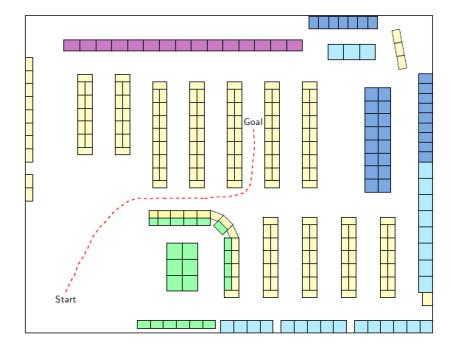
Robotics: Principles and Practice

Module 3: Mobile Robots

Lecture 4: Relative position estimation using odometry

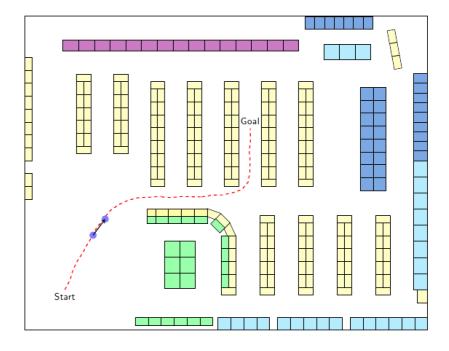
David Vernon
Carnegie Mellon University Africa


www.vernon.eu

Mobile Robots 4

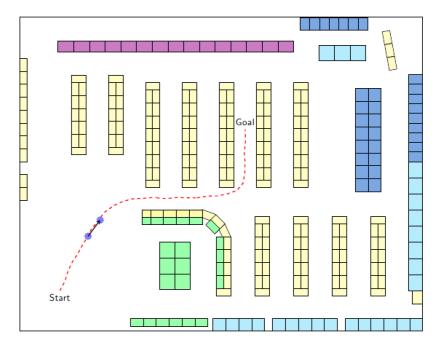
Localization: The Position Estimation Problem

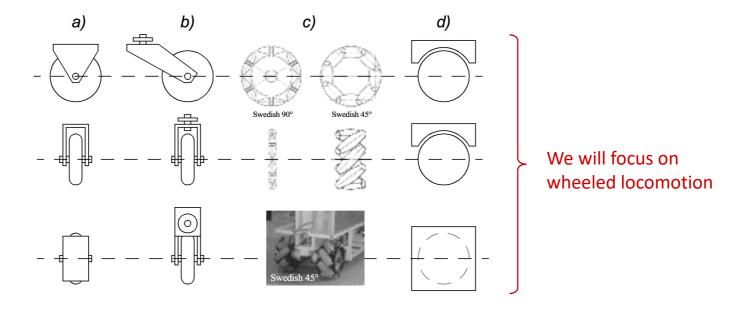
Two approaches


- 1. Absolute position estimation
- 2. Relative position estimation

Relative Position Estimation

Detect the change in the position and orientation of the robot: $(\Delta x, \Delta y, \Delta \theta)$


Combine the previous estimate and the change to determine the new estimate of the robot position



Relative Position Estimation

Options for detecting change in relative position:

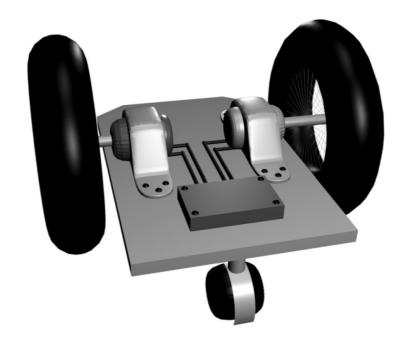
- Inertial sensors
- Odometry

Source: R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots, MIT Press, 2004

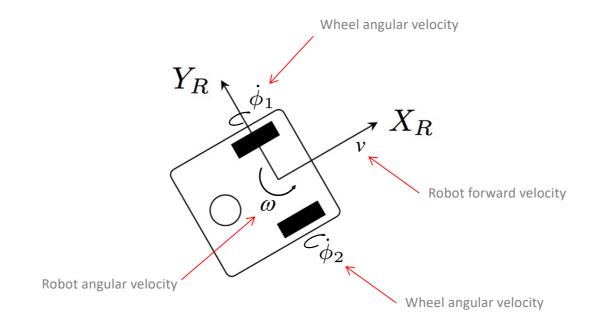
- Rotation about axle for movement and about contact point for steering Standard wheel
- Castor wheel
- Swedish wheel <
- Ball or spherical wheel

Rotation about axle for movement and about vertical axis for steering;

imparting a force on the robot body when steering


Rotation about axle for movement but also about rollers allowing movement is any direction

Omnidirectional wheel: can spin in any direction


# of wheels	Arrangement	Description	Typical examples	# of wheels	Arrangement	Description	Typical examples	# of wheels	Arrangement	Description	Typical examples
2		One steering wheel in the front, one traction wheel in the rear	Bicycle, motorcycle			Two motorized wheels in the rear, 2 steered wheels in the front; steering has to be different for the 2 wheels to avoid slipping/skidding. Two motorized and steered wheels in the front, 2 free wheels in the rear; steering has to be different for the 2 wheels to avoid slipping/skidding.	Car with rear-wheel drive			Two motorized and steered wheels aligned in center, 1 omnidirectional wheel at each corner	First
		Two-wheel differential drive with the center of mass (COM) below the axle	Cye personal robot				Car with front-wheel drive			Two traction wheels (differential) in center, 1 omnidirectional wheel at each corner	Terregator (Carnegie Mellon University)
3		Two-wheel centered differential drive with a third point of contact	Nomad Scout, smartRob EPFL								
						Four steered and motorized wheels Two traction wheels (differential) in rear/front, 2 omnidirectional wheels in the front/rear	Four-wheel drive, four-wheel steering Hyperion (CMU) Charlie (DMT-EPFL)	Icons for	for the each wheel type are as follows:		
		Two independently driven	Many indoor robots, including the EPFL robots Pygmalion and Alice Piaggio minitrucks						unpowered omnidirectional wheel (spherical, castor, Swedish);		
		wheels in the rear/front, 1 unpowered omnidirectional wheel in the front/rear						17271	motorized Swedish wh	eel (Stanford wheel);	
									unpowered standard wheel;		
		Two connected traction wheels (differential) in rear, 1 steered free wheel in front				Four omnidirectional wheels	Carnegie Mellon Uranus		motorized standard wh	eel;	
							C		motorized and steered	castor wheel;	
		Two free wheels in rear, 1 steered traction wheel in front	Neptune (Carnegie Mellon University), Hero-1						steered standard wheel	•	
							Two-wheel differential drive with 2 additional points of contact	EPFL Khepera, Hyperbot Chip	王	connected wheels.	
	- 1	Three motorized Swedish or spherical wheels arranged in a triangle; omnidirectional move- ment is possible	Stanford wheel Tribolo EPFL, Palm Pilot Robot Kit (CMU)			Four motorized and steered	Nomad XR4000				
						castor wheels	Nomad AR4000				
		Three synchronously motorized and steered wheels; the orientation is not controllable	"Synchro drive" Denning MRV-2, Georgia Institute of Technology, I-Robot B24, Nomad 200								

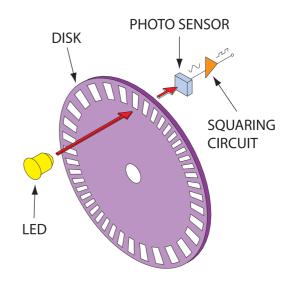
# of wheels	Arrangement	Description	Typical examples	# of wheels	Arrangement	Description	Typical examples	# of wheels	Arrangement	Description	Typical examples	
2		one traction wheel in the rear	Bicycle, motorcycle	personal robot and Scout, smartRob L y indoor robots, iding the EPFL robots nation and Alice gio minitrucks cune (Carnegie Mellon rersity), Hero-1 ford wheel olo EPFL, in Pilot Robot Kit		Two motorized wheels in the rear, 2 steered wheels in the front; steering has to be different for the 2 wheels to avoid	Car with rear-wheel drive	6		Two motorized and steered wheels aligned in center, 1 omnidirectional wheel at each corner	First	
		Two-wheel differential drive with the center of mass (COM) below the axle Two-wheel centered differential drive with a third point of contact	Cye personal robot			slipping/skidding. Two motorized and steered wheels in the front, 2 free	Car with front-wheel drive Four-wheel drive, four- wheel steering Hyperion (CMU) Charlie (DMT-EPFL) Carnegie Mellon Uranus EPFL Khepera, Hyperbot Chip			Two traction wheels (differential) in center, 1 omnidirec-	Terregator (Carnegie Mellon University)	
3			Nomad Scout, smartRob			wheels in the rear; steering has to be different for the 2 wheels to avoid slipping/skidding.				tional wheel at each corner	,	
					77	Four steered and motorized wheels Two traction wheels (differential) in rear/front, 2 omnidirectional wheels in the front/rear		Icons for the each wheel type are as follows:				
		Two independently driven wheels in the rear/front, 1 unpowered omnidirectional wheel in the front/rear	Many indoor robots, including the EPFL robots Pygmalion and Alice						unpowered omnidirectional wheel (spherical, castor, Swedish); motorized Swedish wheel (Stanford wheel);			
									unpowered standard w			
		Two connected traction wheels (differential) in rear, 1 steered free wheel in front Two free wheels in rear, 1 steered traction wheel in front Three motorized Swedish or	Neptune (Carnegie Mellon University), Hero-1 Stanford wheel Tribolo EPFL, Palm Pilot Robot Kit (CMU)			Four omnidirectional wheels		motorized standard wheel;				
									motorized and steered	castor wheel;		
						Two-wheel differential drive with 2 additional points of contact			steered standard wheel	;		
									connected wheels.			
		spherical wheels arranged in a triangle; omnidirectional move- ment is possible				Four motorized and steered castor wheels	Nomad XR4000					
		Three synchronously motorized and steered wheels; the orientation is not controllable	"Synchro drive" Denning MRV-2, Georgia Institute of Technology, I-Robot B24, Nomad									
	We will study two-wheel differential drive locomotion											

Source: R. Siegwart and I. R. Nourbakhsh, *Introduction to Autonomous Mobile Robots*, MIT Press, 2004

Source: M. Mataric, The Robotics Primer, MIT Press, 2007

Overall approach

Measure the angular velocities of the left and right wheels

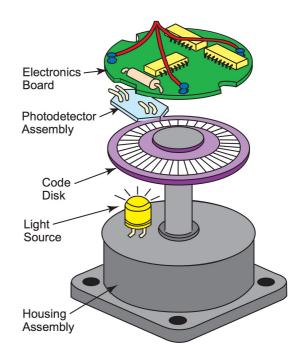

 $\dot{\phi}_1 \dot{\phi}_2$

- Compute the instantaneous velocities in the robot frame of reference
- Compute the displacement and change in orientation (in a given time interval)
 in the robot frame of reference R
- Compute the displacement and change in orientation (in a given time interval) in the global frame of reference (inertial frame of reference I)
- Update the position of the robot with respect to its previous position
- Repeat update (e.g. every 100 ms)

Angular velocities of the left and right wheels

Need to use proprioceptive sensors

- Typically, encoders on the wheels
- Go to http://encoder.com/videos/
 to watch a video explaining the operation of encoders



Source: http://encoder.com/core/files/encoder/uploads/files/WP-2011.pdf

Angular velocities of the left and right wheels

Need to use proprioceptive sensors

- Typically, encoders on the wheels
- Go to http://encoder.com/videos/
 to watch a video explaining the operation of encoders

Source: http://encoder.com/core/files/encoder/uploads/files/WP-2011.pdf

Overall approach

Measure the angular velocities of the left and right wheels

- Compute the instantaneous velocities in the robot frame of reference
- Compute the displacement and change in orientation (in a given time interval) in the robot frame of reference *R*
- Compute the displacement and change in orientation (in a given time interval) in the global frame of reference (inertial frame of reference I)
- Update the position of the robot with respect to its previous position
- Repeat update (e.g. every 100 ms)

- Measure the angular velocities of the left and right wheels
- Compute the instantaneous velocities in the robot frame of reference
- Compute the displacement and change in orientation (in a given time interval)
 in the robot frame of reference R
- v, ω \downarrow $\Delta \xi_R = (\Delta x, \Delta y, \Delta \theta)$
- Compute the displacement and change in orientation (in a given time interval)
 in the global frame of reference (inertial frame of reference I)
- Update the position of the robot with respect to its previous position
- Repeat update (e.g. every 100 ms)

- Measure the angular velocities of the left and right wheels
- Compute the instantaneous velocities in the robot frame of reference
- Compute the displacement and change in orientation (in a given time interval) in the robot frame of reference *R*
- $\Delta \xi_R = (\Delta x, \Delta y, \Delta \theta)$
- Compute the displacement and change in orientation (in a given time interval) in the global frame of reference (inertial frame of reference *I*)
- $\Delta \xi_I = (\Delta x_I, \Delta y_I, \Delta \theta)$

- Update the position of the robot with respect to its previous position
- Repeat update (e.g. every 100 ms)

- Measure the angular velocities of the left and right wheels
- Compute the instantaneous velocities in the robot frame of reference
- Compute the displacement and change in orientation (in a given time interval) in the robot frame of reference *R*
- Compute the displacement and change in orientation (in a given time interval) in the global frame of reference (inertial frame of reference I)
- Update the position of the robot with respect to its previous position
- Repeat update (e.g. every 100 ms)

$$x_I(t+1) = x_I(t) + \Delta x_I$$

$$y_I(t+1) = y_I(t) + \Delta y_I$$

$$\theta(t+1) = \theta(t) + \Delta\theta$$

Update the position of the robot with respect to its previous position

Assuming we know the position at time t=0, we estimate the position at time in the next time period t=1 as follows

$$x_I(1) = x_I(0) + \Delta x_I$$

$$y_I(1) = y_I(0) + \Delta y_I$$

$$\theta(1) = \theta(0) + \Delta\theta$$

- Measure the angular velocities of the left and right wheels
- Compute the instantaneous velocities in the robot frame of reference
- Compute the displacement and change in orientation (in a given time interval) in the robot frame of reference
- Compute the displacement and change in orientation in the global frame of reference (inertial frame of reference)
- Update the position of the robot with respect to its previous position
- Repeat update (e.g. every 100 ms)

Repeat Update

We update the position at each time period

$$x_I(t+1) = x_I(t) + \Delta x_I$$

$$y_I(t+1) = y_I(t) + \Delta y_I$$

$$\theta(t+1) = \theta(t) + \Delta\theta$$

- Measure the angular velocities of the left and right wheels
- Compute the instantaneous velocities in the robot frame of reference
- Compute the displacement and change in orientation (in a given time interval) in the robot frame of reference R
- Compute the displacement and change in orientation (in a given time interval)
 in the global frame of reference (inertial frame of reference I)
- Update the position of the robot with respect to its previous position
- Repeat update (e.g. every 100 ms)

$$\dot{\phi}_1$$
 $\dot{\phi}_2$

$$v, \omega$$

$$\Delta \xi_R = (\Delta x, \Delta y, \Delta \theta)$$

$$\Delta \xi_I = (\Delta x_I, \Delta y_I, \Delta \theta)$$

$$x_I(t+1) = x_I(t) + \Delta x_I$$

$$y_I(t+1) = y_I(t) + \Delta y_I$$

$$\theta(t+1) = \theta(t) + \Delta\theta$$

Limitations of Odometry - Sources of Error

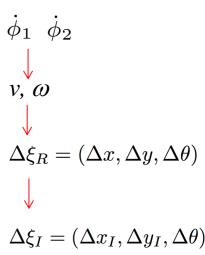
- Assumptions
 - Assumes control variables (angular velocities) are constant
- Robot's geometry (systematic errors)
 - wheel imbalance: one wheel larger than the other
 - axis imbalance: one axis is longer than the other
 - actual wheel distance not the same as nominal one (D)
- Interaction with environment (non-systematic errors)
 - slippage of one wheel
 - bumps and gaps in the floor
- The main problem
 - Odometry error can grow without bounds

Limitations – Sources of Error

- Difference in wheel radius E_r
 - the robot makes a curved instead of a straight path

(because, for identical left and right angular velocities, the associated displacements will be different)

- Error in wheel distance E_l
 - the robot over-estimates or under-estimates the amount of turning


(because the angle is a function of l, the wheel distance)

Summary

- Absolute position estimation (localization)
 - match observed features with prior knowledge (map)
 - requires good perception, good map
- Relative position estimation (position tracking)
 - update previous position by measuring displacement
 - inevitably drifts with time
- General solution: combined
 - absolute localization whenever possible
 - continuous position tracking in between localizations

Now we need to know how to compute these three transformations:

- Measure the angular velocities of the left and right wheels
- Compute the instantaneous velocities in the robot frame of reference
- Compute the displacement and change in orientation (in a given time interval)
 in the robot frame of reference R
- Compute the displacement and change in orientation (in a given time interval) in the global frame of reference (inertial frame of reference I)
- Update the position of the robot with respect to its previous position
- Repeat update (e.g. every 100 ms)

