
Using Turtlesim with CRAM 3 1 Introduction to Cognitive Robotics

Introduction to Cognitive Robotics

Module 10: Using Turtlesim with CRAM
Lecture 3: Turtlesim with CRAM; implementing plans to move a turtle

www.cognitiverobotics.net

Using Turtlesim with CRAM 3 2 Introduction to Cognitive Robotics

The CRAM Beginner Tutorials

Based on CRAM tutorials
http://cram-system.org/tutorials

Using Turtlesim with CRAM 3 3 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Based on Implementing simple plans to move a turtle
http://cram-system.org/tutorials/beginner/simple_plans

Using Turtlesim with CRAM 3 4 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Now let's learn how to write and implement a simple plan to move a turtle from
waypoint to waypoint

We'll do this in three steps:

1. Design, implement, and test a function calculate-angular-cmd to compute the angle to the
goal in the turtles frame of reference

We will use this to re-orient the turtle towards the goal position

2. Test calculate-angular-cmd by moving the turtlebot to a goal position

3. Use calculate-angular-cmd to write a plan to move to a waypoint

Using Turtlesim with CRAM 3 5 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Step 1

1. Design, implement, and test a function calculate-angular-cmd to compute the angle to the
goal in the turtles frame of reference

How do we compute the angle to the goal in the turtles frame of reference?

Using Turtlesim with CRAM 3 6 Introduction to Cognitive Robotics

Recall: Specifying Pose in ROS

How would we determine the pose of p w.r.t. O ?

Op = OW * Wp

= (WO)-1 * Wp
= (Trans(2, 0, 0))-1 * Trans(1, 2, 0)
= Trans(-2, 0, 0) * Trans(1, 2, 0)
= Trans(-1, 2, 0) w.r.t. O

W O x

y

y

p x

y

x

Using Turtlesim with CRAM 3 7 Introduction to Cognitive Robotics

Recall: Specifying Pose in ROS

Some more pose operations:

CL-USER > (transform
(transform-inv (pose->transform O))
p)

#<POSE
#<3D-VECTOR (-1.0d0 2.0d0 0.0d0)>
#<QUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>>

(WO)-1

(WO)-1 * Wp

Using Turtlesim with CRAM 3 8 Introduction to Cognitive Robotics

Here: Specifying Pose in ROS

We can use the same approach for determining the pose of the
goal with respect to the turtle

TG = TW * WG

= (WT)-1 * WG

W

G x

y
y

T x

y

q

x

The turtle orientation
is aligned with the x axis

Using Turtlesim with CRAM 3 9 Introduction to Cognitive Robotics

Here: Specifying Pose in ROS

CL-USER > (transform
(transform-inv (pose->transform pose-msg))
goal)

#<POSE
#<3D-VECTOR (-3.0d0 4.0d0 0.0d0)>
#<QUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>>

(WT)-1

(WT)-1 * WG

We will implement this in
calculate-angular-cmd

This gives us the coordinates
of the goal with respect to the
turtles frame of reference

The direction to the goal is
given by atan2(y, x)

Using Turtlesim with CRAM 3 10 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

As before, when developing new code, we need to

• (Update the dependencies in package.xml)
• Update the dependencies in cram-my-beginner-tutorial.asd
• (Update the dependencies in package.lisp)
• Add the new code to simple-plans.lisp
• Test the code

– Run the ROS master
– Run the Lisp REPL, loading the new program, creating a ROS node
– Run turtlesim
– Run turtlesim_teleop
– Call the new functions

We will place the new code is a separate Lisp file

We don't need to do this as there are no new packages being used

We need to do this because we are going
to put the new code in a separate file

We don't need to do this as there
are no new packages being used

Using Turtlesim with CRAM 3 11 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Update the ASDF dependencies

Make sure you are in the cram_my_beginner_tutorial sub-directory

~$ cd ~/workspace/ros/src/cram_my_beginner_tutorial
~/workspace/ros/src/cram_my_beginner_tutorial$ You should be there already

from the previous step

Using Turtlesim with CRAM 3 12 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Update the ASDF dependencies

Edit cram-my-beginner-tutorial.asd

~/workspace/ros/src/cram_my_beginner_tutorial$ emacs cram-my-beginner-tutorial.asd

Using Turtlesim with CRAM 3 13 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Update the ASDF dependencies

Edit cram-my-beginner-tutorial.asd

Add the (:file "simple-plans" ...) line below:

(defsystem cram-my-beginner-tutorial
:depends-on (roslisp cram-language

turtlesim-msg turtlesim-srv
cl-transforms geometry_msgs-msg)

:components
((:module "src"

:components
((:file "package")
(:file "control-turtlesim" :depends-on ("package"))
(:file "simple-plans" :depends-on ("package" "control-turtlesim"))))))

The file
should now
look like this

Add this line

Be careful to ensure
the open and closing
brackets match

Using Turtlesim with CRAM 3 14 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Create a new Lisp file for the plan code

Make sure you are in the cram_my_beginner_tutorial/src sub-directory

~$ cd ~/workspace/ros/src/cram_my_beginner_tutorial/src
~/workspace/ros/src/cram_my_beginner_tutorial/src$

Using Turtlesim with CRAM 3 15 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Create a new Lisp file for the plan code

Edit simple-plans.lisp

~/workspace/ros/src/cram_my_beginner_tutorial/src$ emacs simple-plans.lisp

Using Turtlesim with CRAM 3 16 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Update the Lisp package to include the code for the simple plan

Edit simple-plans.lisp

Add the code on the next slide ...

Using Turtlesim with CRAM 3 17 Introduction to Cognitive Robotics

(in-package :tut)

(defun pose-msg->transform (msg)
"Returns a transform proxy that allows to transform into the frame given by x, y, and theta of `msg'."

(with-fields (x y theta) msg
(cl-transforms:make-transform
(cl-transforms:make-3d-vector x y 0)
(cl-transforms:axis-angle->quaternion
(cl-transforms:make-3d-vector 0 0 1)
theta))))

(defun relative-angle-to (goal pose-msg)
"Given a `pose-msg' as a turtlesim-msg:pose and a `goal' as cl-transforms:3d-vector,
calculate the angle by which the pose has to be turned to point toward the goal."

(let ((diff-pose (cl-transforms:transform-point
(cl-transforms:transform-inv

(pose-msg->transform pose-msg))
goal)))

(atan
(cl-transforms:y diff-pose)
(cl-transforms:x diff-pose))))

(defun calculate-angular-cmd (goal &optional (ang-vel-factor 8))
"Uses the current turtle pose and calculates the angular velocity command to turn towards the goal."

(* ang-vel-factor
(relative-angle-to goal (value *turtle-pose*))))

Using Turtlesim with CRAM 3 18 Introduction to Cognitive Robotics

(in-package :tut)

(defun pose-msg->transform (msg)
"Returns a transform given by the x, y, and theta fields of message 'msg'"

(with-fields (x y theta) msg
(cl-transforms:make-transform
(cl-transforms:make-3d-vector x y 0)
(cl-transforms:axis-angle->quaternion
(cl-transforms:make-3d-vector 0 0 1)
theta))))

(defun relative-angle-to (goal pose-msg)
"Given a `pose-msg' as a turtlesim-msg:pose and a `goal' as cl-transforms:3d-vector,
calculate the angle by which the pose has to be turned to point toward the goal."

(let ((diff-pose (cl-transforms:transform-point
(cl-transforms:transform-inv

(pose-msg->transform pose-msg))
goal)))

(atan
(cl-transforms:y diff-pose)
(cl-transforms:x diff-pose))))

(defun calculate-angular-cmd (goal &optional (ang-vel-factor 8))
"Uses the current turtle pose and calculates the angular velocity command to turn towards the goal."

(* ang-vel-factor
(relative-angle-to goal (value *turtle-pose*))))

Qualify the fields so that we don't have to prefix with msg

Make a transform from a message

Make a transform from a message
(could also have used make-pose ... check this)

Euler axis is aligned with the Z axis

Using Turtlesim with CRAM 3 19 Introduction to Cognitive Robotics

(in-package :tut)

(defun pose-msg->transform (msg)
"Returns a transform given by the x, y, and theta fields of message 'msg'"

(with-fields (x y theta) msg
(cl-transforms:make-transform
(cl-transforms:make-3d-vector x y 0)
(cl-transforms:axis-angle->quaternion
(cl-transforms:make-3d-vector 0 0 1)
theta))))

(defun relative-angle-to (goal pose-msg)
"Given a `pose-msg' as a turtlesim-msg:pose and a `goal' as cl-transforms:3d-vector,
calculate the angle by which the pose has to be turned to point toward the goal."

(let ((diff-pose (cl-transforms:transform-point
(cl-transforms:transform-inv

(pose-msg->transform pose-msg))
goal)))

(atan
(cl-transforms:y diff-pose)
(cl-transforms:x diff-pose))))

(defun calculate-angular-cmd (goal &optional (ang-vel-factor 8))
"Uses the current turtle pose and calculates the angular velocity command to turn towards the goal."

(* ang-vel-factor
(relative-angle-to goal (value *turtle-pose*))))

This function calculates the angle between the turtle orientation and the goal

This implements a version of the formula we derived
in the previous slides for computing the coordinates
of the goal in the turtle's frame for reference

This computes the angle from the coordinates
This angle represents the orientation error between
the turtles current orientation and the desired heading to the goal

Using Turtlesim with CRAM 3 20 Introduction to Cognitive Robotics

(in-package :tut)

(defun pose-msg->transform (msg)
"Returns a transform given by the x, y, and theta fields of message 'msg'"

(with-fields (x y theta) msg
(cl-transforms:make-transform
(cl-transforms:make-3d-vector x y 0)
(cl-transforms:axis-angle->quaternion
(cl-transforms:make-3d-vector 0 0 1)
theta))))

(defun relative-angle-to (goal pose-msg)
"Given a `pose-msg' as a turtlesim-msg:pose and a `goal' as cl-transforms:3d-vector,
calculate the angle by which the pose has to be turned to point toward the goal."

(let ((diff-pose (cl-transforms:transform-point
(cl-transforms:transform-inv

(pose-msg->transform pose-msg))
goal)))

(atan
(cl-transforms:y diff-pose)
(cl-transforms:x diff-pose))))

(defun calculate-angular-cmd (goal &optional (ang-vel-factor 8))
"Uses the current turtle pose and calculates the angular velocity command to turn towards the goal."

(* ang-vel-factor
(relative-angle-to goal (value *turtle-pose*))))

1. Make pose-msg a transform

2. Compute the inverse of the transform

3. Compute a 3d-vector by applying the transform to the goal 3d-vector

3d-vector

Let's look at what diff-pose is doing more closely ...

Using Turtlesim with CRAM 3 21 Introduction to Cognitive Robotics

(in-package :tut)

(defun pose-msg->transform (msg)
"Returns a transform given by the x, y, and theta fields of message 'msg'"

(with-fields (x y theta) msg
(cl-transforms:make-transform
(cl-transforms:make-3d-vector x y 0)
(cl-transforms:axis-angle->quaternion
(cl-transforms:make-3d-vector 0 0 1)
theta))))

(defun relative-angle-to (goal pose-msg)
"Given a `pose-msg' as a turtlesim-msg:pose and a `goal' as cl-transforms:3d-vector,
calculate the angle by which the pose has to be turned to point toward the goal."

(let ((diff-pose (cl-transforms:transform-point
(cl-transforms:transform-inv

(pose-msg->transform pose-msg))
goal)))

(atan
(cl-transforms:y diff-pose)
(cl-transforms:x diff-pose))))

(defun calculate-angular-cmd (goal &optional (ang-vel-factor 8))
"Uses the current turtle pose and calculates the angular velocity command to turn towards the goal."

(* ang-vel-factor
(relative-angle-to goal (value *turtle-pose*))))

This function calculates and returns the required angular velocity drive the orientation error to zero

It uses an optional gain parameter with a default value

Multiply the gain by the relative angle between the goal
direction and the current turtle orientation

Using Turtlesim with CRAM 3 22 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Step 2

2. Test calculate-angular-cmd by moving the turtlebot to a goal position

Using Turtlesim with CRAM 3 23 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Before using these functions, we first need to recompile the code

There are several options to do this

• Type C-c C-c with the cursor on the function to recompile only the function

• Type C-c C-k to recompile the file

• Reload the complete ASDF system
CL-USER> (ros-load:load-system "cram_my_beginner_tutorial" :cram-my-beginner-tutorial)
CL-USER> (in-package :tut)

Using Turtlesim with CRAM 3 24 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Run the following to call send-vel-cmd 100 times

TUT> (dotimes (i 100)
(send-vel-cmd

1.5 ; linear speed
(calculate-angular-cmd (cl-transforms:make-3d-vector 1 1 0)))

(wait-duration 0.1))

The turtle should now move towards the bottom left corner and
finally rotate around the goal until the loop finishes

Why does the turtle continue to rotate? Because the goal position and the
turtle position are exactly the same, the turtle translates by a small amount,
recalculates the orientation error, and rotates accordingly

Using Turtlesim with CRAM 3 25 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Step 3:

3. Use calculate-angular-cmd to write a plan to move to a waypoint

We will write a simple plan that recalculates & executes the velocity command until we reach the goal

Later, as an exercise, we'll implement both the divide-and-conquer and MIMO algorithms we met
earlier in the course

Using Turtlesim with CRAM 3 26 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Edit the simple-plans.lisp file

Make sure you are in the cram_my_beginner_tutorial/src sub-directory

~$ cd ~/workspace/ros/src/cram_my_beginner_tutorial/src
~/workspace/ros/src/cram_my_beginner_tutorial/src$

Using Turtlesim with CRAM 3 27 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Edit the simple-plans.lisp file

~/workspace/ros/src/cram_my_beginner_tutorial/src$ emacs simple-plans.lisp

Add the code on the next slide ...

Using Turtlesim with CRAM 3 28 Introduction to Cognitive Robotics

(def-cram-function move-to (goal &optional (distance-threshold 0.1))
"Sends velocity commands until `goal' is reached."

(let ((reached-fl (< (fl-funcall #'cl-transforms:v-dist
(fl-funcall
#'cl-transforms:translation
(fl-funcall
#'pose-msg->transform
turtle-pose))

goal)
distance-threshold)))

(unwind-protect
(pursue

(wait-for reached-fl)
(loop do

(send-vel-cmd
1.5
(calculate-angular-cmd goal))

(wait-duration 0.1)))
(send-vel-cmd 0 0))))

Using Turtlesim with CRAM 3 29 Introduction to Cognitive Robotics

(def-cram-function move-to (goal &optional (distance-threshold 0.1))
"Sends velocity commands until `goal' is reached."

(let ((reached-fl (< (fl-funcall #'cl-transforms:v-dist
(fl-funcall
#'cl-transforms:translation
(fl-funcall
#'pose-msg->transform
turtle-pose))

goal)
distance-threshold)))

(unwind-protect
(pursue

(wait-for reached-fl)
(loop do

(send-vel-cmd
1.5
(calculate-angular-cmd goal))

(wait-duration 0.1)))
(send-vel-cmd 0 0))))

We use def-cram-function because we're going to use CRAM language features, specifically pursue

The distance threshold allows the program to end even if
the robot position is not exactly equal to the goal position

Using Turtlesim with CRAM 3 30 Introduction to Cognitive Robotics

(def-cram-function move-to (goal &optional (distance-threshold 0.1))
"Sends velocity commands until `goal' is reached."

(let ((reached-fl (< (fl-funcall #'cl-transforms:v-dist
(fl-funcall
#'cl-transforms:translation
(fl-funcall
#'pose-msg->transform
turtle-pose))

goal)
distance-threshold)))

(unwind-protect
(pursue

(wait-for reached-fl)
(loop do

(send-vel-cmd
1.5
(calculate-angular-cmd goal))

(wait-duration 0.1)))
(send-vel-cmd 0 0))))

This fluent network is complicated.
Let's walk through it ...

Using Turtlesim with CRAM 3 31 Introduction to Cognitive Robotics

(def-cram-function move-to (goal &optional (distance-threshold 0.1))
"Sends velocity commands until `goal' is reached."

(let ((reached-fl (< (fl-funcall #'cl-transforms:v-dist
(fl-funcall
#'cl-transforms:translation
(fl-funcall
#'pose-msg->transform
turtle-pose))

goal)
distance-threshold)))

(unwind-protect
(pursue

(wait-for reached-fl)
(loop do

(send-vel-cmd
1.5
(calculate-angular-cmd goal))

(wait-duration 0.1)))
(send-vel-cmd 0 0))))

Make a transform from the pose message ...
the value of which depends on the fluent

Using Turtlesim with CRAM 3 32 Introduction to Cognitive Robotics

(def-cram-function move-to (goal &optional (distance-threshold 0.1))
"Sends velocity commands until `goal' is reached."

(let ((reached-fl (< (fl-funcall #'cl-transforms:v-dist
(fl-funcall
#'cl-transforms:translation
(fl-funcall
#'pose-msg->transform
turtle-pose))

goal)
distance-threshold)))

(unwind-protect
(pursue

(wait-for reached-fl)
(loop do

(send-vel-cmd
1.5
(calculate-angular-cmd goal))

(wait-duration 0.1)))
(send-vel-cmd 0 0))))

Access the translation slot

Using Turtlesim with CRAM 3 33 Introduction to Cognitive Robotics

(def-cram-function move-to (goal &optional (distance-threshold 0.1))
"Sends velocity commands until `goal' is reached."

(let ((reached-fl (< (fl-funcall #'cl-transforms:v-dist
(fl-funcall
#'cl-transforms:translation
(fl-funcall
#'pose-msg->transform
turtle-pose))

goal)
distance-threshold)))

(unwind-protect
(pursue

(wait-for reached-fl)
(loop do

(send-vel-cmd
1.5
(calculate-angular-cmd goal))

(wait-duration 0.1)))
(send-vel-cmd 0 0))))

Compute the Euclidean distance of the translation

Using Turtlesim with CRAM 3 34 Introduction to Cognitive Robotics

(def-cram-function move-to (goal &optional (distance-threshold 0.1))
"Sends velocity commands until `goal' is reached."

(let ((reached-fl (< (fl-funcall #'cl-transforms:v-dist
(fl-funcall
#'cl-transforms:translation
(fl-funcall
#'pose-msg->transform
turtle-pose))

goal)
distance-threshold)))

(unwind-protect
(pursue

(wait-for reached-fl)
(loop do

(send-vel-cmd
1.5
(calculate-angular-cmd goal))

(wait-duration 0.1)))
(send-vel-cmd 0 0))))

The reached-fl fluent returns T if the Euclidean distance
is less than the threshold

Using Turtlesim with CRAM 3 35 Introduction to Cognitive Robotics

(def-cram-function move-to (goal &optional (distance-threshold 0.1))
"Sends velocity commands until `goal' is reached."

(let ((reached-fl (< (fl-funcall #'cl-transforms:v-dist
(fl-funcall
#'cl-transforms:translation
(fl-funcall
#'pose-msg->transform
turtle-pose))

goal)
distance-threshold)))

(unwind-protect
(pursue

(wait-for reached-fl)
(loop do

(send-vel-cmd
1.5
(calculate-angular-cmd goal))

(wait-duration 0.1)))
(send-vel-cmd 0 0))))

The pursue form terminates whenever
one of the two forms in the body terminates

Using Turtlesim with CRAM 3 36 Introduction to Cognitive Robotics

(def-cram-function move-to (goal &optional (distance-threshold 0.1))
"Sends velocity commands until `goal' is reached."

(let ((reached-fl (< (fl-funcall #'cl-transforms:v-dist
(fl-funcall
#'cl-transforms:translation
(fl-funcall
#'pose-msg->transform
turtle-pose))

goal)
distance-threshold)))

(unwind-protect
(pursue

(wait-for reached-fl)
(loop do

(send-vel-cmd
1.5
(calculate-angular-cmd goal))

(wait-duration 0.1)))
(send-vel-cmd 0 0))))

Wait until the turtle arrives at the goal

Using Turtlesim with CRAM 3 37 Introduction to Cognitive Robotics

(def-cram-function move-to (goal &optional (distance-threshold 0.1))
"Sends velocity commands until `goal' is reached."

(let ((reached-fl (< (fl-funcall #'cl-transforms:v-dist
(fl-funcall
#'cl-transforms:translation
(fl-funcall
#'pose-msg->transform
turtle-pose))

goal)
distance-threshold)))

(unwind-protect
(pursue

(wait-for reached-fl)
(loop do

(send-vel-cmd
1.5
(calculate-angular-cmd goal))

(wait-duration 0.1)))
(send-vel-cmd 0 0))))

Send a velocity command
... and wait while that's executed

Using Turtlesim with CRAM 3 38 Introduction to Cognitive Robotics

(def-cram-function move-to (goal &optional (distance-threshold 0.1))
"Sends velocity commands until `goal' is reached."

(let ((reached-fl (< (fl-funcall #'cl-transforms:v-dist
(fl-funcall
#'cl-transforms:translation
(fl-funcall
#'pose-msg->transform
turtle-pose))

goal)
distance-threshold)))

(unwind-protect
(pursue

(wait-for reached-fl)
(loop do

(send-vel-cmd
1.5
(calculate-angular-cmd goal))

(wait-duration 0.1)))
(send-vel-cmd 0 0))))

Send a velocity command to stop the turtle

Using Turtlesim with CRAM 3 39 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Again, we first need to recompile the code

There are several options to do this

• Type C-c C-c with the cursor on the function to recompile only the function

• Type C-c C-k to recompile the file

• Reload the complete ASDF system
CL-USER> (ros-load:load-system "cram_my_beginner_tutorial" :cram-my-beginner-tutorial)
CL-USER> (in-package :tut)

Using Turtlesim with CRAM 3 40 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Clear the Turtlesim environment

The simplest way is just to kill the process in the terminal

in which it was started and restart

~$ rosrun turtlesim turtlesim_node
[INFO] [1586708039.479694452]: Starting turtlesim with node name /turtlesim
[INFO] [1586708039.489055920]: Spawning turtle [turtle1] at x=[5.544445], y=[5.544445], theta=[0.000000]
^C
~$ rosrun turtlesim turtlesim_node

Kill using <cntrl>-C

Using Turtlesim with CRAM 3 41 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Better:

• If the turtlesim environment gets a bit messy,
you can clear the background by entering the following from a terminal

~/workspace/ros/src/cram_my_beginner_tutorial/src$ rosservice call /clear

• Or you can reset it completely by entering the following from a terminal
(this creates a new turtle in the default pose)

~/workspace/ros/src/cram_my_beginner_tutorial/src$ rosservice call /reset

Using Turtlesim with CRAM 3 42 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Best:

You might even create a new function in control-turtlesim.lisp to reset (you might do the same for clear)
Here's the code:

(defvar *reset-srv* nil "name of ROS service for resetting the simulator")
…

;; add this to (defun init-ros-turtle (name) …)
(setf *reset-srv* (concatenate 'string "reset"))
…

(defun call-reset ()
"Function to call the reset service."
(call-service *reset-srv* 'std_srvs-srv:empty))

Using Turtlesim with CRAM 3 43 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Best:

You might even create a new function in control-turtlesim.lisp to reset (you might do the same for clear)

Now, to reset Turtlesim:

TUT> (call-reset)

Using Turtlesim with CRAM 3 44 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Run the following

TUT> (top-level
(dolist (goal '((9 1 0) (9 9 0) (1 9 0) (1 1 0) (9 1 0)))

(move-to (apply #'cl-transforms:make-3d-vector goal))))

The turtle should now move to these four waypoints, as shown

Using Turtlesim with CRAM 3 45 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Run the following

TUT> (top-level
(dolist (goal '((9 1 0) (9 9 0) (1 9 0) (1 1 0) (9 1 0)))

(move-to (apply #'cl-transforms:make-3d-vector goal))))

The turtle should now move to these four waypoints, as shown

To execute CRAM Plan Language code (e.g. pursue or def-cram-function)
we need to either call it from a function that was defined with def-top-level-
cram-function or we need to wrap it in a top-level form

Quoted list of four waypoint coordinates

Recall: the dolist macro iterates
through the elements of a list

Apply the sharp-quoted function to create an
argument of the appropriate type (a 3D vector)
from each goal list in the dolist

Using Turtlesim with CRAM 3 46 Introduction to Cognitive Robotics

Implementing simple plans to move a turtle

Experiment with this by changing waypoint coordinates

• You don't have to re-type the entire form each time

• You can copy and paste the text from the previous slides, edit it, and run it

• Or you can get REPL to replicate previously entered text:
– Positioning the cursor over the text you want
– Press enter to have it copied to the current prompt

– Edit the text
– press enter to run it

~/workspace/ros/src/cram_my_beginner_tutorial/src$ emacs package.lisp

Using Turtlesim with CRAM 3 47 Introduction to Cognitive Robotics

CRAM Beginner Tutorials

Create a CRAM Package http://cram-system.org/tutorials/beginner/package_for_turtlesim
Controlling turtlesim from CRAM http://cram-system.org/tutorials/beginner/controlling_turtlesim_2
Implementing simple plans to move a turtle http://cram-system.org/tutorials/beginner/simple_plans

Using Turtlesim with CRAM 3 48 Introduction to Cognitive Robotics

Background Reading

G. Kazhoyan, Lecture notes: Robot Programming with Lisp 7. Coordinate Transformations,
TF, ActionLib, slides 5-8.
https://ai.uni-bremen.de/_media/teaching/7_more_ros.pdf

http://wiki.ros.org/tf/Overview/Transformations

T. Rittweiler, CRAM – Design and Implementation of a Reactive Plan Language, Bachelor
Thesis, Technical University of Munich, 2010.
https://common-lisp.net/~trittweiler/bachelor-thesis.pdf

