Introduction to Cognitive Robotics

Module 6: Artificial Cognitive Systems

Lecture 2: The paradigms of cognitive science; the emergent and hybrid paradigms

David Vernon Carnegie Mellon University Africa

www.vernon.eu

Self-organization

[Note: this ideogram and similar ones to follow were introduced in Maturana and Varela 1987]

Anticipation / Planning / Explanation / Prediction

Autonomous system with a nervous system capable of development

[Note: this ideogram and similar ones to follow were introduced in Maturana and Varela 1987]

Connectionist Systems

- Rely on
 - Parallel processing
 - Non-symbolic distributed activation patterns in networks

- Neural networks are the most common instantiations
 - Dynamical systems that capture statistical regularities or associations

Dynamical Systems

Dynamical systems theory

- Models the behaviour of systems
- By using differential equations
- To capture they way variables that characterize the state of the system change with time

Thus, a dynamical system defines a particular pattern of behaviour

Kelso '95: Dynamic Pattern – The Self-Organization of Brain and Behaviour

Dynamical Systems

Dynamical System

- is an open dissipative non-equilibrium non-linear system
- System: large number of interacting components & large number of degrees of freedom
- Dissipative: diffuse energy phase space decreased in volume with time (⇒ preferential subspaces)
- Non-equilibrium: unable to maintain structure or function without external sources of energy, material, information (hence, open)
- Non-linearity: dissipation is not uniform small number of system's degrees of freedom contribute to behaviour

... order parameters / collective variables

S. Kelso. Dynamic Pattern – The Self-Organization of Brain and Behaviour. 1995.

Dynamical Systems

From [Shoner Kelso 1988]

Enaction

- Common view
 - World as the system experiences it is independent of the cognitive system
 - Knowledge of the world is independent of the knower
- Enactive view
 - Known and knower 'stand in relation to each other as mutual specification: they arise together' (Maturana and Varela, 1987)
 - Knowledge is dependent on the knower
 - cf. new cybernetics which "views information as constructed and reconstructed by an individual interacting with the environment" (Bailey 1994)

Kenneth D. Bailey (1994), Sociology and the New Systems Theory: Toward a Theoretical Synthesis, p.163.

Humberto R. Maturana, Ph.D & Francisco J. Varela, Ph.D Foreword by J. Z. Young

Enaction

Modifies its own state (CNS) to enhance predictive capacity & action capabilities

- 1. Computational operation
- 2. Representational framework
- 3. Semantic grounding
- 4. Temporal constraints
- 5. Inter-agent epistemology
- 6. Embodiment
- 7. Perception
- 8. Action
- 9. Anticipation
- 10. Adaptation
- 11. Motivation
- 12. Autonomy
- 13. Cognition
- 14. Philosophical foundation

[Vernon, Von Hofsten, Fadiga 2010]

The Cognitivist Paradigm vs. the Emergent Paradigm		
Characteristic	Cognitivist	Emergent
Computational Operation	Syntactic manipulation of symbols	Concurrent self-organization of a network
Representational Framework	Patterns of symbol tokens	Global system states
Semantic Grounding	Percept-symbol association	Skill construction
Temporal Constraints	Atemporal	Synchronous real-time entrainment
Inter-agent epistemology	Agent-independent	Agent-dependent
Embodiment	No role implied: functionalist	Direct constitutive role: non-functionalist
Perception	Abstract symbolic representations	Perturbation by the environment
Action	Causal consequence of symbol manipulation	Perturbation by the system
Anticipation	Procedural or probabilistic reasoning	Traverse of perception-action state space
Adaptation	Learn new knowledge	Develop new dynamics
Motivation	Criteria for goal selection	Increase space of interaction
Autonomy	Not entailed	Cognition entails autonomy
Cognition	Rational goal-achievement	Self-maintenance and self-development
Philosophical Foundation	Positivism	Phenomenology

Hybrid Models

Which Paradigm is Correct?

- Paradigms are not equally mature
- Dynamical systems
 - Arguments are compelling BUT ..
 - Not yet clear how to get higher-level cognition
- Cognitivist systems
 - More advanced
 - Not many achievements in generalization
 - More brittle (in principle)
- Enactive (& Dynamical)
 - SHOULD be much less brittle (mutual specification through co-development)
 - But limited cognition at present
- Hybrid systems
 - Best of both worlds?
 - But unclear how one can really combine opposing assumptions and philosophies

Recommended Reading

D. Vernon (2014). Artificial Cognitive Systems, MIT Press; Chapter 2.

References

Krichmar, J. L. (2012). Design principles for biologically inspired cognitive architectures. Biologically Inspired Cognitive Architectures 1, 73–81.

Langley, P. (2005). An adaptive architecture for physical agents. In IEEE/WIC/ACM International Conference on Intelligent Agent Technology, Compiegne, France, pp. 18–25. IEEE Computer Society Press.

Langley, P. (2006). Cognitive architectures and general intelligent systems. Al Magazine 27(2), 33-44.

Langley, P., J. E. Laird, and S. Rogers (2009). Cognitive architectures: Research issues and challenges. Cognitive Systems Research 10 (2), 141–160.

Lehman, J. F., J. E. Laird, and P. S. Rosenbloom (1998). A gentle intro- duction to soar, an architecture for human cognition. In S. Sternberg and D. Scarborough (Eds.), Invitation to Cognitive Science, Volume 4: Methods, Models, and Conceptual Issues. Cambridge, MA: MIT Press.

Newell, A. (1990). Unified Theories of Cognition. Cambridge MA: Harvard University Press.