Robotics: Principles and Practice

Module 5: Robot Vision

Lecture 6: Image analysis; feature extraction

David Vernon Carnegie Mellon University Africa

www.vernon.eu

Robot Vision 6 1 Robotics: Principles and Practic

Image Analysis

- Reminder: automatically extracting useful information from an image
- We can also classify the types of analysis we wish to perform according to function
 - Inspection

Is the visual appearance of objects as it should be?

Location

requires the specification of both position and orientation in either 2D or 3D

- image frame of reference (pixels)
- real world frame of reference (e.g. millimetres) ... calibration required
- Identification of object type

Image Analysis

• Find objects within the image and identify or classify those objects

- Central assumption:
 - the image depicts one or more objects
 - each object belongs to one of several distinct and exclusive predetermined classes
- We know what objects exist and an object can only have one particular type or label

Image Analysis

Three components of this type of pattern recognition process:

- an object isolation module
 - Produces a representation of the object (segmentation)
- a feature extraction module
 - Abstracts one or more characteristic features and produces a feature vector
 - Selection of features is crucial
- a classification module
 - The feature vector is used by the classification module to identify and label each object

Robot Vision 6 4 4 Robotics: Principles and Practice

Features should be

Independent

a change in one feature should not change significantly the value of another feature

Discriminatory

Each feature should have a significantly different value for each different object

- Reliable

Features should have the same value for all objects in the same class/group

- The computational complexity of pattern recognition increases rapidly as the number of features increases
- Hence it is desirable to use the fewest number of features possible, while ensuring a minimal number of errors

Simple features

- Many features are either based on the size of the object or on its shape
- Area of the object
 - simply the number of pixels comprising the object multiplies by the area of a single pixel (frequently assumed to be a single unit)
 - can also be computed from the boundary contour (see later)

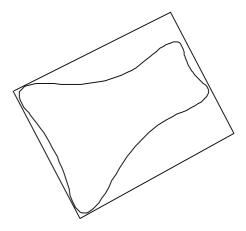
Simple features

- The length and the width of an object describe
- If its orientation is not known.
 - we may have to first compute its orientation before evaluating the minimum and maximum extent of its boundary
- These measures should always be made with respect to some rotationinvariant datum line in the object, e.g., its major or minor axis

Simple features

Minimum Bounding Rectangle

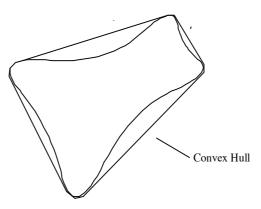
- The smallest rectangle which can completely enclose the object
- The main axis of this rectangle is the principle axis of the object
- Hence, the dimensions of the minimum bounding rectangle correspond to the features of length and width



Simple features

Convex Hull

The smallest convex boundary which can completely enclose the object



Simple features

- The distance around the perimeter of the object
- Depending on how the object is represented, it can be quite trivial to compute the length of the perimeter
- This makes it an attractive feature for industrial vision applications

Robot Vision 6 10 Robotics: Principles and Practice

Simple features

Rectangularity

$$R = \frac{A_{\text{object}}}{A_{\text{min. bound. rectangle}}}$$

- Minimum value of 1 for a perfect rectangular shape
- Tends toward zero for thin curvy objects

Rectangularity: Aspect Ratio

Aspect Ratio =
$$\frac{W_{\text{min. bounding rectangle}}}{L_{\text{min. bounding rectangle}}}$$

Simple features

Elongatedness

$$\frac{A_{object}}{(2d)^2}$$

- $-\hspace{0.1cm}$ Ratio of object area to square of its "thickness" d
- "Thickness" can be estimated by
 - the number of iterations of an erosion operator to remove the object
 - the number of iterations of a thinning operator

Simple features

Circularity

$$C = \frac{A_{object}}{P_{object}^2}$$

- Maximum value for discs
- Tends toward zero for irregular shapes with ragged boundaries

Moment features

- Method of Moments
- The standard two-dimensional moments m_{uv} of an image intensity function g(x, y)

$$m_{uv} = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} g(x, y) x^{u} y^{u} dx dy$$
 $u, v = 0, 1, 2, 3...$

$$m_{uv} = \sum_{x} \sum_{y} g(x, y) x^{u} y^{u}$$
 $u, v = 0, 1, 2, 3...$

summed over the entire sub-image within which the shape lies

Moment features

- Method of Moments
- However, these moments will vary for a given shape depending on where the shape is positioned, i.e., they are position-dependent
- Instead, use the central moments

$$\mu_{uv} = \sum_{x} \sum_{y} g(x, y) (x - \overline{x})^{u} (y - \overline{y})^{v}$$

where
$$\bar{x} = \frac{m_{10}}{m_{00}}$$
 and $\bar{y} = \frac{m_{01}}{m_{00}}$

i.e. the coordinates of the centroid of the shape

- This renders the moments position invariant

Moment features

- Method of Moments
- Assuming that the intensity function g(x, y) has a value of 1 everywhere in the object (*i.e.* we are dealing with a simple segmented binary image), the computation of m_{00} is simply a summation yielding the total number of pixels within the shape
- If we also assume that a pixel is one unit area, then m_{00} is equivalent to the area of the shape
- Similarly, m_{10} is effectively the summation of all the x co-ordinates of pixels in the shape and m_{01} is the summation of all the y co-ordinates of pixels in the shape; hence

 m_{10}/m_{00} is the average x co-ordinate m_{01}/m_{00} is the average y co-ordinate i.e. the co-ordinates of the centroid.

Moment features

Central Moments

$$\mu_{00} = m_{00}$$

$$\mu_{10} = 0$$

$$\mu_{01} = 0$$

$$\mu_{20} = m_{20} - \overline{x} m_{10}$$

$$\mu_{02} = m_{02} - \overline{y} m_{01}$$

$$\mu_{11} = m_{11} - \overline{y} m_{10}$$

$$\mu_{30} = m_{30} - 3\overline{x} m_{20} + 2\overline{x}^2 m_{10}$$

$$\mu_{03} = m_{03} - 3\overline{y} m_{02} + 2\overline{y}^2 m_{01}$$

$$\mu_{12} = m_{12} - 2\overline{y} m_{11} - \overline{x} m_{01} + 2\overline{y}^2 m_{10}$$

$$\mu_{21} = m_{21} - 2\overline{x} m_{11} - \overline{y} m_{20} + 2\overline{x}^2 m_{01}$$

Moment features

Normalized Central Moments

$$\eta_{ij} = rac{\mu_{ij}}{\left(\mu_{00}
ight)^k}$$

where
$$k = ((i + j) / 2) + 1$$
 $|i + j| \ge 2$

Moment features

Moment Invariants

- Linear combinations of normalized central moments
- More frequently used for shape description because they generate values which are invariant with position, orientation and scale changes
- Also known as Hu moment invariants or Hu moments

Moment features

Moment Invariants

$$\phi_{1} = \eta_{20} + \eta_{02}
\phi_{2} = (\eta_{20} + \eta_{02})^{2} + 4\eta_{11}^{2}
\phi_{3} = (\eta_{30} + 3\eta_{12})^{2} + (3\eta_{21} + \eta_{03})^{2}
\phi_{4} = (\eta_{30} + \eta_{12})^{2} + (\eta_{21} + \eta_{03})^{2}
\phi_{5} = (\eta_{30} + 3\eta_{12})(\eta_{30} + \eta_{12})\{(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}\} + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})\{3(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}\}
\phi_{6} = (\eta_{20} + 3\eta_{12})\{(\eta_{30} + \eta_{12}) - (\eta_{21} + \eta_{03})^{2}\}
+ 4\eta_{11}(\eta_{30} - \eta_{12})(\eta_{21} + \eta_{03})
\phi_{7} = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})\{(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}\}
- (3\eta_{12} - \eta_{30})(\eta_{21} + \eta_{03})\{3(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}\}$$

Reading

D. Vernon, Machine Vision, Prentice-Hall International

Section 6.3 Decision-theoretic Techniques

Demo

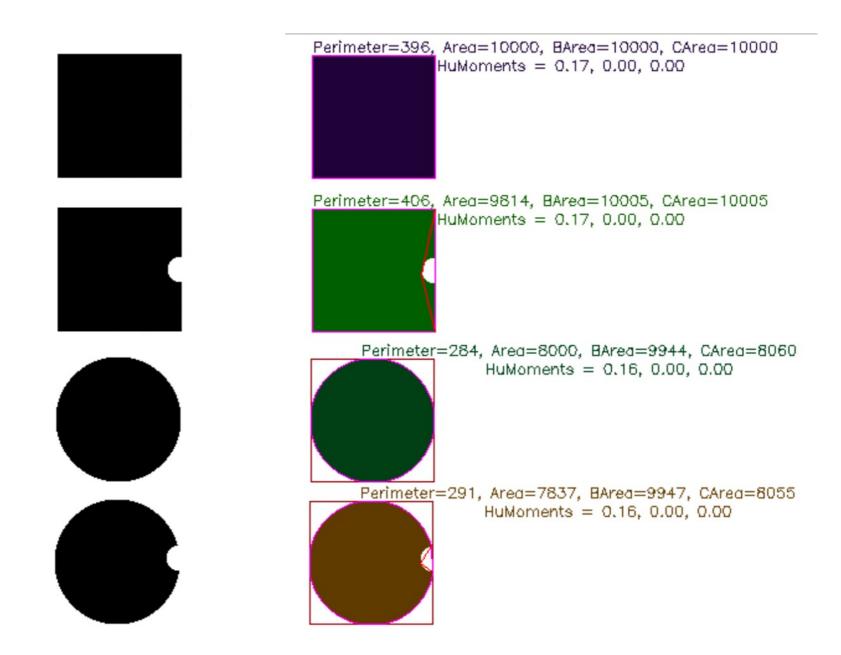
The following code is taken from the featureExtraction example application

See:

featureExtraction.h
featureExtractionImplementation.cpp
featureExtractionApplication.cpp

To run the example:

Ubuntu 16.04: rosrun module5 featureExtraction



```
Example use of openCV to perform 2D feature extraction
  -----
 Implementation file
 David Vernon
 18 June 2017
#include "featureExtraction.h"
void featureExtraction(char *filename, FILE *fp_out) {
  char inputWindowName[MAX_STRING_LENGTH]
                                                    = "Input Image";
   char outputWindowName[MAX_STRING_LENGTH]
                                                    = "Contour Image";
  Mat inputImage;
  namedWindow(inputWindowName,
                              CV_WINDOW_AUTOSIZE);
  namedWindow(outputWindowName, CV_WINDOW_AUTOSIZE);
  inputImage = imread(filename, CV_LOAD_IMAGE_COLOR); // Read the file
  if (!inputImage.data) {
                                                  // Check for invalid input
     printf("Error: failed to read image %s\n",filename);
     prompt_and_exit(-1);
  printf("Press any key to continue ...\n");
  fprintf(fp_out,"%s \n",filename); // file write added by David Vernon
```

Robot Vision 6 24 Robotics: Principles and Practice

```
* The following is based on code provided as part of "A Practical Introduction to Computer Vision with OpenCV"
                      * by Kenneth Dawson-Howe @ Wiley & Sons Inc. 2014. All rights reserved.
                      */
                       /* convert the input image to a binary image */
                        Mat gray;
                        Mat binary;
                        cvtColor(inputImage, gray, CV BGR2GRAY);
                        //threshold(gray,binary,128,255,THRESH BINARY INV);
 Each contour is a vector
                        threshold(gray, binary, 128, 255, THRESH BINARY INV | THRESH OTSU); // David Vernon: substituted in automatic threshold selection
 of points
                         /* extract the contours of the objects in the binary image */
                        vector<vector<Point>> contours;
                        vector<Vec4i>
                                               hierarchy;
The hierarchical
                        /* David Vernon: see http://docs.opencv.org/2.4.10/modules/imgproc/doc/structural analysis and shape descriptors.html#findcontours */
organization of contours,
                        findContours(binary,contours,hierarchy,CV_RETR_TREE,CV_CHAIN_APPROX_NONE);
i.e. contours inside
contours, inside contours,
                        /* extract features from the contours */
                                                                                             This function builds the list of contours and determines their hierarchical structure
                        Mat contours image = Mat::zeros(binary.size(), CV 8UC3);
                        contours image = Scalar(255,255,255);
is captured in this vector
                        //binary.copyTo(contours image,binary);
                         /* Prepare to do some processing on all contours (objects and holes!) by declaring appropriate data-structures */
                         vector<RotatedRect> min bounding rectangle(contours.size());
                                                                                           // bounding rectangles <
                         vector<vector<Point>> hulls(contours.size());
                                                                                             // convex hulls
                                                                                                                                          Minimum bounding rectangles: perfect for
                         vector<vector<int>> hull indices(contours.size());
                                                                                             // indices of convex hulls
                                                                                                                                          capturing the required information about bricks
                         vector<vector<Vec4i>> convexity_defects(contours.size());
                                                                                             // convex cavities
                         vector<Moments>
                                                contour moments(contours.size());
                                                                                             // moments
```

Robot Vision 6 25 25 Robotics: Principles and Practice

```
struct CvConvexityDefect
{
    CvPoint* start; // point of the contour where the defect begins
    CvPoint* end; // point of the contour where the defect ends
    CvPoint* depth point; // the farthest from the convex hull point within the defect
    float depth; // distance between the farthest point and the convex hull
};
```

The figure below displays convexity defects of a hand contour:

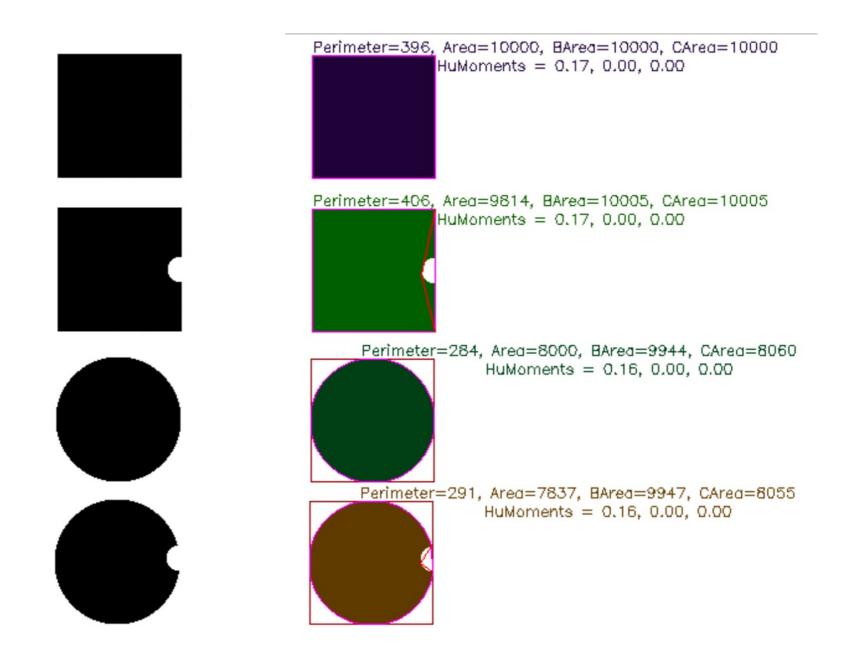
http://docs.opencv.org/2.4.10/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html#convexitydefects

```
/* for all contours */
for (int contour number=0; (contour_number>=0); contour_number=hierarchy[contour_number][0]) {
   /* only consider contours of appreciable length */
  if (contours[contour number].size() > 10) {
     Scalar colour(rand()&0x7F, rand()&0x7F, rand()&0x7F);
                                                                                                // generate a random colour
     drawContours(contours image, contours, contour number, colour, CV FILLED, 8, hierarchy); // draw the contour
     char output[500];
     // David Vernon: Ken Dawson-Howe adjusts area as it seems to be underestimated by half the number of pixels on the perimeter
     double area = contourArea(contours[contour number]) + contours[contour number].size()/2 + 1;
     // Process any holes (removing the area from the area of the enclosing contour)
     for (int hole_number=hierarchy[contour_number][2]; (hole_number>=0); hole_number=hierarchy[hole_number][0]) {
        // David Vernon: Ken Dawson-Howe adjusts area as it seems to be underestimated by half the number of pixels on the perimeter
         area -= (contourArea(contours[hole number]) - contours[hole number].size()/2 + 1);
         Scalar colour( rand()&0x7F, rand()&0x7F, rand()&0x7F);
         drawContours (contours image, contours, hole number, colour, CV FILLED, 8, hierarchy);
         sprintf(output, "Area=%.0f", contourArea(contours[hole_number]) -contours[hole_number].size()/2+1);
         /* write to file added by David Vernon */
         fprintf(fp out, "Object %d, Hole %d: Area = %.0f\n",
                 contour number, hole number, contourArea(contours[hole number]) - contours[hole number].size()/2 + 1);
        Point location( contours[hole number][0].x + 20, contours[hole number][0].y + 5);
        putText( contours_image, output, location, FONT_HERSHEY_SIMPLEX, 0.4, colour );
```

```
/* Draw the minimum bounding rectangle */
Point2f bounding rect points[4];
min bounding rectangle[contour_number].points(bounding_rect_points);
line(contours image, bounding rect points[0], bounding rect points[1], Scalar(0, 0, 127));
line(contours image, bounding rect points[1], bounding rect points[2], Scalar(0, 0, 127));
line(contours_image, bounding_rect_points[2], bounding_rect_points[3], Scalar(0, 0, 127));
line(contours image, bounding rect points[3], bounding rect points[0], Scalar(0, 0, 127));
float bounding rectangle area = min bounding rectangle[contour number].size.area();
/* Draw the convex hull */
drawContours(contours image, hulls, contour number, Scalar(255,0,255)); // purple
/* Highlight any convexities */
int largest convexity depth=0;
for (int convexity index=0; convexity_index < (int)convexity_defects[contour_number].size(); convexity_index++) {</pre>
   if (convexity defects[contour number][convexity index][3] > largest convexity depth)
      largest convexity depth = convexity defects[contour number][convexity index][3];
   if (convexity defects[contour number][convexity index][3] > 256*2) {
      line( contours image, contours[contour_number][convexity_defects[contour_number][convexity_index][0]],
                            contours[contour number][convexity defects[contour number][convexity index][2]], Scalar(0,0, 255));
      line( contours image, contours[contour number][convexity defects[contour number][convexity index][1]],
                            contours[contour number][convexity defects[contour number][convexity index][2]], Scalar(0,0, 255));
```

```
//sprintf(output, "Perimeter=%d, Area=%.0f, BArea=%.0f, CArea=%.0f", contours[contour number].size(), area, min bounding rectangle[contour number].size(), area, min bounding rectangle[contour
           /* David Vernon: alternative as area seems to be underestimated by half the number of pixels on the perimeter */
           sprintf(output, "Perimeter=%d, Area=%.0f, BArea=%.0f, CArea=%.0f", contours[contour_number].size(),
                                                                                                                                            area,
                                                                                                                                            min bounding rectangle[contour number].size.area() + contours[c
                                                                                                                                            contourArea(hulls[contour number])+ contours[contour number].s:
           /* file write added by David Vernon */
           /* David Vernon: area seems to be underestimated by half the number of pixels on the perimeter */
           fprintf(fp out, "Object %d: perimeter = %d, object area = %.0f, bounding rectangle area = %.0f, convex hull area = %.0f \n",
                           contour number,
                           contours[contour number].size(),
                           area,
                           min bounding rectangle[contour number].size.area() + contours[contour number].size()/2 + 1,
                           contourArea(hulls[contour number]) + contours[contour number].size()/2 + 1);
           Point location( contours[contour_number][0].x, contours[contour_number][0].y-3 );
           putText(contours image, output, location, FONT HERSHEY SIMPLEX, 0.4, colour );
           /* David Vernon: see http://docs.opencv.org/2.4.10/modules/imgproc/doc/structural analysis and shape descriptors.html#humoments
           double hu moments[7];
           HuMoments(contour moments[contour number], hu moments );
           sprintf(output, "HuMoments = %.2f, %.2f, %.2f", hu moments[0],hu moments[1],hu moments[2]);
           Point location2( contours[contour number][0].x+100, contours[contour number][0].y-3+15 );
           putText(contours image, output, location2, FONT HERSHEY SIMPLEX, 0.4, colour );
           /* filewrite added by David Vernon */
           fprintf(fp out, "Object %d: HuMoments = %.2f, %.2f, %.2f \n\n", contour number, hu moments[0], hu moments[1], hu moments[2]);
      fprintf(fp out,"\n"); //file write added by David Vernon
imshow(inputWindowName, inputImage );
imshow(outputWindowName, contours image);
do{
     waitKey(30);
} while (!_kbhit());
getchar(); // flush the buffer from the keyboard hit
destroyWindow(inputWindowName);
destroyWindow(outputWindowName);
```

pbot Vision 6 }



Perimeter=80, Area=409, BArea=692, CArea=596 Perimeter=101, Area=275, BArea=573, CArea=480 Area=172 HuMoments = 0.17, 0.00, 0.00HuMoments = 0.46, 0.13, 0.01Perimeter=111, Area=347, BArea=626, CArea=584 Perimeter=121, Area=353, BArea=650, CArea=592 HuMoments = 0.42, 0.07, 0.00HuMoments = 0.40, 0.06, 0.00Perimeter=86, Area=350, BArea=636, CArea=488 Perimeter=121, Area=333, BArea=631, CArea=565 Area=59 HuMoments = 0.20, 0.01, 0.00HuMoments = 0.42, 0.06, 0.00Perimeter=101, Area=395, BArea=671, CArea=587 Perimeter=94, Area=269, BArea=599, CArea=442 HuMoments = 0.23, 0.01, 0.00 HuMoments = 0.46, 0.09, 0.04Area=77 Perimeter=85, Area=443, BArea=694, CArea=615 Perimeter=101, Area=394, BArea=640, CArea=575 Area=45 HuMoments = 0.20, 0.01, 0.00Area=70 HuMoments = 0.23, 0.01, 0.00Area=59

obot Vision 6 31 Robotics: Principles and Practic