

HIGH-LEVEL VISION

Slides for the High-level Vision Course at the ECVision Summerschool on Cognitive Vision August 2003

Bernd Neumann

Cognitive Systems Laboratory Hamburg University Germany

neumann@informatik.uni-hamburg.de http://kogs-www.informatik.uni-hamburg.de

Cognitive Systems Laboratory

CS

Sections

What is High-level Scene Interpretation?	3
Historical Examples	8
Relational Matching	27
Rule-Based Interpretation	42
Description Logics	47
Image Interpretation as Deduction	61
Logics of Image Interpretation	71
Image Interpretation as Configuration	77
Signal-symbol Interface	80
Occurrence Models	90
Navigating in Hallucination Space	98
Recognizing Intentions	103
Bayesian Nets	107
Summary	119

What is High-level Scene Interpretation?

Some Application Scenarios for High-level Scene Interpretation

- street traffic observations (long history)
- cameras monitoring parking lots, railway platforms, supermarkets, nuclear power plants, ...
- video archiving and retrieval
- soccer commentator
- smart room cameras
- autonomous robot applications
 (eg robot watchmen, playmate for children)

Characteristics of High-level Scene Interpretation Tasks

- interpretations typically involve several interrelated objects
- spatial and temporal relations are important
- interpretations may build on common sense knowledge
- application scenarios are highly diverse
- domains may be very large
- learning and adaptation may be required
- reliability and complexity management may become important issues
- economical application development requires generic approach

Cognitive Systems

Context and Task Dependence

Interpretations may depend on

- domain context
- spatial context
- temporal context
- intentional context
- task context
- communicative context
- focus of attention
- a priori probabilities

Constructing an interpretation is <u>not</u> a mapping from image data into interpretation space.

Basic Structure of High-level Scene Interpretation

Historical Examples

Early Traffic Scene Analysis (Badler 75)

15 "snapshots" of a car leaving the driveway of a house

Directional Adverbials for Motion Description (Badler 75)

ACROSS AFTER DOWN AGAINST **AHEAD-OF** ALONG FROM IN APART AROUND INTO AWAY **AWAY-FROM** INWARD OFF BACK **OFF-OF BACK-AND-FORTH** ON BACKWARD BEHIND ONTO **ONWARD** BY

CLOCKWISE COUNTERCLOCKWISE FORWARD **IN-THE-DIRECTION-OF**

OUT **OUT-OF OUTWARD** OVER **SIDEWAYS** THROUGH TO **TO-AND-FRO** TOGETHER TOWARD UNDER UP **UP-AND-DOWN UPWARD** WITH

Changing Scene Graph for Car Scene (Badler 75)

Demon Representation of "ACROSS" Motion (Badler 75)

A NEAR-TO relation with one side of an object is broken and replaced by a similar relation with the other side. There is an implicit sense of passage ABOVE the object.

Precondition 1 NEAR-TO(X S1). SUB-PART(Y S1) for some object Y and SUB-PART [chain] to object S1. FRONT or BACK or LEFT-SIDE or RIGHT-SIDE(Y S1). ACROSS remains active as long as NEAR-TO(X Y) and A BOVE(X Y) hold.

Precondition 2 NEAR-TO(X S2). SUB-PART(Y S2) for a SUB-PART [chain] to object S2. FRONT or BACK or LEFT-SIDE or RIGHT-SIDE(Y S2) where S1 \neq S2 and at least one of the ORIENTATION relations to S1 (from Precondition 1) no longer holds.

Postcondition SUBJECT X DIRECTION PCONS((ACROSS Y), DIRECTION)

Motion IS-A Hierarchy (Tsotsos 79)

13

Left-ventricular Motion PART-OF Hierarchy (Tsotsos 79)

PART-OF structure supports part-whole reasoning in recognition processes

Model-based Prediction for Tracking a Jointed Moving Object (Hogg 84)

The case of highly coordinated motion of parts

Posture curves + constraints represent coordinated motion of joints of walker.

15

Cognitive Systems

NAOS - Natural Language Description of Object Motions in Traffic Scenes

(Neumann & Novak 1986)

EMW1 PERSON1

English paraphrase of automatically generated description:

The scene contains four moving objects: three cars and a pedestrian.

A VW drives from the Alte-Post to the front of the FBI. It stops.

Another VW drives towards Dammtor. It turns off Schlueterstrasse. It drives on Bieberstrasse towards Grindelhof.

A BMW drives towards Hallerplatz. While doing so, it overtakes the VW which has stopped, before Bieberstrasse. The BMW stops in front of the traffic lights.

The pedestrian walks towards Dammtor. While doing so, he crosses Schlueterstrasse in front of the FBI.

Cognitive Systems

natural-language scene description

Cognitive Systems

Geometrical Scene Description (GSD) in NAOS

Quantitative description of all objects in a time-varying scene:

- name of all objects (class or identity)
- position of all objects at all times (location and orientation)
- illumination (if required for high-level description)

Example of a synthesized GSD in NAOS:

Cognitive Systems

Occurrence Model for "OVERTAKE" (NAOS)

(OVERTAKE OBJ1 OBJ2 T1 T2) <=> (MOVE OBJ1 T1 T2) (MOVE OBJ2 T1 T2) (BEHIND OBJ1 OBJ2 T1 T3) (BESIDE OBJ1 OBJ2 T3 T4) (BEFORE OBJ1 OBJ2 T4 T2) (APPROACH OBJ1 OBJ2 T1 T3) (DIS-APPROACH OBJ1 OBJ2 T4 T2)

temporal constraint satisfaction for occurrence recognition

principled definition of primitive occurrences

Temporal Relations in NAOS

- Observations provide begin and end time points of occurrences
- Models express qualitative constraints on time points

Unary temporal constraints:	t _{min} ≤ t ≤ t _{max}
Binary temporal constraints:	t ₁ ≥ t ₂ + C ₁₂

Convex interval relations may be expressed by inequalities:

```
I_1 during I_2 \implies I_2.tb \le I_1.tb
I_1.te \le I_2.te
```

NAOS temporal constraint propagation was later identified as a convex time point algebra [Vila 94].

Cognitive Systems

Constraint Propagation for Occurrence Verification (1)

Example:

Verify occurrence "two moving objects, one behind the other"

1. Initialize constraint net of occurrence model

2. Compute primitive events for scene

ID: instance: parts: times:	move1 move mv-ob = obj1 mv-tr = trj1 mv-tb = 13 mv-te = 47	ID: instance: parts: times:	behind1 behind bh-ob1 = obj1 bh-obj2 = obj2 bh-tb = 20 bh-te = 33	(and many more)
	mv-te = 47		bh-te = 33	

Cognitive Systems

Constraint Propagation for Occurrence Verification (2)

3. Instantiate parts in occurrence model

propagate minima and maxima of time points through constraint net:

- minima in edge direction $t_{2min} = max \{t_{2min}, t_{1min} + c_{12}\}$
- maxima against edge direction

$$t_{2\min} = \max \{t_{2\min}, t_{1\min}, t_{012}\}$$

 $t_{1max} = min \{t_{1max}, t_{2max} - c_{12}\}$

Example: move1 in scene instantiates mv1 of model

Cognitive Systems

Constraint Propagation for Occurrence Verification (3)

4. Consistency and completeness test

A (partially) instantiated model is inconsistent, if for any node T one has: Tmin > Tmax

=> search for alternative instantiations or terminate with failure

An occurrence has been recognized if the occurrence model is instantiated with sufficient completeness and the instantiation is consistent.

Note:

- <u>Incremental</u> occurrence recognition follows an evolving scene
- <u>A-posteriori</u> occurrence recognition is carried out after observing a scene (choice of order!)
- Partially instantiated models may be used for scene prediction

Cognitive Systems

Hierachy for Object Motions in Street Traffic (NAOS)

Problems:

- Which occurrences should be selected for verbalization?
- Which deep cases should be filled?
- Which additional time or location information is required?
- In which order should the information be presented?

Solution:

Speech planning based on hearer simulation

informing a hearer <=> enabling a hearer to imagine the scene

Cognitive Systems

Standard Plan for Generating Natural-language Scene Descriptions in NAOS

- rules which assure that the hearer will be able to <u>imagine</u> the scene
- summary + descriptions of all object trajectories, each in chronological order
- no explicit hearer simulation

Description of an object trajectory

- 1. Each time interval is described by the most special occurrence
- 2. The first occurrence begins at the beginning of the scene
- 3. The next occurrence follows in temporal order
- 4. Location information is given by prepositional expressions as required
- 5. Temporal information is given by prepositional expressions or references to other occurrences as required

Cognitive Systems

Relational Matching

Relational Models for High-level Vision

Relational models describe objects (object classes) based on parts (components) and relations between the parts

A relational model can be represented as a structure with nodes and edges:

Edges: relations between parts

approaches A B

nearby B A

holds B C

Cognitive Systems

Recognition by Relational Matching

Principle:

- construct relational model(s) for object class(es)
- construct relational image description
- compute morphism (best partial match) between image and model(s)

Cognitive Systems

Compatibility of Relational Structures

Different from graphs, nodes and edges of relational structures may represent entities with rich distinctive descriptions.

Example: nodes = image regions with diverse properties edges = spatial relations

1. Compatibility of nodes

An image node is compatible with a model node, if the properties of the nodes match.

2. Compatibility of edges

An image edge is compatible with a model edge, if the edge types match.

3. Compatibility of structures

A relational image description B is compatible with a relational model M, if there exists a bijective mapping of nodes of a partial structure B'of B onto nodes of a partial structure M'of M such that

- corresponding nodes and edges are compatible
- M is described by M[′] with sufficient completeness

Cognitive Systems

Relational Matching Using a Compatibility Graph

Cognitive Systems

Laboratory

nodes of compatibility graph = pairs with compatible properties edges of compatibility graph = compatible pairs cliques in compatibility graph = compatible partial structures

Finding Maximal Cliques

Algorithms are available in the literature, e.g.

Bron & Kerbusch, Finding all Cliques of an Undirected Graph, Communications of the ACM, Vol. 16, Nr. 9, S. 575 - 577, 1973.

- Complexity is exponential relative to number of nodes of compatibility graph
- Efficient (suboptimal) solutions based on heuristic search

How Useful is Relational Matching?

- relational structure captures basic high-level notions
- graceful degradation w.r.t. completeness and degree of match
- well-understood computional procedures
 - finding maximal cliques in compatibility graphs
 - heuristic search
 - constraint satisfaction
 - neural network implementations
- improvement by hierarchical matching
- multi-level aggregate structure required
- differentiated compatibility measure required
 - fuzziness
 - compatibility vs. consistency
 - probabilities
- reasoning about temporal, spatial, physical relations
- uncertainty management required

Cognitive Systems

Rule-based Interpretation

Rule Systems

Rule systems provide

- user specified inference steps
- an inference engine which applies rules to a database
- inference strategies which determine the order of rule applications

In principle, rule systems may provide inferencing capabilities needed for relational matching, e.g.

(and (right-of X Y) (right-of Y Z)) => (right-of X Z)

The usability of rule systems is limited, however, because of

- liberal rule specifications at the users discretion
- lack of control over rule applications (data-driven paradigm)
- no guarantees for logical correctness or completeness
- lack of higher-level structures for data and rules

Cognitive Systems Laboratory

Rule System OPS5

OPS5 ("Official Production System, Version 5")

- developed at CMU 1980 ...
- implementation language for successful XPS (XCON, XSEL a.o.)

CLIPS

- reimplementation of OPS5 in C for NASA
- freeware

JESS

- reimplementation of OPS5 in Java
- freeware

Rules in OPS5

Syntax of a rule in OPS5:	
<rule>::=</rule>	[P <rule-name> <antecedent>> <consequent>]</consequent></antecedent></rule-name>
<antecedent>::=</antecedent>	{ <condition>}</condition>
<condition> ::=</condition>	<pattern> - <pattern></pattern></pattern>
<pattern> ::=</pattern>	[<object> {^<attribute> <value>}]</value></attribute></object>
<consequent> ::=</consequent>	{ <action>}</action>
<action> ::=</action>	[MAKE <object> {^<attribute> <value>}] </value></attribute></object>
	[MODIFY <pattern-number> {^<attribute> <value>}]</value></attribute></pattern-number>
	[REMOVE <pattern-number>] </pattern-number>
	[WRITE { <value>}]</value>

Example: "If there are 2 disks close to each other and with equal size, make them a wheel pair"

depth-first search

limited expressiveness for constraints

Cognitive Systems

When is Rule-based Interpretation Feasible?

- successful applications for restricted domains
 - recognising airports (McKeown et al. 85)
 - classification of forestry in aerial images (Pinz 85)
 - 2D image analysis
- problems with degraded images
- domain knowledge and control not separated
 - free choice of interpretation strategy dependent on task and context
 - separation required for complexity management
- does not scale beyond say 1000 rules

Cognitive Systems Laboratory

Description Logics

Why a Logic-based Approach?

- exploring a logic-based approach for a task which requires guess-work
- representing conceptual models with well-defined semantics
- exploiting validated inference procedures
- interfacing to common-sense knowledge

Cognitive Systems Laboratory

Description Logics for Knowledge Representation

Family of knowledge-representation formalisms

- object-centered, roles and features (binary relations)
- necessary vs. sufficient attributes
- inference services
 - subsumption check
 - consistency check
 - classification
 - abstraction
 - default reasoning
 - spatial and temporal reasoning
- guaranteed correctness, completeness, decidability and complexity properties
- highly optimized implementations (e.g. RACER)

Development of Description Logics

There exist several commercial and experimental developments of DLs, among them

- KL-ONE first conception of a DL (1985)
- CLASSIC commercial implementation by AT&T
- LOOM experimental system at USC
- FaCT experimental and commercial system (Horrocks, Manchester)
- RACER experimental system in Hamburg and Montreal (Haarslev & Moeller)

There is active research on DLs:

- extending the expressivity of concept languages
- decidability and tractability of inference services
- integration of predicates over concrete domains (e.g. numbers)
- highly optimized implementations
- developing new inference services (e.g. for scene interpretation)

Cognitive Systems

RACER Concept Language

C CN R RN	concept term concept name role term role name	
C ->	CN *top* *bottom* (not C) (and C1 Cn) (or C1 Cn) (or C1 Cn) (some R C) (all R C) (at-least n R) (at-least n R) (at-least n R) (at-least n R C) (at-least n R C) (at-most n R C) (at-most n R C) (b)	

concept definition
(equivalent CN C)
concept axioms
(implies CN C)
(implies C1 C2)
(equivalent C1 C2)
(disjoint <i>C1 Cn</i>)

roles
R -> RN
(inv <i>RN</i>)

concrete-domain concepts AN attribute name CDC -> (a AN) (an AN) (no AN) (min AN integer) (max AN integer) (> aexpr aexpr) (>= aexpr aexpr) (< aexpr aexpr) (<= aexpr aexpr) (= aexpr aexpr) aexpr -> AN real (+ aexpr1 aexpr1*) aexpr1 aexpr1 -> real AN (* real AN)

Primitive and Defined Concepts

Concept expressions of a DL describe sets of entities within terms of properties (unary relations) and the roles (binary relations).

The main building blocks are primitive oder defined concepts.

Primitive concepts:	concept => satisfied properties and relations	
---------------------	---	--

satisfied properties and relations are <u>necessary</u> conditions for an object to belong to a class

Defined concepts: concept <=> satisfied properties and relations

satisfied properties and relations are <u>necessary and sufficient</u> conditions for an object to belong to a classt

Primitive concept "person":

(implies person (and human (some has-gender (or female male))))

Defined concept "parent":

(equivalent parent (and person (some has-child person)))

Cognitive Systems

Example of a TBox

(signature	:atomic-concepts (person human female mother father grandmother a :roles ((has-child :parent has-descenda (has-descendant :transitive t) (has-sibling) (has-sister :parent has-sibling) (has-brother :parent has-sibling) (has-gender :feature t)))	male woman man parent aunt uncle sister brother) int) Signature of T-Box
(implies *top* (implies (som (implies (som (implies *top* (implies *top* (implies *top*	(all has-child person)) he has-child *top*) parent) he has-sibling *top*) (or brother sister)) (all has-sibling (or sister brother))) (all has-sister (some has-gender female))) (all has-brother (some has-gender male)))	domain and range restrictions for roles
(implies perso (disjoint fema (implies wom (implies man (equivalent pa (equivalent m (equivalent fa (equivalent gr (equivalent au (equivalent ur (equivalent br (equivalent br	on (and human (some has-gender (or female ale male) an (and person (some has-gender female))) (and person (some has-gender male))) arent (and person (some has-child person))) other (and person (some has-child person))) other (and woman parent)) randmother (and mother (some has-child (so unt (and woman (some has-sibling parent))) ncle (and man (some has-sibling person))) ster (and man (some has-sibling person)))	e male)))) concepts ome has-child person))))

Laboratory **Concept and Role Hierachies Implied by TBox** *top* *r* has-gender! has-sibling has-descendant* human has-brother has-child has-sister person parent woman man universal role *r* attribute (feature) ! father brother mother sister * transitive role grandmother male uncle aunt female *bottom*

Cognitive Systems

TBox Inferences

A DL system offers several inference services. At the core is a consistency test:

 $\mathbf{C} \stackrel{?}{\models} * \mathbf{bottom}^*$ (the empty concept)

Example: (and (at-least 1 has-child) (at-most 0 has-child)) **=** *bottom*

Consistency checking is the basis for several other inference services:

• subsumption

(implies C1 C2) <=> (and C1 (not C2)) ⊨ *bottom*

 classification of a concept expression searches the existing concept hierarchy for the most special concept which subsumes the concept expression

Cognitive Systems

ABox of a Description Logic System

TBox = terminological knowledge (concepts and roles)

ABox = assertional knowledge (facts)

An ABox contains:

- concept assertions (instance IN C) individual IN is instance of a concept expression C
- role assertions (related IN₁ IN₂ RN) individual IN₁ is related to IN₂ by role RN
- An ABox always refers to a particular TBox.
- An ABox requires unique names
- ABox facts are assumed to be incomplete (OWA).
 - OWA = Open World Assumption (new facts may be added, hence inferences are restricted)
 - CWA = Closed World Assumption (no facts may be added)

Cognitive Systems

ABox Inferences

ABox inferences = inferring facts about ABox individuals

Typical queries:

- consistency *is ABox consistent?*
- retrieval which individuals satisfy a concept expression?
- classification what are the most special concept names which describe an individual?

ABox consistency checking is in general more complicated than TBox consistency checking

ABox consistent <=> there exists a "model" for ABox and TBox All ABox inferences are based on the ABox consistency check.

Cognitive Systems

Example of ABox Queries

Contents of ABox

(instance alice mother) (related alice betty has-child) (related alice charles has-child) (instance betty mother) (related betty doris has-child) (related betty eve has-child) (instance charles brother) (related charles betty has-sibling) (instance charles (at-most 1 has-sibling)) (related doris eve has-sister) (related eve doris has-sister)

Questions and answers

```
(individual-instance? doris woman)
T
```

(individual-types eve) ((sister) (woman) (person) (human) (*top*))

(individual-fillers alice has-descendant) (doris eve charles betty)

```
(concept-instances sister)
(doris betty eve)
```


charles: (and brother (at-most 1 has-sibling))

Is doris instance of the concept woman?

Of which concept names is eve an instance?

What are the descendants of eve?

Which instances has the concept sister?

Cognitive Systems

Abstraction with Description Logics

abstraction = omission of properties or relations, extending a concept, generalization

Examples:

 superordinate concept name of a concept expression (= concept classification)

(and person (some has-size tall)) \rightarrow person

generalization of concept expressions

 (and (some has-occupation professor) (at-least 3 has-child))

(and (some has-occupation civil-servant) (at-least 1 has-child))

- concept expression which subsumes several individuals
 - 1. classify individuals
 - 2. determine least common subsumer (LCS)
 - for RACER: trivial solution in terms of (OR C₁ ... C_n)
 - for DLs without OR: special abstraction operator LCS

Image Interpretation as Deduction

Aerial Image Analysis as Classification

Classification of changes using a description logic (Lange and Schroeder 95)

- Using the LOOM-classifier to determine the change concept which describes given evidence
- Bottom-up analysis of images, no hypothesis generation, no predictive control

Concepts and Relations for Airfield Classification (1)

(defconcept road-object	
is (:and scene-object	ne
(> has-length has-width)	SL
(:the has-material (:one-of concrete asphalt)	fo
(defconcept runway	
is (:and road-object	
rectangle	
(:the has-length (:through 2150 4000)) (>= has-width 45)	
(at-least 1 has-connecting-driveway)	
(:all has-connecting-driveway (>= has-width 23))	
(:satisfies	pr
((?x) driveway and taxiway constraints)))	CC
(defrelation has-connecting-driveway	
is (:and has-neighbor	
(:domain road-object)	
(:range	
(:and road-object	
(:at-least 2 has-neighbor road-object))))	
	im
(defrelation has-neighbor	re
:function ((x) (compute-neighboring-objects x))	m
:cnaracteristics (:symmetric :multiple-valued))	

necessary and sufficient conditions for classifying ... a road-object

... a runway

procedural constraints

important geometrical relation has-neighbor *must be implemented procedurally*

Cognitive Systems Laboratory

Concepts and Relations for Airfield Classification (2)

(defconcept ba	asic-change
:implies	(:and (:exactly 1 has-before)
	(:exactly 1 has-after)
	(< (:compose has-before has-time)
	(:compose has-after has-time))))
(defconcept el	ongation
is (:and	l basic-change
	(relates has-contained-object
	has-before
	has-before
	(1 - (1 - 1))
	(< (:compose has before has length)
	(:compose nas-after nas-length))
	(= (:compose has-before has-width)
	(:compose has-after has-width))
(defconcept runway-elongation	
:is	
(:and	l elongation
	(:all has-before runway)
	(:all has-after runway)))

primitive concept basic-change, *classification must be provided interactively*

defined concepts elongation and runway-elongation, classification is provided by deduction

Image Interpretation as Deduction?

The classifier of a description logic carries out classifications automatically:

evidence => class (concept) membership

Problems:

- partial evidence must be sufficient
- deduction of all possible partial interpretations
- no goal-oriented analysis
- no comparative evaluation of conflicting interpretations

Support of hypothesize-and-test cycle is required !

Hypothesizing Possible Concept Specializations

Extension of description logic reasoning service for hypothesis generation:

- Which concept hypotheses can be specialized further consistent with existing evidence?
- Which additional evidence is required for specialization?
- 1. partial evidence => consistent concepts
- 2. partial evidence + concepts => missing evidence

Example for Possible Concept Specializations

Cognitive Systems Laboratory

Hypothesizing Possible Aggregats (1)

For which concepts (aggregats) are roll fillers (parts) available?

- Provide concepts which are consistent with existing role fillers
- Which roles provide decisive evidence?
- Criteria for ranking hypotheses

Existing instance runway is evidence for airfield and its further parts taxiway and driveway.

Hypothesizing Possible Aggregats (2)

For which concepts (aggregats) are roll fillers (parts) available?

Generating temporal and spatial expectations:

Exploiting A-Box Statistics

Logics of Image Interpretation

Describing Image Interpretation in Logical Terms

Reiter & Mackworth 87, Matsuyama 90, Schröder 99

Cognitive Systems

Image Interpretation as (Logical) Model Construction

An <u>interpretation</u> I = [D, φ , π] of a logical language maps

- constant symbols of the language into elements of a real-world domain D
- predicate symbols of the language into predicate functions over D

A model of some clauses is an interpretation where all predicates are true.

Image interpretation as model construction:

- establish mapping ϕ by assigning segmentation results to constant symbols
- establish mapping π by assigning computational procedures to predicate symbols
- find clauses for which predicates are true

Deciding whether a model exists is undecidable in FOPC! There may be infinitely many models!

Finite Model Construction (Reiter & Mackworth 87)

- an image consists of regions and chains (edges)
- the image elements constitute all constant symbols of an interpretation (domain closure assumption)
- different constant symbols denote different image elements and vice versa (unique name assumption)
- Problem can be expressed in Propositional Calculus and solved as a constraint satisfaction problem (CSP)

For MAPSEE, scene interpretation amounts to finding a mapping π for predicates *road, river, shore, land, water.*

Cognitive Systems

Logics of SIGMA (Matsuyama & Hwang 90)

Image interpretation is set of hypotheses which

- extend generic knowledge
- allow to deduce the observations
- partial model construction

The number of existing objects must be limited for the interpretation procedure to terminate. (e.g. no interpretations involving invisible objects).

ABox Consistency Checking in Description Logics

Consistency checking of an ABox amounts to model construction:

Consistency checking generates an interpretation including all additional individuals which are required to satisfy a conceptual framework.

Example: part-whole completion

However:

- Model construction in existing reasoning systems is an open-world consistency check
- Additional individuals are hypothesised liberally to generate a model, without consideration of missing visual evidence
- Ranking is required so that "preferred interpretations" can be delivered

Cognitive Systems

Laboratorv

Image Interpretation as Configuration

What is a configuration problem?

Construct an aggregate (a configuration) given

- generic descriptions of parts
- compatibility constraints between parts
- a concrete task description, possibly in terms of given parts

Image interpretation may be viewed as constructing a "scene aggregate" which

- meets generic constraints and
- incorporates parts prescribed by the concrete task

Methods and tools of configuration technology may be exploited

Cognitive Systems Laboratory

Illustration of Configuration

 <u>boxes</u> (frames) specify aggregate and component properties

Cognitive Systems

- <u>has-part</u> relations bind components to aggregates
- <u>is-a</u> relations describe variants of entities
- <u>constraints</u> between entities (not shown) restrict choices and parameter combinations

Signal-symbol Interface

Computing Primitive Occurrences

Geometric Scene Description (GSD)

The GSD is a quantitative object-level scene interpretation in terms of

- recognised objects and
- their (possibly time-varying) locations in the scene
- useful definition of input for high-level scene interpretation
- objects may only be roughly classified (e.g. "moving-object")
- high-level processes must be able to correct mistakes and fill in missing evidence

Perceptual Primitives

Perceptual primitives are geometrical and photometrical attributes which can be immediately determined from a GSD.

For object configurations:

- objects provide reference features in terms of
 - locations (center of gravity, corners, surface markings, etc.)
 - lines (edges, surface markings, axes of minimal inertia, etc.)
 - orientations (inate, motion, viewer)
- perceptual primitives are measurements between reference features:
 - distance
 - angle
 - temporal derivatives thereof

Qualitative Primitives

Qualitative primitives are predicates over perceptual primitives constant over some time interval.

- qualitatively constant values e.g. constant orientation, constant distance
- values within a certain range e.g. topological relations, degrees of nearness, typical speeds
- values smaller or larger than a threshold e.g. increase of distance, slowing down

Qualitative Predicates for Occurrences in Traffic Scenes

Used in NAOS: "Natural-language description of object motions in traffic scenes"

exist

move decelerate, accelerate turn_left, turn_right increasing_distance, reducing_distance along, across in_front_of, behind, beside on, above, under, below at, near_to between (and others) Note that qualitative predicates are often (but must not be) part of natural language.

For technical applications one may use technical (artificial) qualitative predicates, e.g.

 $v50 (= 45 \le v \le 55 \text{ km/h})$

shape_x (= shape_index \leq 4.174)

Primitive Occurrences

A primitive occurrence is a conceptual entity with one or more objects for which a qualitative predicate is true over a time interval.

Primitive occurrences provide the raw material for high-level scene interpretations.

object A moves straight ahead	 	
object B turns		
distance between objects A and B gets smaller		
object A nearby object B		

Temporal Decomposition of Scenes

Temporal decomposition

- by temporal segmentation:
 constancies of time-dependent properties of an image sequence
- by model matching:

occurrences which obey a model

Compare with spatial decomposition

- **by spatial segmentation:** image regions with spatially constant (uniform) properties
- by model matching:

image regions which obey a model

Cognitive Systems

Convex Time-point Algebra

Qualitative relations between time points which can be described by the inequality

T1 + c12 ≤ T2

(T1, T2: time points; c12: constant)

"Convex relation":

All intervals satisfying a convex relation can be generated by continuous displacements of the begin and end points of an interval

In Allen's Algebra: convex relation e.g. d v m ----non-convex relation e.g. b v bi ---- ----

Cognitive Systems

Occurrence Models

Structure of Occurrence Models

Basic ingredients:

- relational structure
- taxonomy
- partonomy
- spatial relational language
- temporal relational language
- object appearance models
- An occurrence model describes a class of occurrences by
 - properties
 - sub-occurrences (= components of the occurrence)
 - relations between sub-occurrences
- A primitive occurrence model consists of

•

- properties
- a qualitative predicate
- Each occurrence has a begin and end time point

Cognitive Systems

Occurrence Model for Overtaking in Street Traffic

Predicate:	overtake
	:is-a occurrence-model
	:local-name ov
Arguments:	(?veh1 :is-a vehicle)
	(?veh2 :is-a vehicle)
Time marks:	(ue.B ue.E)
Component events:	(mv1 :is-a (move ?veh1 mv1.B mv1.E))
	(mv2 :is-a (move ?veh2 mv2.B mv2.E))
	(bh :is-a (behind ?veh1 ?veh2 bh.B bh.E))
	(bs :is-a (beside ?veh1 ?veh2 bs.B bs.E))
	(bf :is-a (before ?veh1 ?veh2 bf.B bf.E))
	(ap :is-a (approach ?veh1 ?veh2 ap.B ap.E))
	(rc :is-a (recede ?veh1 ?veh2 rc.B rc.E))
Temporal relations:	(ov.B = bh.B)
	(ov.E = bf.E)
	(ap :during mv1)
	(ap :during mv2)
	(rc :during mv1)
	(rc :during mv2)
	(bh :overlaps bs)
	(bs :overlaps bf)
	(bh :during ap)
	(bf :during rc)

Cognitive Systems

Laboratory

C

Table-laying Scenario

Important high-level characteristics:

- correlated multiple object motion
- intended actions
- influence of context (temporal, spatial, task context)
- qualitative spatial and temporal relations
- uncertainty
- smart room learning context (supervised, unsupervised)
- interface with common sense

Table-laying scenario of project CogVis: Stationary cameras observe living room scene and recognize meaningful occurrences, e.g. placing a cover onto the table.

Occurrence Model for Placing a Cover

name:	place-cover
parents:	:is-a agent-activity
parts:	pc-pl :is plate
	pc-sc :is saucer
	pc-cp :is cup
	pc-tt :is table-top
	pc-tp1 :is (transport with (tp-obj :is plate))
	pc-tp2:is (transport with (tp-obj :is saucer))
	pc-tp3 :is (transport with (tp-obj :is cup))
	pc-cv :is cover
time marks:	pc-tb, pc-te :is timepoint
constraints:	pc-tp1.tp-ob = pc-cv.cv-pl = pc-pl
	pc-tp2.tp-ob = pc-cv.cv-sc = pc-sc
	pc-tp3.tp-ob = pc-cv.cv-cp = pc-cp
	pc-cv.cv-tb ≥ pc-tp1.tp-te
	pc-cv.cv-tb ≥ pc-tp2.tp-te
	pc-cv.cv-tb ≥ pc-tp3.tp-te
	pc-tp3.tp-te ≥ pc-tp2.tp-te
	pc-tb ≤ pc-tp1.tb
	pc-tb ≤ pc-tp2.tb
	pc-tb ≤ pc-tp3.tb
	pc-te ≥ pc-cv.cv-tb
	pc-te ≥ pc-tb + 80∆t

Cognitive Systems Laboratory

Aggregates as DL Concepts

frame-like notation

DL concept expressions

NAME	name	(equivalent place-cover
PARTS pc-tt is-a table-top pc-tp1 is-a transport with (tp-obj is-a plate) pc-tp2 is-a transport with (tp-obj is-a saucer) pc-tp3 is-a transport with (tp-obj is-a cup) pc-cv is-a cover	roles	(and agent-activity (some pc-tt table-top) (some pc-tp1 (and transport (some tp-obj plate)) (some pc-tp2 transport) (and transport (some tp-obj saucer)) (some pc-tp3 transport) (and transport (some tp-obj cup))
CONSTRAINTS <identity constraints="" on="" parts=""> <spatial constraints="" on="" parts=""> <temporal constraints="" on="" parts=""></temporal></spatial></identity>	concrete domain predicates	(some pc-cv cover) <identity constraints="" on="" parts=""> <spatial constraints="" on="" parts=""> <temporal constraints="" on="" parts=""></temporal></spatial></identity>

Navigating in Hallucination Space

What is the Space of Interpretations?

Vision is controlled hallucination (Kender 1985?)

- interpretations must be consistent
 - consistency is standard inference service of DLs
 - consistency tolerates interpretations without any evidence (complete hallucination)
- interpretations must be context and task dependent
 - do not expect beakfast covers at dinner time
 - "Is the table laid?" narrows down the interpretation task
- interpretations must be "preferred"
 - aggregates vs. individual objects
 - most special concepts, basic categories, dissolved disjunctions
 - more likely vs. less likely interpretations

Cognitive Systems

Aggregates in Taxonomical Hierarchies

Three Kinds of Interpretation Steps

Recognizing Intentions

Recognizing Intentions and Plans

Intention recognition in soccer games (Retz-Schmidt 91):

"Brandt dribbelt, um dem gegnerischen Tor nahe zu kommen" ("Brandt dribbles to get close to the opposing goal")

"Meier läuft zu Brandt, um ihn am Torschuß zu hindern"

("Meier runs to Brandt to prevent him from shooting a goal")

- model-based representation of plans and counter plans
- partial instatiation allows predictions and explanations

Intention recognition has been used in robot soccer (RoboCup)

Plan Recognition

Given:

- observed actions
- knowledge about likely goals of actor

predict further actions

plan own actions (cooperative or adversary)

Example ("smart room" or service robotics scenario):

Observations: tea-time: person gets up - person walks to door - ...

Predictions: ... - person goes to kitchen - person prepares tea

Plan recognition by

- matching partial action sequences to plan models (same principle as occurrence recognition)
- generating likely plans from the initial action sequence

Cognitive Systems

Models for Intention Recognition

Intended actions may be described by aggregates which connect observable actions with (unobservable) intentions of an actor.

name: parents:	scene-intended-place-cover :is-a scene-intended-action
parts:	sipc-pc :is-a scene-place-cover sipc-ag :is-a scene-agent
	with (sipc-ag.desire = sipc-pc.goal) constraints: (temporal, spatial and other constraints on parts)

If an action is known to be goal-directed and an agent performs such an action, the agent is ascribed the intention to attain the goal.

Cognitive Systems

Bayesian Nets

Probabilistic Models for Occurrences

Modelling probabilistic dependencies (causalities) and independencies between discrete events of a scene

- X_i random variable *models uncertain propositions about a scene*
- X_i = a hypothesis

Decomposition of joint probabilities:

 $P(X_1, X_2, X_3, ..., X_n) = P(X_1 | X_2, X_3, ..., X_n) \bullet P(X_2 | X_3, X_4, ..., X_n) \bullet ... \bullet P(X_{n-1} | X_n) \bullet P(X_n)$

Simplification in the case of statistical independence:

X independent of X_i

$$P(X \mid X_{1}, ..., X_{i-1}, X_{i}, X_{i+1}, ..., X_{n}) = P(X \mid X_{1}, ..., X_{i-1}, X_{i+1}, ..., X_{n})$$

Joint probability of N variables may be simplified by ordering the variables according to their direct dependence (causality)

Cognitive Systems

Constructing a Bayesian Net

By domain analysis:

- 1. Select discrete variables X_i relevant for domain
- 2. Establish partial order of variables according to causality
- 3. In the order of decreasing causality:
 - (i) Generate node X_i in net
 - (ii) As predecessors of X_i choose the smallest subset of nodes which are already in the net and from which X_i is causally dependent
 - (iii) determine a table of conditional probabilities for X_i

By data analysis:

Use a learning method to establish a Bayes Net approximating the empirical joint probablity distribution.

Cognitive Systems

Computing Inferences

We want to use a Bayesian Net for probabilistic inferences of the following kind:

Given a joint probability $P(X_1, ..., X_N)$ represented by a Bayes Net, and evidence $X_{m_1} = a_{m_1}, ..., X_{m_K} = a_{m_K}$ for some of the variables, what is the probability $P(X_n = a_i | X_{m_1} = a_{m_1}, ..., X_{m_K} = a_{m_K})$ of an unobserved variable to take on a value a_i ?

In general this requires

- expressing a conditional probability by a quotient of joint probabilities

$$P(X_{n}=a_{i} | X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}}) = \frac{P(X_{n}=a_{i}, X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}{P(X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}$$

- determining partial joint probabilities from the given total joint probability by summing out unwanted variables

$$P(X_{m_1}=a_{m_1}, \dots, X_{m_K}=a_{m_K}) = \sum_{X_{n_1}, \dots, X_{n_K}} P(X_{m_1}=a_{m_1}, \dots, X_{m_K}=a_{m_K}, X_{n_1}, \dots, X_{n_K})$$

111

Cognitive Systems

Estimating Probabilities from a Database

Given a sufficiently large database with tupels $\underline{a}^{(1)} \dots \underline{a}^{(N)}$ of an unknown distribution P(X), we can compute maximum likelihood estimates of all partial joint probabilities and hence of all conditional probabilities.

$$X_{m_1}, \dots, X_{m_K}$$
 = subset of $X_1, \dots X_L$ with K ≤ L

 $w_{\underline{a}}$ = number of tuples in database with $X_{m_1} = a_{m_1}, \dots, X_{m_K} = a_{m_K}$

N = total number of tuples

Maximum likelihood estimate of
$$P(X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K})$$
 is
 $P'(X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K}) = w_a / N$

If a priori information is available, it may be introduced via a bias m_a :

$$P'(X_{m_1}=a_{m_1}, \dots, X_{m_K}=a_{m_K}) = (w_{\underline{a}} + m_{\underline{a}}) / N$$

Often $m_{\underline{a}} = 1$ is chosen for all tupels \underline{a} to express equal likelihoods in the case of $\overline{a}n$ empty database.

Cognitive Systems

Expectation Maximization (1)

Recommended reading: Borgelt & Kruse, Graphical Models, Wiley 2002

Often databases are neither complete (insufficient samples, missing attributes) nor precise (ambiguous or uncertain values). In this case Expectation Maximation (EM) provides an iterative procedure to estimate probabilities.

1. Imprecise data

Given a tuple with ambiguous attributes

 $\underline{a}^\mathsf{T} = [\{ a_{11}, a_{12}, \ldots \}, \{ a_{21}, a_{22}, \ldots \}, \ldots, \{ a_{K1}, a_{K2}, \ldots \}]$

and number of occurrence $w_{\underline{a}}$, redistribute $w_{\underline{a}}$ equally among all combinations of attribute values.

2. Incomplete database

Execute iterative 2-step procedure:

- A Compute sample frequencies from estimated probabilities
- B Estimate probabilities from samples, maximizing likelihood of data (see previous slide)

Cognitive Systems

Expectation Maximization (2)

Expectation step of EM:

Use current (initial) probability estimates to compute probability P(<u>a</u>) for all attribute combinations <u>a</u>.

For Bayes Nets, this requires computing P(<u>a</u>) from the conditional probabilities assigned to the nodes.

At the initial step, absolute frequencies of missing attribute tuples \underline{a}^* are completed:

Cognitive Systems

Example for Expectation Maximization (1)

(adapted from Borgelt & Kruse, Graphical Models, Wiley 2002)

Given 4 binary probabilistic variables A, B, C, H with known dependency structure:

Given also a database with tuples [* A B C] where H is a missing attribute.

Н	Α	В	С	W	
*	Т	Т	Т	14	
*	т	Т	F	11	
*	т	F	т	20	
*	Т	F	F	20	absolute frequencies
*	F	Т	Т	5	of occurrence
*	F	Т	F	5	
*	F	F	т	11	
*	F	F	F	14	

Estimate of the conditional probabilities of the Bayes Net nodes !

Cognitive Systems

Example for Expectation Maximization (2)

Initial (random) probability assignments:

Н	P(H)	Α	Η	P(A H)	В	Н	P(B H)	С	Н	P(C H)
Т	0.3	Т	Т	0.4	Т	Т	0.7	Т	Т	0.8
F	0.7	Т	F	0.6	Т	F	0.8	т	F	0.5
		F	Т	0.6	F	Т	0.3	F	Т	0.2
		F	F	0.4	F	F	0.2	F	F	0.5

With
$$P(H | A,B,C) = \frac{P(A | H) \cdot P(B | H) \cdot P(C | H) \cdot P(H)}{\sum_{H}^{H} P(A | H) \cdot P(B | H) \cdot P(C | H) \cdot P(H)}$$

one can complete the database:

Н	Α	В	С	W	Н	Α	В	С	W
Т	Т	Т	Т	1.27	F	Т	Т	Т	12.73
Т	Т	Т	F	3.14	F	Т	Т	F	7.86
Т	Т	F	Т	2.93	F	Т	F	Т	17.07
Т	Т	F	F	8.14	F	Т	F	F	11.86
Т	F	Т	Т	0.92	F	F	Т	Т	4.08
Т	F	Т	F	2.37	F	F	Т	F	2.63
Т	F	F	Т	3.06	F	F	F	Т	7.94
т	F	F	F	8.49	F	F	F	F	5.51

Cognitive Systems

Example for Expectation Maximization (3)

Based on the modified complete database, one computes the maximum likelihood estimates of the conditional probabilities of the Bayes Net.

<u>Example</u>: $P(A = T | H = T) \approx \frac{1.27 \cdot 3.14 \cdot 2.93 \cdot 8.14}{1.27 \cdot 3.14 \cdot 2.93 \cdot 8.14 \cdot 0.92 \cdot 2.73 \cdot 3.06 \cdot 8.49} \approx 0.51$

This way one gets new probability assignments:

Н	P(H)	Α	Н	P(A H)	В	Н	P(B H)	С	Н	P(C H)
Т	0.3	Т	Т	0.51	Т	Т	0.25	Т	Т	0.27
F	0.7	Т	F	0.71	Т	F	0.39	Т	F	0.60
		F	Т	0.49	F	Т	0.75	F	Т	0.73
		F	F	0.29	F	F	0.61	F	F	0.40

This completes the first iteration. After ca. 700 iterations the modifications of the probabilities are less than 10⁻⁴. The resulting values are

Н	P(H)	Α	Η	P(A H)	В	Н	P(B H)	С	Н	P(C H)
Т	0.5	т	Т	0.5	т	Т	0.2	т	Т	0.4
F	0.5	Т	F	0.8	Т	F	0.5	т	F	0.6
		F	Т	0.5	F	Т	0.8	F	Т	0.6
		F	F	0.2	F	F	0.2	F	F	0.4

Cognitive Systems

Summary

Computer Vision Across Abstraction Levels

symbolic descriptions abstract concepts, concepts for occurrences, plans, predictions

qualitative descriptions object categories, qualitative spatial and temporal relations

quantitative descriptions metric conceptual spaces, perceptual primitives

physical signals sensor input

recognizing high-level concepts in lower-level descriptions

exploiting high-level context for lower-level analysis

> Representation and interpretation formalisms must support integration across abstraction levels

Aggregates as Basic Representational Units

Probabilistic view	Relational view	Logical view
Object configurations in space and time governed by joint probabilities	Frames with part-of structure embedded in taxonomical and part-of hierarchies	Expressions of a logic-based concept language
 Bayes Net representations part-whole reasoning by probabilistic inference uncertainty management for hypothesis formation concept learning 	 intuitive object-centered notation highly expressive work-horse for knowledge representation established tools for configuration methodology 	 well-founded inference procedures image interpretation as abduction inductive learning logic-based reasoning about actions temporal and spatial logics

Integrating Aggregates and Bayes Nets

frame

NAME

place-cover is-a agent-activity

PARTS

pc-tt is-a table-top pc-tp1 is-a transport with (tp-obj is-a plate) pc-tp2 is-a transport with (tp-obj is-a saucer) pc-tp3 is-a transport with (tp-obj is-a cup) pc-cv is-a cover

CONSTRAINTS

<identity constraints on parts> <spatial constraints on parts> <temporal constraints on parts>

Cognitive Systems

Laboratory

Probabilistic inference for part-whole reasoning:

Frame-based notation

Concept expressions of the Description Logic ALCF(D)

Cognitive Systems

Cognitive Systems Laboratory

Extending Symbolic Space into Metric Space

reasoning may incorporate measures of distance and similarity

Examples:

- interval durations in occurrence models
- distances in spatial relations

Reasoning services available in Description Logics

Standard reasoning services

- consistency check
- subsumption check
- classification
- abstraction
- default reasoning

available in optimized reasoning systems, e.g. in the system RACER

RACER User's Guide and Reference Manual Version 1.7, http://www.fh-wedel.de/~mo/3214/racer-manual-1-7.pdf

Extensions of reasoning services necessary for high-level vision:

- temporal reasoning
- spatial reasoning
- generating specialization hypotheses
- generating aggregate hypotheses

Designed, partially implemented

Cognitive Systems

Bayes-net guided Interpretation Steps

Aggregate instantiation Aggregate A1 is instantiated based on instance Q1

Instance refinement Instance P1 in aggregate A1 is specialised from concept C to C²

Instance merging Instances P1 and Q1 are merged to PQ1

Conclusions

- . Generic high-level image sequence interpretation requires model-based approach
- Specialisation and aggregation hierarchies support efficient navigation in interpretation space
- Spatial, temporal and task context is modelled by instantiated high-level aggregates
- Temporal and spatial constraints require dedicated constraint satisfaction mechanisms
- Statistics of vision memory may feed Bayes Net for hypotheses ranking

Cognitive Systems