit to model (similarity, affine, or 3D).  squares fit to model (similarity, affine, or 3D).  
Discard outliers and perform topDiscard outliers and perform top--down check for additional down check for additional 
features.features.
Evaluate probability that match is correctEvaluate probability that match is correct
–– Use Bayesian model, with probability that Use Bayesian model, with probability that 

features would arise by chance if object was features would arise by chance if object was notnot
presentpresent

–– Takes account of object size in image, textured Takes account of object size in image, textured 
regions, model feature count in database, regions, model feature count in database, 
accuracy of fit (Lowe, CVPR 01)accuracy of fit (Lowe, CVPR 01)



Solution for affine parametersSolution for affine parameters

Affine transform of [x,y] to [u,v]:Affine transform of [x,y] to [u,v]:

Rewrite to solve for transform parameters:Rewrite to solve for transform parameters:



Planar texture modelsPlanar texture models

Models for planar surfaces with SIFT keysModels for planar surfaces with SIFT keys



Planar recognitionPlanar recognition

Planar surfaces can be Planar surfaces can be 
reliably recognized at a reliably recognized at a 
rotation of 60rotation of 60°° away away 
from the camerafrom the camera
Affine fit approximates Affine fit approximates 
perspective projectionperspective projection
Only 3 points are Only 3 points are 
needed for recognitionneeded for recognition



3D Object Recognition3D Object Recognition

Extract outlines with Extract outlines with 
background background 
subtractionsubtraction



3D Object Recognition3D Object Recognition

Only 3 keys are needed Only 3 keys are needed 
for recognition, so extra for recognition, so extra 
keys provide robustnesskeys provide robustness
Affine model is no longer Affine model is no longer 
as accurateas accurate



Recognition under occlusionRecognition under occlusion



Test of illumination invarianceTest of illumination invariance
Same image under differing illuminationSame image under differing illumination

273 keys verified in final match



View interpolation for 3D viewpoint View interpolation for 3D viewpoint 
changechange

Change in 3D viewpoint under orthography can be Change in 3D viewpoint under orthography can be 
correctly modeled by linear view interpolation (Seitz & correctly modeled by linear view interpolation (Seitz & 
Dyer [1995])Dyer [1995])

–– Requirement is that interpolation be Requirement is that interpolation be 
along epipolar linesalong epipolar lines

When two training images agree with low residual, then When two training images agree with low residual, then 
features are combined.  Otherwise, perform linear features are combined.  Otherwise, perform linear 
interpolation.interpolation.
Linear interpolation can handle some nonLinear interpolation can handle some non--rigid and rigid and 
generic objects (such as change in facial expression)generic objects (such as change in facial expression)



Examples of view interpolationExamples of view interpolation



Recognition using View Recognition using View 
InterpolationInterpolation



Robot LocalizationRobot Localization
Joint work with Stephen Se, Jim LittleJoint work with Stephen Se, Jim Little



Map continuously built over timeMap continuously built over time



Locations of map features in 3DLocations of map features in 3D



MultiMulti--view solution for 3D structureview solution for 3D structure

Match features between 3 images from nearby viewpointsMatch features between 3 images from nearby viewpoints
Use robust leastUse robust least--squares minimization to solve for camera squares minimization to solve for camera 
locations and 3D structurelocations and 3D structure
–– Approach of (Szeliski & Kang, 94)Approach of (Szeliski & Kang, 94)

Match 3D model to additional views, integrating new Match 3D model to additional views, integrating new 
features.features.
–– Provides robust model integrating features Provides robust model integrating features 

under wide range of imaging conditionsunder wide range of imaging conditions







Computation timesComputation times

Recognition time: 0.5 seconds on 600MHz PentiumRecognition time: 0.5 seconds on 600MHz Pentium
–– 0.3 seconds to build scale0.3 seconds to build scale--space pyramidspace pyramid
–– 0.2 seconds for indexing and verification0.2 seconds for indexing and verification
–– Image sizes: 512x384 pixels, Image sizes: 512x384 pixels, greyscalegreyscale

Additional 0.5 second preprocessing for each modelAdditional 0.5 second preprocessing for each model
–– Times should scale subTimes should scale sub--linearly for additional linearly for additional 

modelsmodels
–– About 100About 100--500K memory for each model500K memory for each model



Comparison to template matchingComparison to template matching
Costs of template matchingCosts of template matching
–– 250,000 locations x 30 orientations x 4 scales = 250,000 locations x 30 orientations x 4 scales = 

30,000,000 evaluations30,000,000 evaluations
–– Does not easily handle partial occlusion and other Does not easily handle partial occlusion and other 

variation without large increase in template numbersvariation without large increase in template numbers
Costs of SIFT approachCosts of SIFT approach
–– 1000 evaluations (reduction by factor of 30,000)1000 evaluations (reduction by factor of 30,000)
–– Features are more invariant to illumination, 3D rotation, Features are more invariant to illumination, 3D rotation, 

and object variationand object variation
–– Use of many small Use of many small subtemplatessubtemplates increases robustness increases robustness 

to partial occlusion and other variationsto partial occlusion and other variations



Future directionsFuture directions
Build true 3D modelsBuild true 3D models
–– Integrate features from large number of training views Integrate features from large number of training views 

and perform continuous learningand perform continuous learning
Feature classes can be greatly expandedFeature classes can be greatly expanded
–– AffineAffine--invariant features (Tuytelaars & Van Gool, invariant features (Tuytelaars & Van Gool, 

Mikolajczyk & Schmid, Schaffalitzky & ZissermanMikolajczyk & Schmid, Schaffalitzky & Zisserman,,
Brown & Lowe)Brown & Lowe)

–– Incorporate color, texture, varying feature sizes Incorporate color, texture, varying feature sizes 
–– Include edge features that separate figure from groundInclude edge features that separate figure from ground

Address instance recognition of generic modelsAddress instance recognition of generic models
–– Map feature probabilities to measurements of interest Map feature probabilities to measurements of interest 

(e.g., specific person, expression, age)(e.g., specific person, expression, age)



ConclusionsConclusions

Object recognition can be achieved with a dense set of Object recognition can be achieved with a dense set of 
local features of intermediate complexitylocal features of intermediate complexity
A staged approach to feature detection leads to efficient A staged approach to feature detection leads to efficient 
matchingmatching
Final modelFinal model--based verification process is important for based verification process is important for 
selecting features that form a consistent object selecting features that form a consistent object 
interpretation. interpretation. 
The approach can be easily extended with new feature The approach can be easily extended with new feature 
typestypes



VisionVision--based Mapping with based Mapping with 
Backward CorrectionBackward Correction

David Lowe (UBC)David Lowe (UBC)
Jim Little (UBC)Jim Little (UBC)

Stephen Se (MD Robotics, Canada)Stephen Se (MD Robotics, Canada)



OutlineOutline

IntroductionIntroduction
SIFT Stereo and SLAMSIFT Stereo and SLAM
Map AlignmentMap Alignment
Building Building SubmapsSubmaps
–– pairpair--wise & incrementalwise & incremental

Closing the LoopClosing the Loop
–– global constraintglobal constraint
–– landmark uncertaintylandmark uncertainty

ConclusionConclusion

Erik



IntroductionIntroduction
VisionVision--based Simultaneous Localization And Mapping based Simultaneous Localization And Mapping 
(SLAM) algorithm(SLAM) algorithm
–– builds 3D map continuously builds 3D map continuously 
–– no backward correction when closing the loopno backward correction when closing the loop
–– problems with large slippages and longproblems with large slippages and long--term driftsterm drifts

Map buildingMap building
–– incrementally integrate new data to mapincrementally integrate new data to map
–– full bundle adjustmentfull bundle adjustment
–– related workrelated work

Leonard and Leonard and FederFeder 99, Lu and 99, Lu and MiliosMilios 97, 97, GutmannGutmann
and and KonoligeKonolige 99, 99, ThrunThrun et al 98et al 98



SIFT FeaturesSIFT Features

SIFT (Scale Invariant Feature Transform)SIFT (Scale Invariant Feature Transform)
–– object recognition (Lowe 1999)object recognition (Lowe 1999)
–– invariant to image translation, scaling, rotation, invariant to image translation, scaling, rotation, 

illumination changes, affine projectionillumination changes, affine projection
–– previous feature detectors sensitive to scaleprevious feature detectors sensitive to scale

AlgorithmAlgorithm
–– subtract image from its Gaussian smoothed image to get subtract image from its Gaussian smoothed image to get 

DOG for each pyramid levelDOG for each pyramid level
–– key locations at maxima & minima relative to key locations at maxima & minima relative to 

surrounding pixels and adjacent scalessurrounding pixels and adjacent scales
–– subpixelsubpixel image location, scale and orientationimage location, scale and orientation



SIFT DetectionSIFT Detection

Resampled image Gaussian smoothed DOG



SLAMSLAM
SIFT stereoSIFT stereo
–– epipolarepipolar and disparity constraintsand disparity constraints
–– SIFT scale and orientation constraintsSIFT scale and orientation constraints

3D SIFT landmarks kept in database map3D SIFT landmarks kept in database map
Camera egoCamera ego--motion estimation motion estimation 
–– leastleast--squares minimizationsquares minimization



Map AlignmentMap Alignment

Build Build submapssubmaps of environment and align them afterwards of environment and align them afterwards 
to obtain consistent global 3D mapto obtain consistent global 3D map
Distinctive features required to match scenesDistinctive features required to match scenes
SIFT local image characteristicsSIFT local image characteristics
–– measure local image gradient at a number of measure local image gradient at a number of 

orientation relative to location, scale & orientation relative to location, scale & 
orientation orientation 

–– blur gradient locations to reduce sensitivityblur gradient locations to reduce sensitivity
–– 2 x 2 grid with 4 orientation in each cell2 x 2 grid with 4 orientation in each cell
–– 16 element vector describing SIFT feature16 element vector describing SIFT feature
–– scalable easily for more specificityscalable easily for more specificity



RANSAC ApproachRANSAC Approach

Given 2 sets of SIFT 3D database mapGiven 2 sets of SIFT 3D database map
RANdomRANdom SAmplingSAmpling ConsensusConsensus
Find best database landmark for each feature, based on Find best database landmark for each feature, based on 
local image characteristic & heightlocal image characteristic & height
Repeat 50 times Repeat 50 times 
–– randomly select 2 tentative matches randomly select 2 tentative matches 
–– compute pose parameter (X,Z,compute pose parameter (X,Z,θθ))
–– check all tentative matches for supportcheck all tentative matches for support

Select alignment with most supportSelect alignment with most support
LS minimization on all supporting matchesLS minimization on all supporting matches



Building Building SubmapsSubmaps

OdometryOdometry is corrected locally so far in SLAMis corrected locally so far in SLAM
Not sufficient for longNot sufficient for long--term driftsterm drifts
Start building a new Start building a new submapsubmap when a drift is detectedwhen a drift is detected
When a drift occurs, few feature matches at current When a drift occurs, few feature matches at current 
position position 
Build new Build new submapssubmaps on a regular basis, e.g. every M on a regular basis, e.g. every M 
frames, to avoid drift accumulationframes, to avoid drift accumulation
Combine the Combine the submapssubmaps at the endat the end



ExampleExample

Submaps built due to slipsOriginal map with slips



SubmapSubmap AlignmentAlignment

Start building the next Start building the next submapsubmap when the previous when the previous submapsubmap
is terminatedis terminated
–– overlapping SIFT landmarks existoverlapping SIFT landmarks exist

PairPair--wise alignmentwise alignment
–– align consecutive pair of align consecutive pair of submapssubmaps
–– obtain transformation from submap1 to obtain transformation from submap1 to 

submap2, submap2 to submap3, submap3 to submap2, submap2 to submap3, submap3 to 
submap4, etcsubmap4, etc

Incremental alignmentIncremental alignment
–– use the new combined map to align with the use the new combined map to align with the 

next next submapsubmap



Alignment ResultsAlignment Results

Pair-wise Incremental



Closing the LoopClosing the Loop

PairPair--wise and incremental alignments are the same if each wise and incremental alignments are the same if each 
submapsubmap overlaps only with previous overlaps only with previous submapsubmap
CloseClose--thethe--loop can be detected by checking significant loop can be detected by checking significant 
overlap of landmarks between current overlap of landmarks between current submapsubmap and initial and initial 
submapsubmap

When closing the loop, When closing the loop, 
–– incremental alignment attributes all correction to incremental alignment attributes all correction to 

last alignmentlast alignment
–– should spread out backward correction throughout should spread out backward correction throughout 

all alignmentsall alignments



Global MinimizationGlobal Minimization

For For submapssubmaps 1, 2, 1, 2, ……, n which closes the loop, obtain n , n which closes the loop, obtain n 
pairpair--wise alignments between each pair, including wise alignments between each pair, including submapsubmap
n to n to submapsubmap 11
Set up matrix systemSet up matrix system
–– for all local pairfor all local pair--wise landmark matches wise landmark matches 
–– add global constraint for perfect alignment add global constraint for perfect alignment 

Carry out leastCarry out least--squares minimizationsquares minimization
–– use pairuse pair--wise alignments as initial estimateswise alignments as initial estimates
–– minimizes local pairminimizes local pair--wise errorswise errors
–– minimizes global constraint errorsminimizes global constraint errors

1 2 n-1 nT T …T T = I



Landmark UncertaintyLandmark Uncertainty

Covariance information for each SIFT landmark available Covariance information for each SIFT landmark available 
from SLAMfrom SLAM
Use weighted leastUse weighted least--squares minimization for both pairsquares minimization for both pair--wise wise 
alignment and the global constraintalignment and the global constraint
–– trust the more reliable landmarks more for trust the more reliable landmarks more for 

better local alignmentbetter local alignment
–– trust the more reliable pairtrust the more reliable pair--wise alignment more wise alignment more 

for better backward correctionfor better backward correction



ResultsResults

Compare misalignment for each approach, from the Compare misalignment for each approach, from the 
product of all transformationsproduct of all transformations
–– pairpair--wise : (5.45cm,8.85cm,2.8deg)wise : (5.45cm,8.85cm,2.8deg)
–– weighted pairweighted pair--wise : (3.00cm,5.92cm,0.43deg)wise : (3.00cm,5.92cm,0.43deg)
–– weighted pairweighted pair--wise with backward correction : wise with backward correction : 

(0.15cm,0.37cm,0.03deg)(0.15cm,0.37cm,0.03deg)
0.03 sec to align a pair of 0.03 sec to align a pair of submapssubmaps, 0.01 sec for , 0.01 sec for 
global minimization on PIII 700MHz global minimization on PIII 700MHz 
Without initial pairWithout initial pair--wise estimates, still converges in wise estimates, still converges in 
several iterationsseveral iterations



More ResultsMore Results

Submaps built every 30 frames Weighted least-squares 
with backward correction



Conclusion and Future WorkConclusion and Future Work

VisionVision--based SLAM using 3D SIFT featuresbased SLAM using 3D SIFT features
–– highly distinctive for map alignment highly distinctive for map alignment 

Map building with backward correctionMap building with backward correction
–– building building submapssubmaps which are pairwhich are pair--wisely alignedwisely aligned
–– constrained optimization on all alignments when constrained optimization on all alignments when 

closing the loop, to produce consistent global closing the loop, to produce consistent global 
3D map3D map

–– allows backward correction between allows backward correction between submapssubmaps
–– odometryodometry corrected locally within corrected locally within submapsubmap

MultiMulti--robot collaborationrobot collaboration
Further experiments in larger environmentsFurther experiments in larger environments





Global Localization using Global Localization using 
Distinctive Visual FeaturesDistinctive Visual Features

David Lowe, Jim LittleDavid Lowe, Jim Little
University of British ColumbiaUniversity of British Columbia

Stephen Se (MD Robotics, Canada)Stephen Se (MD Robotics, Canada)



OutlineOutline

IntroductionIntroduction
SIFT Stereo and SLAMSIFT Stereo and SLAM
Global LocalizationGlobal Localization
–– Hough TransformHough Transform
–– RANSACRANSAC
–– ComparisonComparison

Map AlignmentMap Alignment
ConclusionConclusion

Erik



IntroductionIntroduction
Simultaneous Localization And Mapping (Simultaneous Localization And Mapping (SLAM)SLAM)

–– trinoculartrinocular stereo visionstereo vision--basedbased
–– natural landmarks in unmodified environmentsnatural landmarks in unmodified environments
–– compensate for compensate for odometryodometry errorserrors

Global localizationGlobal localization
–– handle serious positioning errorshandle serious positioning errors
–– kidnapped robot problemkidnapped robot problem

Using distinctive visual landmarksUsing distinctive visual landmarks
–– global localization from just one frameglobal localization from just one frame
–– different from stochastic localization methodsdifferent from stochastic localization methods



SIFT FeaturesSIFT Features
SIFT (Scale Invariant Feature Transform)SIFT (Scale Invariant Feature Transform)
–– object recognition (Lowe 1999)object recognition (Lowe 1999)
–– invariant to image translation, scaling, rotation, invariant to image translation, scaling, rotation, 

illumination changes, affine projectionillumination changes, affine projection
–– previous feature detectors sensitive to scaleprevious feature detectors sensitive to scale

AlgorithmAlgorithm
–– subtract image from its Gaussian smoothed subtract image from its Gaussian smoothed 

image to get DOG for each pyramid levelimage to get DOG for each pyramid level
–– key locations at maxima & minima relative to key locations at maxima & minima relative to 

surrounding pixels and adjacent scalessurrounding pixels and adjacent scales
–– subpixelsubpixel image location, scale and orientationimage location, scale and orientation



SIFT DetectionSIFT Detection

Resampled image Gaussian smoothed DOG



SIFT StereoSIFT Stereo

EpipolarEpipolar and disparity constraintsand disparity constraints
SIFT scale and orientation constraintsSIFT scale and orientation constraints
Robust : features must appear in all 3 imagesRobust : features must appear in all 3 images



3D Database Map3D Database Map

3D SIFT landmarks kept in database map3D SIFT landmarks kept in database map
Camera egoCamera ego--motion estimation by leastmotion estimation by least--squares squares 
minimization minimization 
After 435 framesAfter 435 frames
2783 SIFT landmarks2783 SIFT landmarks



Global LocalizationGlobal Localization

Kidnapped robot problemKidnapped robot problem
Recognize where the robot is relative to a previously built Recognize where the robot is relative to a previously built 
mapmap
Distinctive features required to identify scenes in the mapDistinctive features required to identify scenes in the map
SIFT features SIFT features 
–– use scale and orientation so faruse scale and orientation so far
–– local image characteristics provides feature local image characteristics provides feature 

specificity for object recognitionspecificity for object recognition
Hough Transform and RANSAC approachesHough Transform and RANSAC approaches



Local Image CharacteristicsLocal Image Characteristics

Measure local image gradient at a number of orientation Measure local image gradient at a number of orientation 
relative to location, scale & orientation of featurerelative to location, scale & orientation of feature
Blur gradient locations to reduce sensitivityBlur gradient locations to reduce sensitivity
2 x 2 grid with 4 orientation in each cell2 x 2 grid with 4 orientation in each cell
16 element vector describing SIFT feature16 element vector describing SIFT feature
Scalable easily for more specificityScalable easily for more specificity



Hough Transform ApproachHough Transform Approach

Landmarks database & current SIFT featuresLandmarks database & current SIFT features
33--D D discretizeddiscretized search space (X,Z,search space (X,Z,θθ))
Local image characteristic & height to find a set of potential Local image characteristic & height to find a set of potential 
database landmarks for each featuredatabase landmarks for each feature
For each potential matchFor each potential match
–– vote all multiple poses covering an arcvote all multiple poses covering an arc
–– also vote bins in ellipse region due to also vote bins in ellipse region due to 

uncertaintyuncertainty
Peaks : pose configuration with many matchesPeaks : pose configuration with many matches
–– select top K peaks & carry out LS minimizationselect top K peaks & carry out LS minimization
–– best pose : most matches with lowest LS errorbest pose : most matches with lowest LS error



RANSAC ApproachRANSAC Approach

RANdomRANdom SAmplingSAmpling ConsensusConsensus
Find best database landmark for each feature, based on Find best database landmark for each feature, based on 
local image characteristic & heightlocal image characteristic & height
Repeat 50 timesRepeat 50 times
–– randomly select 2 tentative matches randomly select 2 tentative matches 
–– compute pose parameter (X,Z,compute pose parameter (X,Z,θθ))
–– check all tentative matches for supportcheck all tentative matches for support

Select pose with most supportSelect pose with most support
LS minimization on all supporting matchesLS minimization on all supporting matches
Similar pose results as in Hough TransformSimilar pose results as in Hough Transform



Experimental ResultsExperimental Results

Measured: (-10cm,120cm,-60deg)

Estimated: (-13.3cm,127.6cm,-60.5deg)



More ResultsMore Results

Measured: (-15cm,130cm,-140deg)

Estimated: (-16.0cm,134.9cm,-140.5deg)



More ResultsMore Results



DiscussionDiscussion

Using SIFT features, both Hough Transform and RANSAC Using SIFT features, both Hough Transform and RANSAC 
give good estimategive good estimate
–– with RANSAC more efficientwith RANSAC more efficient

Computational cost increases linearly with database sizeComputational cost increases linearly with database size

NonNon--specific featuresspecific features
–– consider all matches between features in consider all matches between features in 

current frame and all database landmarkscurrent frame and all database landmarks
–– difficult to achieve from one frame as difficult to achieve from one frame as 

multiple robot poses possiblemultiple robot poses possible
–– stochastic localization techniquesstochastic localization techniques



Map AlignmentMap Alignment

Global localization currently based on one frameGlobal localization currently based on one frame
Build a small Build a small submapsubmap of a local region from multiple framesof a local region from multiple frames
Use RANSAC approach to align the small Use RANSAC approach to align the small submapsubmap to the to the 
original maporiginal map
More robustness, particular in scenes with few SIFT More robustness, particular in scenes with few SIFT 
landmarkslandmarks
Rotates from Rotates from --15 degrees to 15 degrees15 degrees to 15 degrees



ResultsResults

Measured: (-270,100,-45)

Estimated: (-259.7,101.8,-43.5)

Measured: (60,310,-65)

Estimated: (56.9,312.8,-63.5)



Conclusion and Future WorkConclusion and Future Work

VisionVision--based SLAM using 3D SIFT featuresbased SLAM using 3D SIFT features
–– highly distinctive for global localizationhighly distinctive for global localization

Global LocalizationGlobal Localization
–– Hough Transform and RANSAC approachesHough Transform and RANSAC approaches
–– building building submapssubmaps provides more robustnessprovides more robustness
–– maps remaps re--used when robot starts at different used when robot starts at different 

positionspositions
MultiMulti--robot collaborationrobot collaboration
Further experiments in larger environmentsFurther experiments in larger environments
Robot exploration strategies to build a good SIFT database Robot exploration strategies to build a good SIFT database 
mapmap



Localization and MapsLocalization and Maps

Visual landmarks using SIFT features form the basis of Visual landmarks using SIFT features form the basis of 
maps that can be constructed incrementally during robot maps that can be constructed incrementally during robot 
explorationexploration
The maps support correction of robot The maps support correction of robot odometryodometry so the so the 
robot can maintain poserobot can maintain pose
Localization can be accomplished both incrementally and Localization can be accomplished both incrementally and 
globally, without prior information from globally, without prior information from odometryodometry, so that , so that 
the robot can initialize its pose and can survive large the robot can initialize its pose and can survive large 
impulsive impulsive odometryodometry errorserrors
Challenges: accommodating dynamic models of the Challenges: accommodating dynamic models of the 
environmentenvironment
substructures, changes in movementsubstructures, changes in movement


