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Multiple Camera Area SurveillanceMultiple Camera Area Surveillance
TechniquesTechniques

To distinguish "normal" people, objects, and To distinguish "normal" people, objects, and 
activities from anomalous ones, and alert a activities from anomalous ones, and alert a 
security agent in the case of anomalous security agent in the case of anomalous 
conditions.conditions.
Our current projects are:Our current projects are:
–– Fast people detectionFast people detection in corridor images, to be used in corridor images, to be used 

as input for activity recognition.as input for activity recognition.
–– Similarity filterSimilarity filter development, for knowing when a development, for knowing when a 

given scene has been seen before.given scene has been seen before.
–– ContextContext--based based object and scene recognition object and scene recognition 

algorithms. algorithms. 



People Detection AlgorithmPeople Detection Algorithm
• uses JPEG encoded 
images from a network 
camera. A large set of 
image features is 
computed, without the 
need for complete JPEG 
decompression.
• A support-vector machine 
(SVM) is used to classify 
image regions into people 
or non-people regions.
• A related project is  
developing an FPGA 
hardware implementation.



Similarity FiltersSimilarity Filters
Design temporal filters which signal when a current input Design temporal filters which signal when a current input 
vector (e.g. image features) matches those present during vector (e.g. image features) matches those present during 
one or more periods of time in the past.one or more periods of time in the past.
The similarity filter can be used in surveillance to detect The similarity filter can be used in surveillance to detect 
anomalous scenes (e.g. a new person).anomalous scenes (e.g. a new person).
Problem: avoiding the need to store all previous inputs. Our Problem: avoiding the need to store all previous inputs. Our 
approach gets around this by determining a set of subspaces approach gets around this by determining a set of subspaces 
which represent prototypical inputs. These are subject to which represent prototypical inputs. These are subject to 
compression, leading to further reduction in storage needs.compression, leading to further reduction in storage needs.
Remaining problems include: knowing when to create new Remaining problems include: knowing when to create new 
prototypes, how to do the compression (signature analysis) prototypes, how to do the compression (signature analysis) 
and what image features are best.and what image features are best.



ContextContext--based Object and Scene based Object and Scene 
RecognitionRecognition

use lowuse low--level, lowlevel, low--resolution global image data ("resolution global image data ("gistgist") to ") to 
provide statistical models for the identity of an object and provide statistical models for the identity of an object and 
the class of scene that it inhabits.the class of scene that it inhabits.
we use Stronglywe use Strongly--Coupled data fusion techniques, wherein Coupled data fusion techniques, wherein 
Bayesian inference modules interact via modulation of prior Bayesian inference modules interact via modulation of prior 
statistical models and likelihoods.statistical models and likelihoods.
We are studying the dynamics of the interaction, which We are studying the dynamics of the interaction, which 
could possibly result in "rivalry" or multicould possibly result in "rivalry" or multi--stable perceptions.stable perceptions.
We are working on a lowWe are working on a low--level version of this approach, level version of this approach, 
wherein the perception of lowwherein the perception of low--level features such as level features such as 
intensity and color are driven by statistical models of the intensity and color are driven by statistical models of the 
surroundsurround
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Statistical Translation for Object Statistical Translation for Object 
RecognitionRecognition

statistical model for learning the probability that a word is statistical model for learning the probability that a word is 
associated with an object in a scene.associated with an object in a scene.
learn these relationships learn these relationships without without access to the correct access to the correct 
associations between objects and words. associations between objects and words. 

• a Bayesian scheme for automatic weighting of 
features (e.g., colour, texture, position) improves 
accuracy by preventing overfitting on irrelevant features. 



Contextual TranslationContextual Translation

Poor assumption: all the objects are independent in a Poor assumption: all the objects are independent in a 
scene.scene.
Our more expressive model takes context into account. Our more expressive model takes context into account. 
Use loopy belief propagation to learn the model Use loopy belief propagation to learn the model 
parameters. parameters. ––
On our Corel data set (On our Corel data set (www.cs.ubc.ca/~pcarbowww.cs.ubc.ca/~pcarbo), we ), we 
achieve almost 50% precision.achieve almost 50% precision.



Object Recognition for RobotsObject Recognition for Robots

Our scheme is not realOur scheme is not real--time because of the expensive time because of the expensive 
segmentation step. segmentation step. 
BUT: our contextual translation model + a fast, crude BUT: our contextual translation model + a fast, crude 
segmentation results in equal or better precision! segmentation results in equal or better precision! 
Moreover, object recognition is more precise because Moreover, object recognition is more precise because 
the segments tend to be smaller.the segments tend to be smaller.
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