

Sixth and Final Six-Monthly Meeting

Research Planning: The Creation of the Research Roadmap

Frankfurt Airport Conference Centre Friday 11th February 2005

Background

Background - Research Roadmap Meetings

November 6th, 2002: Research Roadmap Workshop, Paris

February 13th, 2003: Research Roadmap Workshop, Amsterdam

[October 26th-31st, 2003: Dagstuhl workshop on cognitive vision]

[January 12th, 2004: Cognitive Vision Colloquium, Prague]

March 26th, 2004: Six-monthly meeting dedicated to the research roadmap

May 28th, 2004: Research Roadmap Workshop

September 24th, 2004: Six-monthly meeting dedicated to the research roadmap

Background - Research Roadmap Drafts

OFFICIAL VERSION

Research Roadmap - V4.0 11-10-04 (pdf 416k)

DRAFT VERSION

Research Roadmap - V3.3 04-10-04 (pdf 467k)

Research Roadmap - V3.2 06-9-04 (pdf 415k)

LEGACY ROADMAPS

Research Roadmap - V2.5 25-3-03 (pdf 145k)

Research Roadmap - V2.4 02-3-03 (pdf 141k)

Research Roadmap - V2.4 02-3-03 (doc 224k)

Research Roadmap - V2.3 13-2-03 (pdf 61k)

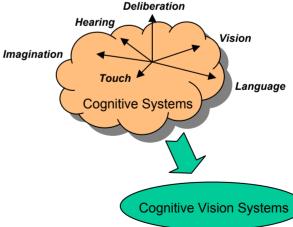
Research Roadmap - V2.3 13-2-03 (doc 127k)

The Emerging Discipline of Cognitive Vision

- Emerging discipline
- · No one single established and widely-accepted paradigm
- We don't know what approach will win
- Need
 - An (accepted) definition of the discipline
 - Scientific foundations: a science of cognition (and a mathematical framework)
 - Development strategy
 - Research agenda
 - Transferable technology (algorithms, h/w, s/w)
 - Tools (development environments, languages, benchmarks)

Roadmap Objectives

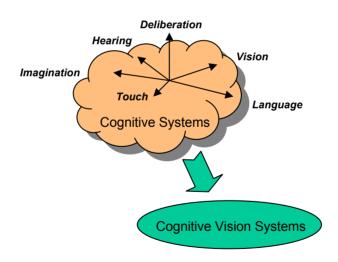
- Definition of cognitive vision
 - Paradigm-neutral
 - Requisite capabilities
 - Task-specific competences it enables
- Identify competing/alternative approaches
- Create inclusive research agenda
- Identify critical gaps in scientific understanding / technical know-how (& strategy for filling them)
- Highlight contentious and significant issues


Obstacles to progress

 Cognitive Vision as a part of the Computer Vision / Cognitive Systems spectrum

- Or Cognitive Vision as a projection of the space of Cognitive

Systems



We chose to view cognitive vision as a visually-enabled cognitive system

Obstacles to progress

- Multidisciplinary nature of cognitive vision
- Difficult to deal with, but essential

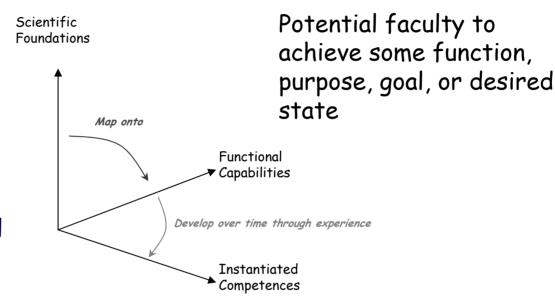
AI Psychology Neuroscience Non-linear dynamical systems theory Synergetics Autonomous systems theory Machine learning Pattern recognition Computer vision Haptic sensing Cybernetics Neural networks Epistemology Philosophy Language Semiotics Robotics Manipulation Communication

Problems:

Different perspectives
Different languages
Hard & Soft Science

Mathematical Models

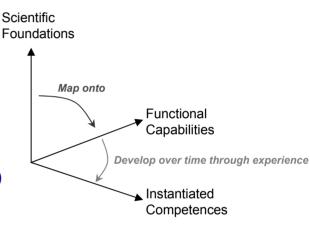
The Nature and Scope of Cognitive Vision



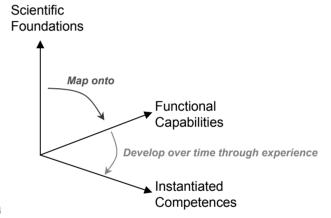
MULTI-FACETED

Constituent theoretical models

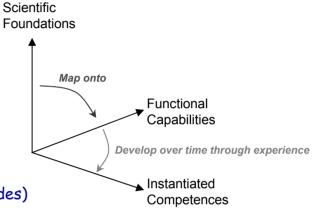
The ECVision Model


Actual power/faculty to achieve something (task-dependent)
Based on capabilities
Developed over time through experience, learning, practice

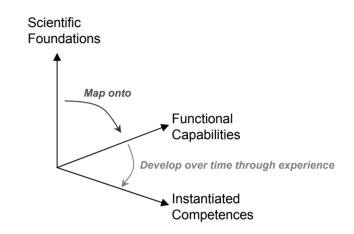
Scientific Foundations


- Sensing (visual, haptic, ...)
 - Environmental perturbation of the system
- Architecture
 - Minimal configuration necessary so that development is possible (phylogeny/ontogeny trade-off)
- Representations
 - Stable states of a cognitive system (cognitivist vs. emergent representation; absolute vs. relative)
- Knowledge & Memory
 - Source of knowledge (designer, environment, emergent)
 - Persistence of states of a cognitive system
 - Episodic, modal, propositional, short-term, long-term
- Learning & Development
 - Acquisition of knowledge (model learning / parameter estimation)
 - Acquisition of capabilities (know-how, skill learning)
 - Modification of the system itself
- Recognition
 - Discrimination of sensed entities (perceptual events, inc. behaviours)
- Generalization
 - Class enlargement vs. categorization; perception of affordance
- Deliberation & Reasoning
 - Explicit weighing of alternative options in selecting a given action/behaviour (x 3)
- Planning
 - Ability to deal with future events (some of which may never happen!)
 - Anticipation, expectation, managing continencies
- Goal identification and achievement
 - Reactive vs learned self-initiated vs trained externally-initiated vs reflexive goals
 - Developmental driving forces
- Communication
 - As a consequence of the system's cognitive activities
 - Semiotic communication vs data-communication (direct external access to internal states)
- Action
 - Forcible interaction
 - Gesture & language

Functional Capabilites

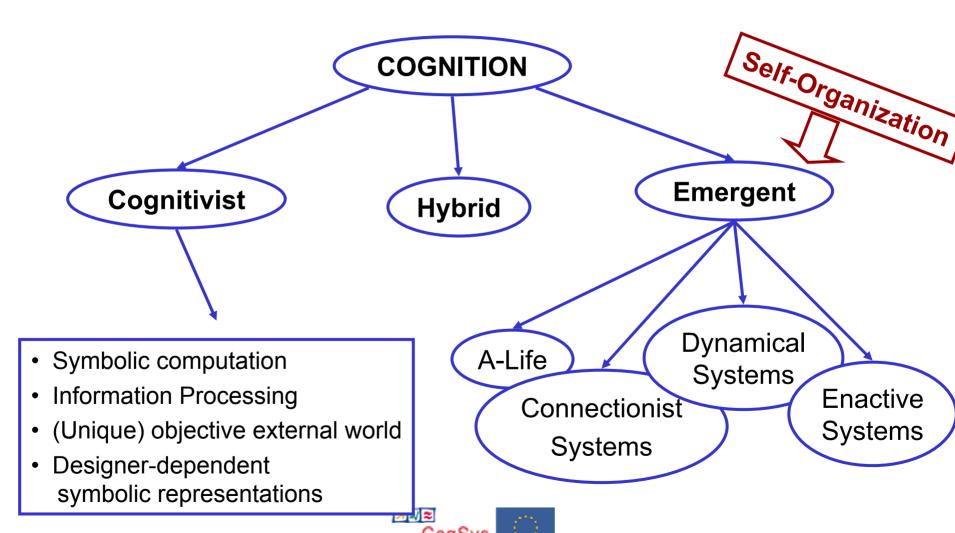

- Detection and Localization
 - Discriminate between regions in the sensory field (vision: colour, texture, motion, distance, ...)
 - Feature (*) extraction (hard-wired)
 - Detection of sensory entity (discrimination + features) including events
 - Localization (position & extent) cf FoR
 - Establish spatial relationships (occlusion / relative ordering)
 - Establish temporal relationships (simultaneity / relative ordering)
 - Novelty detection
- Tracking
 - Learned capabilities (tracking & entities)
 - Up to 4-D spatio-temporal paths
 - Hardwired & learned entities
 - Partial and complete occlusion (short-term prediction)
 - Long-term prediction (cf. expection and planning)
 - Spatial attention
 - · Pre-attentive: detection and localization
 - Selective attention: classification, prediction, visualization
- Classification & Categorization
 - Entity grouping & meta-level functional classification
 - Classification of sensory entities
 - Classification of behaviours
 - Detect instances of a new class
 - Learn classes of entities and behaviours (from physical to social)
 - Form new classes from old ones (generalization)
 - Generalize to new contexts
 - Map from classes of objects to categories of affordances

Functional Capabilites


- Prediction
 - Interpret intent of behaviour to predict future spatio-temporal configurations of the environment
 - Possibly form hypotheses and then deliberate (rhrough active exploration or passive assessment)
- Concept formation and visualization
 - Conceptualization (abstraction)
 - Visualization (instantiation)
 - Concept Entity association
 - Conceptual entity decomposition (relational/hierarchical)
 - Extra-agent conceptualization
- Inter-agent communication & expression
 - Gesture / verbal
 - Understanding of the world
 - Role in driving the developmental process
- Visuo-motor coordination
 - Visual accommodation and focussing (continuous and after saccades)
 - Gaze control
 - Hand-eye / body-eye coordination (follow, reach for, grasp at, grip)
 - Learned coordination (hit, objects as body extensions)
 - Prediction of object, hand, body motion
 - Bodily self-awareness
 - Imitation of actions of others
- Embodied Exploration
 - Role in driving the developmental process
 - Discovery of new modes of interaction
 - 'Map formation' (eco- vs ego-)
 - Point to or gesture at entities (objects / people)
 - Learn affordances

Instantiated Competences

- Cognition needs context
- Task-specific scenarios
- Provide a space for development
- Rich enough to require development
- Not too rich (overwhelm simple models!)
 - Cognitive Surveillance System
 - Cognitive Home Assistant
 - Advanced Driver Assistance System
 - Competences of Infants and Children



The Paradigms of Cognitive Systems

Paradigms of Cognitive Systems

Cognitive Systems

- Knowledge provided by human designers
- · Possibly refined through learning
- Brittle
 Representations based axioms & assumptions of an external designer
- Fail when they stray far from the domain for which they were designed

Cognitivist Hybrid Connectionist Dynamical Enactive

- · Generic representational schemes
- · Populated entirely by the agent
- Incremental unsupervised learning
- Deliberative behaviour designed in (link between perceptual-motor skill and knowledge representation controlled by designer)

Cognitivist Hybrid Connectionist Dynamical Enactive

- · No 'representations' no symbols
- States encapsulate knowledge derived by the system
- Historical context of ontogenic development

- Paradigms are not equally mature
- Dynamical systems
 - Arguments are compelling BUT ..
 - Not yet clear how to get higher-level cognition
- Cognitivist systems
 - More advanced
 - Not many achievements in generalization
 - More brittle (in principle)
- Enactive (& Dynamical)
 - SHOULD be much less brittle (mutual specification through codevelopment)
 - But very limited cognition at present
- Hybrid systems
 - Best of both worlds?
 - But unclear how one can really combine antagonistic philosophies

Core Scientific Concerns

- Phylogeny vs. Ontogeny
- · The need for embodiment
 - An argument for embodied cognition
 - Types of embodiment
 - Impact of embodiment on perception
- Scientific challenges
 - Methods for continuous learning and development
 - Minimal architectures
 - Goal identification and achievement
 - Generalization
- Caveat

The Balance between Phylogeny and Ontogeny:

Hardwired Functionality vs.
Learned Capabilities

Phylogeny and Ontogeny

Minimal set of sensory and motoric control structures

To boot-strap ontogenic development

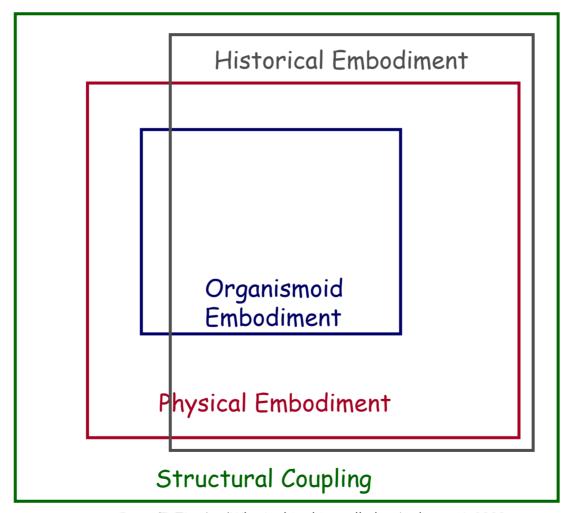
No time to evolve a complete system

The Need for Embodiment

- Very divisive issue: different paradigms have different requirements
- Cognitivist:
 - there is no need for embodiment (cf. physical symbol system hypothesis)
 - Symbolic knowledge can be programmed in directly
 - Embodiment may be useful, but it's not necessary

Emergent:

- Must be embodied (by definition)
- Embedded in their environment
- Situated historical developmental context
- Two complementary processes
 - Self-organization
 - Structural coupling
 - Co-development (ontogenic development in the context of environmental perturbations of the system)
- Without physical embodied exploration, a cognitive system has no basis for development
- Embodiment is a key component of system dynamics morphology matters!


- Are there different forms of embodiment?
- What's an action?
- Does it have to be forcible?
- Is speech an act (or action)?
- Does action require mobility?
- Is a computer triggering a switch embodied?

From: T. Ziemke, 'What's this thing called embodiment?', 2003

- Structural coupling
 - System can be perturbed by the environment
 - System can perturb the environment
- Historical embodiment
 - History of structural coupling
- Physical embodiment
 - Forcible action (excluded software agents)
- Organismoid embodiment
 - Organism-like bodily form (e.g. humanoid robots)
- Organismic embodiment
 - Autopoietic living systems

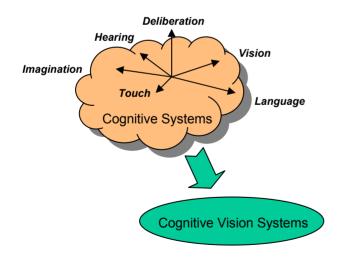
Scientific Challenges

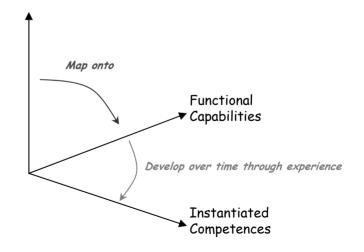
- 1. Methods for continuous learning and development
- 2. Minimal architectures
- 3. Goal identification and goal achievement
- 4. Generalization

- Methods for continuous learning and development
 - Learning mechanisms: fast, incremental, continuous, large capacity, graceful degradation
 - Representations & feature sets: efficient and extendable
 - Learning domains: perceptual & conceptual, and mapping between them
 - Perceptual to conceptual mapping (to facilitate expression, deliberation, communication)
 - Conceptual to perceptual (to facilitate action)
 - Learn parameters (populate existing representations and mappings)
 - Learn system identification (develop new representations and mapping) ... very hard!

- Minimal Architectures
 - Balance between phylogeny and ontogeny
 - Difficulty in identifying constituents of each

- · Goal identification and goal achievement
 - Cognitivist: easy as goals are specified explicitly as the outcome of cognitive behaviour
 - Emergent: hard as behaviour is a non-specific emergent consequence of a set of system dynamics
 - Stipulate goals as constraints or boundary conditions (phylogenic configuration or ontogenic development)
 - Four types of goals
 - Learned self-initiated goals (unsupervised)
 - Trained externally-initiated goals (supervised)
 - Reactive goals
 - Intentional or reflexive goals


- Generalization
 - Transferrability of competences or skills from one context to another
 - Requires faculty for generalization
 - Analogical reasoning
 - Metaphorical deliberation
 - Manipulation of visual memory
 - Paradigm-dependent
 - Does it require establishment of some form of inter-agent cognitive communication
 - Language
 - Speech
 - · Gesture



Questions?

Scientific Foundations

