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- Local Invariant Features for. Object Recogr{iﬁ)n
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- —David Lowe UBC

— What features we use for landmarks
= Vision-based Mapping with Backward Correction
— Stephen Se MDR, David Lowe, Jim Little UBC
— How we use visual landmarks to create a map
@él Localization using Distinctive,Visual Featuress s
. ittle UBC .
ow a robot finds where it is in a map




~““ocal Invariant Features for
Object Recognition
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"= Much faster than template matching
— Edge segments: Roberts (65), Grimson (84)
— Groupings: Lowe (87), Nelson (97)

— Regions, Color: Jacobs (93), Swain (91)

m: hard to find features that are freq
\distincti * :

uent, stable,
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nvariant

= |mage content is transformed into local feature coordinates
that are'invariant to translation, rotation, scale, and other
Imaging parameters
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SIFT Features
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Velritaigas of Invarlzrnt locs

= ltocality: features,are local, so robust to occlusion and clutter (no
prior'segmentation)

= Distinctiveness: individual features can be matched to a large
database of objects

= Quantity: many features can be generated for even small objects

- Efficiency: close to real-time performance
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K pIy Harns&orner deteotor for feature locations

— Match nearby points using proximity and
correlation applied at corner locations

— Only Iinvariant to feature translation
= Schmid & Mohr (96)

— Compute rotational invariants at Harris corners

ﬂat are also distinctive
i

and occlusion

— Still needed: invariance to scale and 3D
viewpoint, model fitting
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[on with high clutter




~= Apply Harris corner detector ——
= Match points by correlating only at corner points
Derive epipolar alignment using robust Ieast-quares _
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= [Jse rotational invariants at corner
“poeints

— However, not scale invariant.
Sensitive to viewpoint and
Illumination change.




ce DOG Pyrarnicl
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= Most efficient funci
- —(Burt) |
= Single blur by V2 used for DOG and resampling

s to,compute difference of Gaussian pyramid
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{2y oolnt locallzaitlorn

= Detect maxima and minima of
difference of Gaussian in scale

space
= Remove points with low stability p— - B
(minimum contrast required in all E——

directions)




= Create histogram of local
- gradient directions computed
at selected scale

= Assign canonical orientation
at peak of smoothed
histogram

= Each key specifies stable 2D
. coordinates (x, vy, scale,

" Orientation —
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stzollity

= Check for stability
-~ following: affine
projection, change of

brightness and contrast,
and addition of noise

= This Figure shows only
2 octaves. Typical
wimage produces 1000

~ keys —
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= Applied to 20 diverse images with 15,000 keys

Image transformation Match %
A. Incrcase contrast by 1.2 89.0
B. Decrease intensity by 0.2 88.H
C. Rotate by 20 degrees 85.4
D. Scale by 0.7 85.1
E. Stretch by 1.2 83.5
F. Stretch by 1.5 fild .
G. Add 10% pixel noise 90.3
H. All of AB,C,D,E,G. 78.6




= Edelman, Intrator & Poggio (27) showed that complex cell outputs are
better for. 3D.recognition than simple correlation

oriented
energy




= Classification of rotated 3D models (Edelman 97):
— Complex cells: 94% vs simple cells: 35%




VeClor 10rmation
resheldediimage aradients are samplediover 16%16 array, or

locations Ini scale space s

Create array of orientation/ histograms

8 orientations x 4x4 histogram array = 128 dimensions
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Image gradients Keypoint descriptor
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Grientation, with' 226 image noise, andlatfine: distortion
= Find nearest neighbor in database of 30,000 features
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4 Vepy sizes of delizlgziss of fealiures, Wit 80 dedrgs ffin e
change, 2% Image noise ——— _
= |Vleasure % correct for single nearest neighbor match

oy
=

Keypoint location & orientation ——
Correct nearest descriptor -
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Detecting 0.1%.inliers. among 99.9%

putliers

= Hypotheses are generatediby matching e

neighbor vectors in database

— Use best-bin-first (Beis & Lowe, 97)
modification to k-d tree algorithm

= Need to recognize clusters of just 4 consistent features among
4000 feature match hypotheses

= LMS or RANSAC would be hopeless!
= Generalized Hough transform

: Hash each key according

odellD:andu
llarity

approximation

— Second-level hashing avoids need to form
empty bins
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Mocdlal varificatlon

"= Examine all clusters in Hough: transform with at least
~ features

= Perform least-squares fit to model (similarity, affine, or 3D).
Discard outliers and perform top-down check for additional
features.

= Evaluate probability that match is correct
— Use Bayesian model, with probability that

:gatures Wﬁiﬁ arise by Ch@;f objectWwasiiots

— Takes account of object size in Iimage, textured

regions, model feature count in database,
acciiracy of fit (1| owe C\N/PR 0O1)
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= Planar surfaces can be
~ reliably recognized at a BlSali . . VN
rotation of 60° away . T W
from the camera
= Affine fit approximates
perspective projection

= Only 3 points are

ﬂg@ded for recognition
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S EXIFACT @UHIRES With

' background
subtraction




3D Object Recognition

Only 3 keys are needed
for recognition, so extra
keys provide robustness

= Affine model is no longer
as accurate
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ot tiumination Invariance
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:'—Gh»ange-inéD—viewpoi_nt under orthography can be
correctly modeled by linear view interpolation (Seitz &
Dyer [19995])

—Requirement is that interpolation be

along epipolar lines

= When two training images agree with low residual, then
geatures are:combined. Otherwise, perform Ii__(_]__ear
erpolation | '

n'can handle some non-rigid and
generic objects (such as change in facial expression)
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Recognition using View
Interpolation
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__Ma_gh features between 3 images from nearby viewpoints

= Use robust least-squares minimization to solve for camera
locations and 3D structure

— Approach of (Szeliski & Kang, 94)

= Match 3D model to additional views, integrating new
features.

@ovideé robust model integ feaiure_
' ondltlons










Cormpuiztion tmes
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= Recognition timez 0.5 seconds on 600MHz Pentiu

~ 20.3 seconds to build scale-space pyramid
— 0.2 seconds for indexing and verification

— Image sizes: 512x384 pixels, greyscale
= Additional 0.5 second preprocessing for each model

— JTimes should scale sub-linearly for additional

%dels | ""-‘:
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Cormpzrison to ternolate rmetcning

_ — 250,000 locations x 30 orientations x 4 scales_—
| 30,000,000 evaluations

— Does not easily handle partial occlusion and other
variation without large increase in template numbers

= Costs of SIFT approach

— 1000 evaluations (reduction by factor of 30,000)
~eatures-are. more invariant to lllumination, 3D rotation,

nd obje S~ -—-’
mall subtemplates increases robustness

to partial occlusion and other variations




- — Integrate features from large number of training views

and perform continuous learning
= Feature classes can be greatly expanded

— Affine-invariant features (Tuytelaars & Van Gool,
Mikolajczyk & Schmid, Schaffalitzky: & Zisserman,
Brown & Lowe)

:fncorporate color, texture, varying feature sizes -
= Include edaerfeat erfigure from grouna
Address instance recognition of generic:models

— Map feature probabilities to measurements of interest
(e.g., specific person, expression, age)




ONCIUusSIons

local features of intermediate complexity

= A staged approach to feature detection leads to efficient
matching

= Final model-based verification process is important for
selecting features that form a consistent object
interpretation.
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~Vision-pased Mapping with
Backward Correction

—

David Lowe (UBC)
Jim Little (UB




Outline
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= Introduction
"= SIFT Stereo and SLAM
= Map Alignment
= Building Submaps

— pair-wise & incremental
= Closing the Loop

bal constraint

Conclusion



Introduction

= \/ision-based Simultaneous Localization And Mapping™
.. (SLAM) algorithm :

~ — builds 3D map continuously

— no backward correction when closing the loop

— problems with large slippages and long-term drifts

= Map building

sfncremen-tally integrate new data.to,map -
T ——
Uil Bu

- ated wor

= | eonard and Feder 99, Lu and Milios 97, Gutmann
and Konolige 99, Thrun et al 98




"= SIFT (Scale Invariant Feature Transform)

—

— object recognition (Lowe 1999)

— invariant to image translation, scaling, rotation,
illumination changes, affine projection

— previous feature detectors sensitive to scale
= Algorithm

;ﬁbtract Ima

ge from |ts Gaussianismoothed mage:tmm

— Key locations at maxima & minima relative to
surrounding pixels and adjacent scales

— subpixel image location, scale and orientation
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Resampled image | Gaussian smoothed DOG



SLAM

olar andmspanty constralnts s
- = S|FT scalerand orientation constraints

D SIFT landmarks kept in database map
= Camera ego-motion estimation
— least-squares minimization



"= Build submaps of environment and align them afterwards
- to obtain consistent global 3D map
= Distinctive features required to match scenes

= SIFT local image characteristics

— measure local image gradient at a number of
orientation relative to location, scale &

=o.rientation =R

WDHMIM sensitivity.
—2x 2 grid with 4 orientation in"each cell

— 16 element vector describing SIFT feature

— scalable easilv for more specificitv




RANSAC ADOrozicn

Té'i'\'/'eiﬁ sets de-IFT—SB- database map
= RANdom SAmpling Consensus

= Find best database landmark for each feature, based on
local image characteristic & height

= Repeat 50 times
— randomly select 2 tentative matches

—

() T

.F TN (.l

Select alignment with most support
= LS minimization on all supporting matches



Bullding Suornaos
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o Od&hetry IS correcicedﬁporcéuy so farin SLAM —
= Not sufficient for long-term drifts
= Start building a new submap when a drift is detected

= \When a drift occurs, few feature matches at current
position

= Build new submaps on a regular basis, e.g. every M
frames, to avoid drift accumulation

oy
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OI‘Igl;lEll map with slips
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Submaps built due to slips



suormap Alignment

= Start building the next submap when the previous submap
~ isterminated——

— overlapping SIFT landmarks exist
= Pair-wise alignment

— align consecutive pair of submaps
— obtain transformation from submap1 to

gﬁbmap‘z submap?2 to SUbﬂﬁBB’ submap3.to..
cremental alignment ,

— use the new combined map to align with the
next submap



Pair-wise Incremental



Closing the Loop

= Pair-wise and incremental allgnments are the same i each
~ submapoverlaps only with previous submap

= Close-the-loop can be detected by checking significant
overlap of landmarks between current submap and initial
submap

en closing the loop,
i ; gnme ibutes allicorrectio

— should spread out backward corre_ction throughout
all alignments




Glooal Minirnization

e —— —

= For submaps 1€* ., Mwhich closes the Ioop, obtaln n
"p'aTr“W|se~a11gnments between each pair, including submap
n to submap 1

= Set up matrix system
— for all local pair-wise landmark matches

— add global constraint for perfect alignment
N R —

Erryout leasi=sguares izatior p—
Use pair-wise alignments as initial estimates

— minimizes local pair-wise errors

— minimizes global constraint errors




Landrnark Uncertainty

x Ccvarlance information for each SIFT Iandmarkavallable
-~ from SLAM—

= Use weighted least-squares minimization for both pair-wise
alignment and the global constraint

— trust the more reliable landmarks more for
better local alignment

‘.:st theumore reliable pair-wise allgnment more:
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= Compare misalignmentfor each approach,_f?bmhe
~ product of all-transformations

— pair-wise : (5.45cm,8.85cm,2.8deq)
— weighted pair-wise : (3.00cm,5.92cm,0.43deq)

— weighted pair-wise with backward correction :
(0.15cm,0.37cm,0.03deg)

3 sec to align a pair of submaﬁii 0.01secfor ..

. gl mimaon
ithout nitial pair-wise estimates, stillfconverges in

several iterations




Submaps built every 30 frames Weighted least-squares
— with backward correction



Conclusion and Future Work

' -based SLAM using 3D SIFT .
~ — highly distinctive for map alignment
= Map building with backward correction
— building submaps which are pair-wisely aligned
— constrained optimization on: all"alignments when
closing the loop, to preduce consistent global

=3'D map  —
- —allo frecton between submaps

— odometry corrected locally within submap
= Multi-robot collaboration

m Eirirthar avnarimmoante im larmnar amvirmenmaoante







Glebal Localization using
Distinctive Visual Features

David Lowe, Jim Little
- University of British.
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H——__"‘SJ FT Stereo and SLAM
= Global LLocalization

— Hough Transform
— RANSAC

— Comparison

ﬂap Alignment
onclusit




lm rrocuctlon

—tri nocuTar stereo vision-based

— natural landmarks in unmodified environments
— compensate for odometry errors

- Simu Ji‘"].—\( s Loc uen-ARNGSVISPPINGE (5 r\J\/J,)_T =

= Global localization
— handle serious positioning errors
1dnapped rebot problem

landmaﬁp .

— global localization from just one frame
— different from stochastic localization methods




SIF I Features

= SIEI(Scale Invariant Feattre Tt
— object recognition (Lowe 1999)

|

— invariant to image translation, scaling, rotation,
llumination changes, affine projection

— previous feature detectors sensitive terscale
= Algorithm
— subtract.image from its Gaussian smoothed
image:to for each pyramidifevel”
Mma relative to
surrounding pixels and adjacent scales
— subpixel image location, scale and orientation

—
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Resampled image Gaussian smoothed



= Epipolar and disparity constraints
= SIFT scale and orientation constraints
= Robust : features must appear in all 3 images
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3D SIET landmarks kept in database map
Camera ego-motion estimation by least-squares
minimization

After 435 frames
2783 SIFT landmarks




| Localization

"= Kidnapped robot problem;
:_—_REEogh"l?e where the robot Is relative to a previously built
map
= Distinctive features required to identify scenes in the map
= SIFT features

— use scale and orientation so far

E@czal Image characteristics rovidesj,e%
_ eoif |W s W -

gh Transform and RANSAC approaches




Local Irmage C
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= Measure |oca| rm‘age=g=r-adlent at a number. of orientation

~ relative to'location, scale & orientation of feature
= Blur gradient locations to reduce sensitivity
= 2 x 2 grid with 4 orientation in each cell
= 16 element vector describing SIFT feature
= Scalable easily for more specificity
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rlougn Transforrn Approzic

= Landmarks database & current SIFT features
= 3-D discretized search space (X,Z,0)

= | ocal image characteristic & height to find a set of potential
database landmarks for each feature

= For each potential match
— vote all multiple poses covering an arc
SO vote PINS In elllpse region due.to

“‘-—
S . pose configuration with many matches

— select top K peaks & carry out LS minimization
— best pose : most matches with lowest LS error




RANSAC Ap Oroezcn

i RANdom SAmpimgCornsensus

F nd best database landmark for each feature, based on
local image characteristic & height

= Repeat 50 times
— randomly select 2 tentative matches
— compute pose parameter (X,Z,0)

mlnlmlzatlon on all supporting matches
= Similar pose results as in Hough Transform
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Measured: (-10cm,120cm,-60deg)

Estimated: (-13.3cm,127.6cm,-60.5deg)
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- Me;sured: (-15cm,130cm,-140deg)
Estimated: (-16.0cm,134.9cm,-140.5deg)
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= Using SIFT features, both Hough Transform and RANSAC
~ give good'estimate
— with RANSAC more efficient

= Computational cost increases linearly with database size

= Non-specific features
— consider all matches between features in

'to achieve from one, frame as
multiple robot poses possible

— stochastic localization technigues



Mao Alignrnent
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= Global'localizationr currently based on one frame

= Build a small'submap of a local region from multiple frames

= Use RANSAC approach to align the small submap to the
original map

= More robustness, particular in scenes with few SIET
landmarks

Rotates from -15 degrees to 15 degrees

s
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Measured: (60,310,-65) Measured: (-270,100,-45)
Estimated: (56.9,312.8,-63.5) Estimated: (-259.7,101.8,-43.5)



Conclusion and Future Work

"« Vision-based SLAM using 3D SIFT features
" " highly distinctive for global localization
= Global Localization
— Hough Transform and RANSAC approaches
— building submaps provides more robustness
— maps re-used when robot starts at different :

ﬁsitions S——
W

= Further experiments in larger environments

= Robot exploration strategies to build a good SIFT database
map




ocallzation and Maos

= Visual landmarks wsing SIET features form the basis of
- maps: that-can-be constructed incrementally during robot
exploration

= The maps support correction of robot odometry so the
robot can maintain pose

= | ocalization can be accomplished both,incrementally and
globally, without prior information from odometry, so that
the robot can initialize its pose and can survive large

R —
Mdels of the

substructures, changes in movement




