Neurorobotics

Module 1: Background and Foundations

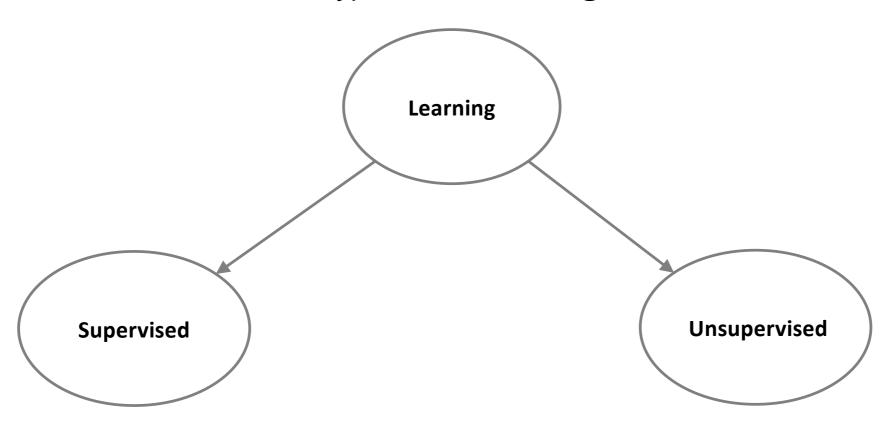
Lecture 4: Learning and memory. Types of learning; neural networks basics

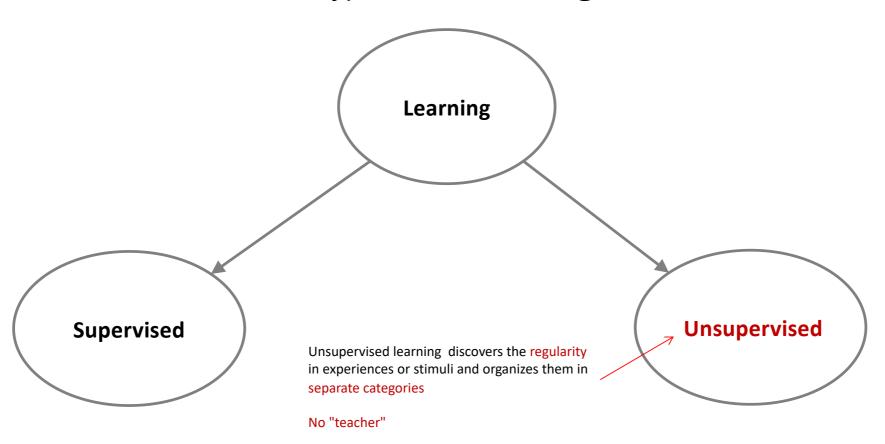
David Vernon
Carnegie Mellon University Africa

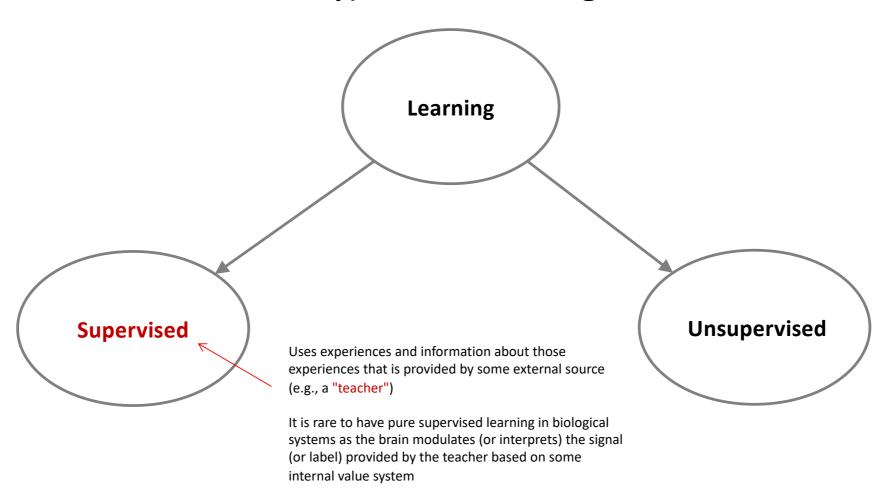
www.vernon.eu

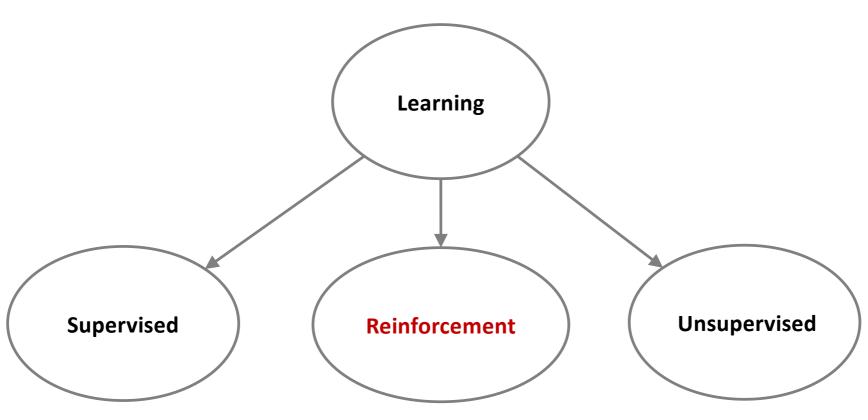
Learning and Memory

- Learning and memory enable neurorobots to adapt to a dynamic environment
- Without learning, adaptation can only take place by genetic mutation
 - Within species
 - Over many generations
- With learning, adapation happens with the lifetime of the organism
 - Learn from experience
 - Learn new associations between stimuli
 - Adapt associations when the environment changes

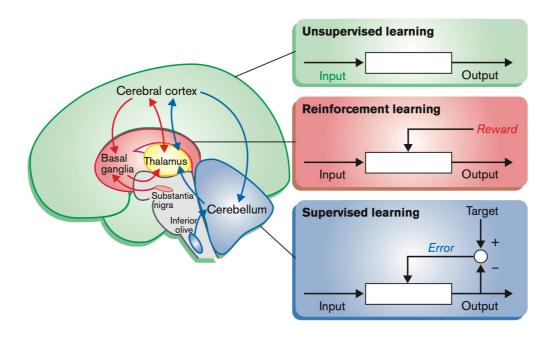




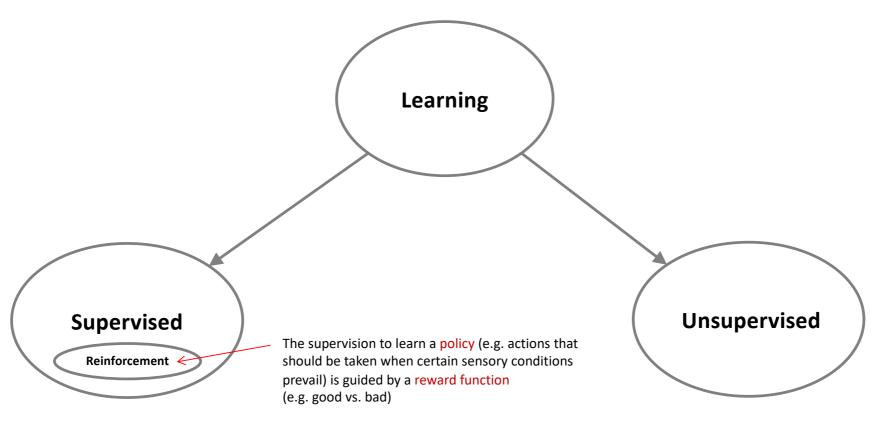




Uses positive or negative feedback from experience in the environment (e.g., a reward)

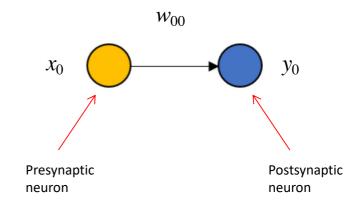


K. Doya, 2000. Complementary roles of basal ganglia and cerebellum in learning and motor control, Current Opinion in Neurobiology, Vol. 10, pp. 732-739.



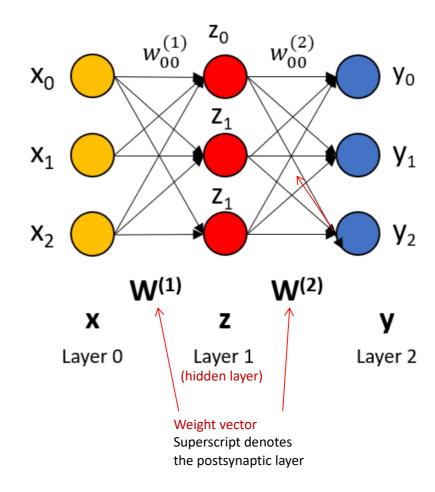
The cost function (or objective function) that governs the learning is based on maximizing the cumulative sum of rewards over time.

- Neurons are also referred to as units
 - Input unit, e.g., x_0
 - Output unit, e.g., y_0
- Synapses are also referred to as connections or weights

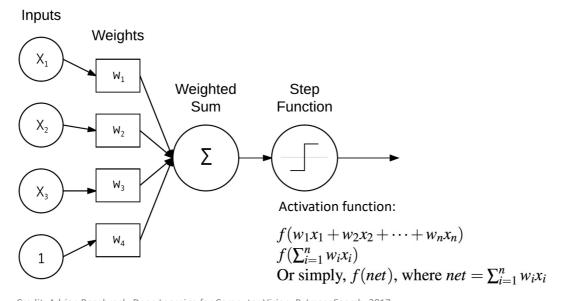


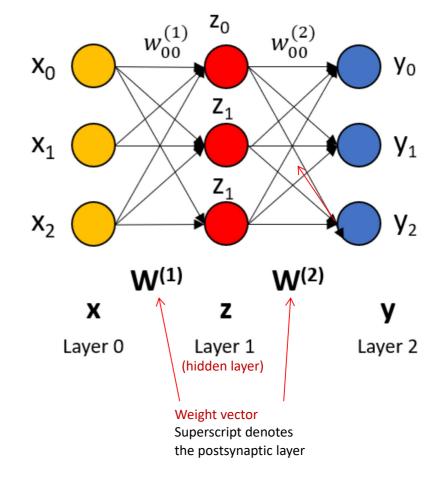
- Weight, e.g., w_{00}
- Subscripts denote the presynaptic & postsynaptic neuron, respectively
- In this example $y_0 = w_{00} x_0$

- Multiple inputs
- Multiple outputs
- Multiple layers (hidden layers)

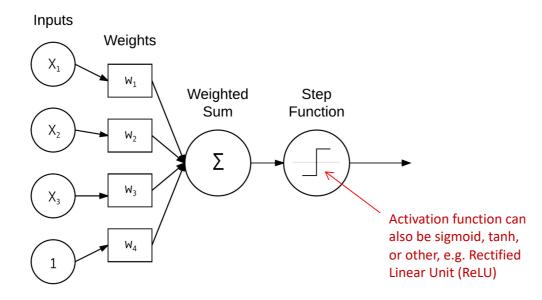


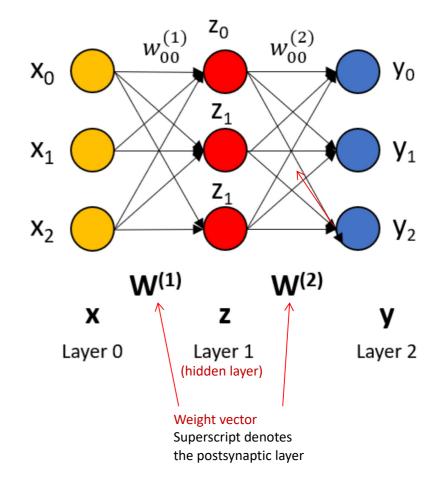
Appendix 1 specifies how the value of y_0 and z_0 are computed



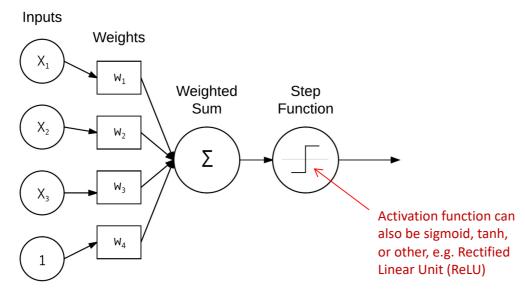


Appendix 1 specifies how the value of y_0 and z_0 are computed



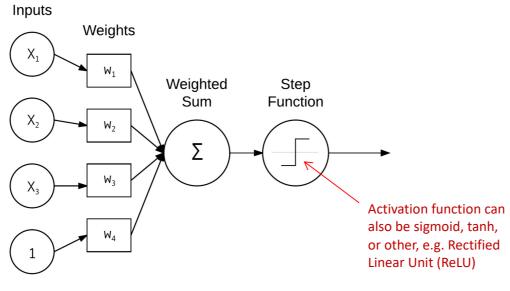


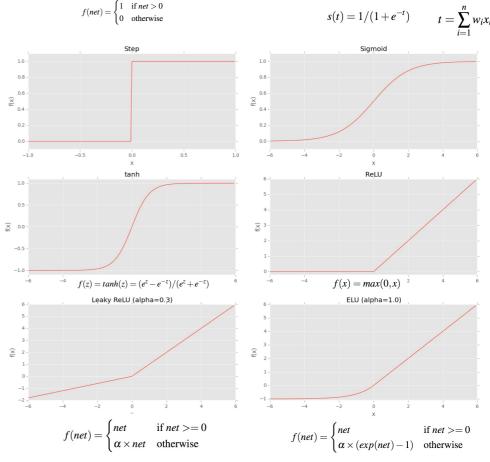
Appendix 1 specifies how the value of y_0 and z_0 are computed



Type of function	Graphical represent.	Mathematical formula	MATLAB implementation
Linear		$g^{\mathrm{lin}}(x)=x$	Х
Step		$g^{\text{step}}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{elsewhere} \end{cases}$	floor(0.5*(1+sign(x)))
Threshold - linear	_/	$g^{\text{theta}}(x) = x \Theta(x)$	x.*floor(0.5*(1+sign(x)))
Sigmoid		$g^{\operatorname{sig}}(x) = \frac{1}{1 + \exp(-x)}$	1./(1+exp(-x))
Radial- basis		$g^{\text{gauss}}(x) = \exp(-x^2)$	exp(-x.^2)

Appendix 1 specifies how the value of y_0 and z_0 are computed



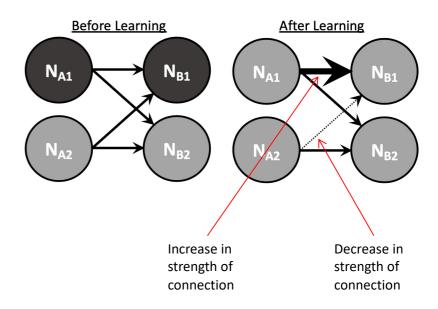


(Hebb, 1949)

- Unsupervised learning
- Captures associations between two stimuli
- The synaptic strength the bond between connecting neurons is increased if both neurons are active at the same time
- Neurons that fire together, wire together

(Hebb, 1949)

- Assuming two groups of neurons, A and B
 - Two neurons per group
- If N_{A1} is co-active with N_{B1}
 - This will cause the strength of the connection between N_{A1} and N_{B1} to increase
 - It may also cause a decrease in the strength of the connection between $\,N_{A2}$ and N_{B1} to increase
- The next time N_{A1} , there is a better chance that N_{B1} is more active



(Hebb, 1949)

Unsupervised learning

- Driven by intrinsic co-activity rather than some extrinsic supervisory signal
- Can find consistencies in environmental stimuli that are important for the organism
- Sometimes referred to as experience-dependent learning
- In neurorobotics, it can result in learning categories or classes of information based on exploration
- In cognitive science, this classification is called perceptual categorization

(Hebb, 1949)

Neuromodulated Hebbian learning

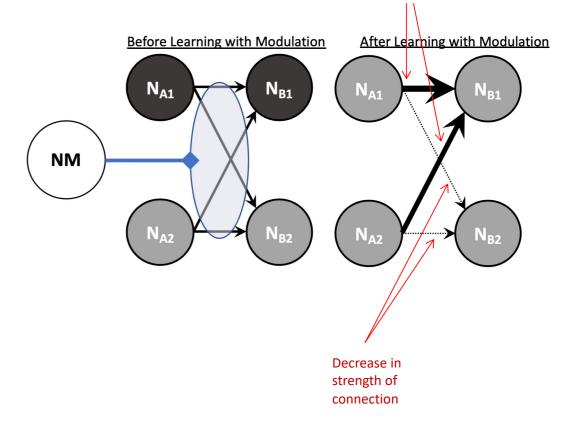
- Learning significant events or associations
- A modulation signal can boost learning in the brain
 - Neuromodulation is effected through the release of neurotransmitters by neurons
- Neuromodulators
 - Dopamine
 - Seratonin
 - Noradrenaline
 - Acetylcholine

(Hebb, 1949)

Neuromodulated Hebbian learning

- Neuron NM is a neuromodulator that signals an important event and releases its neurotransmitter to all neurons
 - Connections between active neurons are potentiated
 - Other connections are depressed
- The next time the event occurs, N_{B1} will be active

Increase in strength of connection Greater increase in strength between N_{A1} and N_{B1} because N_{A1} was more active when the event occurred

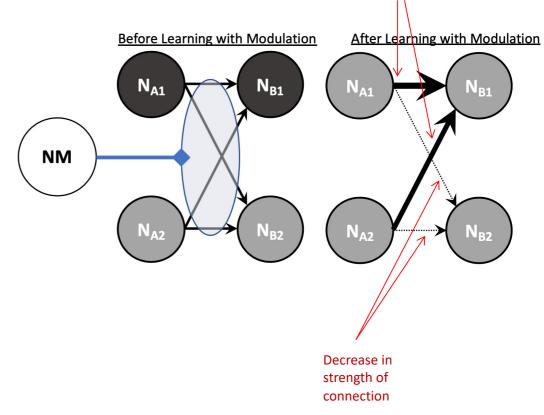


(Hebb, 1949)

Increase in strength of connection Greater increase in strength between N_{A1} and N_{B1} because N_{A1} was more active when the event occurred

Neuromodulated Hebbian learning

- The next time the event occurs,
 N_{B1} will be active
- For example, if the event was seeing of a predator
 - Signalled by N_{A1} or N_{A2}
 - N_{B1} might trigger an escape response



(Hebb, 1949)

Increase in strength of connection Greater increase in strength between N_{A1} and N_{B1} because N_{A1} was more active when the event occurred

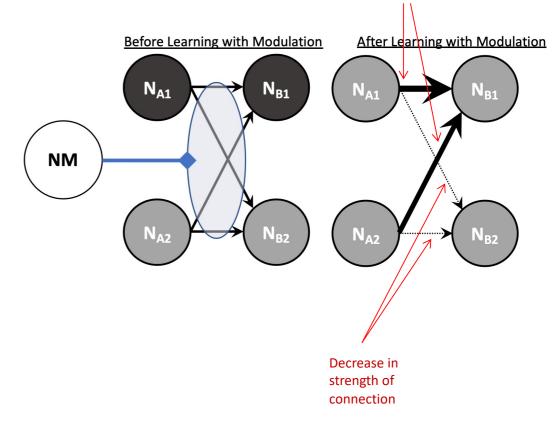
Hebbian learning rule

Weight update function

$$\Delta w_{ij} = \alpha x_i x_j$$

- $-\alpha$ is the learning rate (between 0 and 1)
- Weight will increase in proportion to the co-activity of the presynaptic and postsynaptic neurons

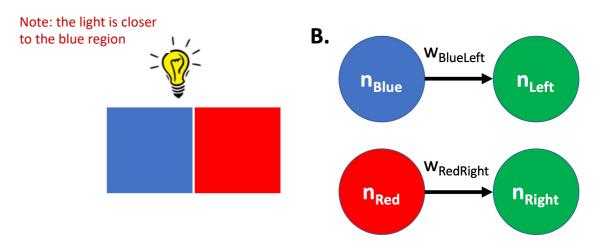
$$x_j = w_{ij} x_i$$



(Hebb, 1949)

Example

- Neurorobot task
 - Explore an area colored blue on one side and red on the other
 - Determine which side is brighter
 - Input neurons represent the brightness of the blue and red sides
 - Output neurons represent the robot's movement: move to the left or move the the right

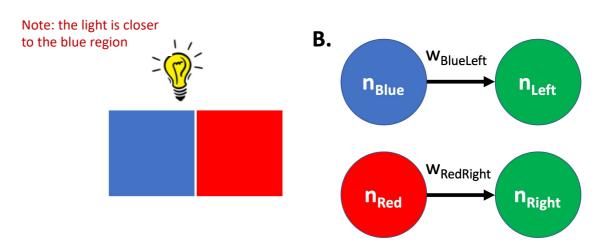


(Hebb, 1949)

Example

Initial values of the network

```
\label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_
```



(Hebb, 1949)

Example

Iterate weight update ten times

1: n_{Left}=0.445, w_{BlueLeft}=0.594, n_{Right}=0.133, w_{RedRigh}t=0.531

2: $n_{\text{Left}}=0.508$, $w_{\text{BlueLeft}}=0.677$, $n_{\text{Right}}=0.135$, $w_{\text{RedRight}}=0.54$

3: n_{Left}=0.579, w_{BlueLeft}=0.772, n_{Right}=0.137, w_{RedRight}=0.548

4: n_{Left}=0.661, w_{BlueLeft}=0.881, n_{Right}=0.139, w_{RedRight}=0.557

5: n_{Left}=0.754, w_{BlueLeft}=1.01, n_{Right}=0.141, w_{RedRight}=0.565

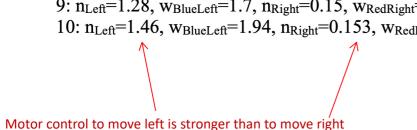
6: n_{Left}=0.86, w_{BlueLeft}=1.15, n_{Right}=0.144, w_{RedRight}=0.574

7: n_{Left}=0.981, w_{BlueLeft}=1.31, n_{Right}=0.146, w_{RedRight}=0.583

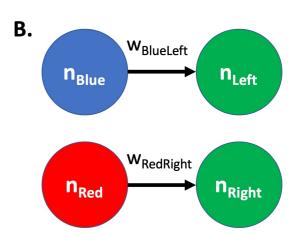
8: n_{Left}=1.12, w_{BlueLeft}=1.49, n_{Right}=0.148, w_{RedRight}=0.592

9: n_{Left}=1.28, w_{BlueLeft}=1.7, n_{Right}=0.15, w_{RedRight}=0.601

10: n_{Left}=1.46, w_{BlueLeft}=1.94, n_{Right}=0.153, w_{RedRight}=0.611



Note: the light is closer to the blue region



(Hebb, 1949)

More realistic Hebbian learning scenarios

- Increase the number of input
 - For example, place cells (neurons) in the brain (hippocampus) can be modelled as the association of many inputs (e.g. landmarks) with one output (location)
 - When the landmarks are. activated in the brain, a place cell corresponding to that place activates
- Increase the number of layers
- Modify the learning rule: many variants of the Hebbian learning rule exist

Reading

Hwu, T. and Krichmar, J. (2022). Neurorobotics: Connecting the Brain, Body and Environment, MIT Press.

Chapter 3, Sections 3.1 - 3.3, pp. 45 - 52

References

Hebb, D. O. (1949). The Organization of Behavior, John Wiley & Sons.

The Organization of Behavior

A NEUROPSYCHOLOGICAL THEORY

D. O. HEBB

McGill University

1949

New York · JOHN WILEY & SONS, Inc.

London · CHAPMAN & HALL, Limited

Videos

G. Sanderson, Neural Networks, 3Blue1Brown.

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi