
1

Intensive Revision:

Basic Principles of
Computer Programming in C

David Vernon

www. vernon.eu

2

The Computer Model

Information Processing

! When we process information, we do one of two things:

" we change its representation (typically to enhance it)

" we analyze it to extract its meaning

! How do we process information?

3

The Computer Model

Computer Software

! A computer program is a sequence of instructions
(statements)

! Expressed in a given language (e.g. C)

! The language has a 'vocabulary'
" a set of words

! The language has a 'grammar'
" a set of rules about how words can be linked together

" This is called the syntax of the language

4

A C Program

/* Example 1 */
/* This is a C program to ask you to type a letter */
/* and then to tell you what you typed */

#include <stdio.h>
int main() {

char letter;

printf("Please type a letter & then press Return >>");

scanf("%c",&letter);
printf("You typed the letter %c", letter);

}

5

A C Program

/* Example 1 */
/* This is a C program to ask you to type a letter */
/* and then to tell you what you typed */

! These are called comments

! They don't do anything, in that they don't cause the computer to
process information

! Their purpose is simple to annotated the program: to tell
someone reading the program what the program does

6

A C Program

int main() {

! main is the name of the program

! all C programs must have a main part

! The int before main says that the program can return an integer value (see
later section on functions)

7

A C Program

int main() {

! The open bracket (and close bracket) with nothing in between
says that the program main doesn't work directly on information

! we'll see later that we can put something in between the brackets and the
program can use this 'something'

8

A C Program

int main() {

! Finally, there is the { character

! We call this an opening brace or curly bracket

! This simply says that everything that follows until we meet the } character is part
of the main program

! The } is at the end of the program and we call it a closing brace or curly bracket

9

A C Program

#include <stdio.h>

! says 'use the standard input/output utilities' if you want to read
and write messages

! There is a more technical interpretation of #include but we don't
need to bother with this for now

10

A C Program

char letter;

! causes the creation of a variable which can represent
characters

! The name of the variable is letter and it can be used to
represent the letter a or b or c or j or v or z

! Think of it as a general purpose letter holder (for one letter only)

11

A C Program

printf("Please type a letter & then press Return >>");

! This simply says print everything enclosed in the double quotes
to the screen

12

A C Program

scanf("%c",&letter);

! is, in a way, the opposite of the printf line

! Instead of printing things, it reads things

! In this case, we are reading in a character

! that's what the " %c " denotes

! there are other symbols if we are reading other things such as numbers

13

A C Program

scanf("%c",&letter);

! Where do we put that character?

! We put it in the variable letter

! The symbol & is used to tell computer that we are allowing the
value of letter to be changed, i.e. to be given (assigned) the value
we read from the keyboard.

14

A C Program

scanf("%c",&letter);

! If we didn't have the & symbol, then we wouldn't be able to

change the value of letter to the character we read.

15

A C Program

printf("You typed the letter %c", letter);

! What's different here is

! the inclusion of the %c at the end of the message and

! the addition of the name of our character variable, separated by a comma

! The %c denotes a character and says 'we want to write out a character'
" "What character?"

" The character which is held in the variable letter

16

A C Program

! Each line of this program above is known as a statement

! Did you spot the semi-colons, i.e. the ; characters, in all of the
above?

! In the C programming language, the semi-colons are used to temininate or finish-
off each distinct statement

17

Summary

/* This is a comment */

int main() is the name of our program

#include <stdio.h> means use the standard input and output
factilities defined in the file stdio.h

18

Summary

char defines a character variable

printf() prints a message to the screen

scanf() reads something from the keyboard

& says you can change the value of what follows

%c says this is a character format

; terminates a statement

19

Summary

! The program does something like this:

Ask the user to type in a character
Read the character
Print out a message and the character we just read

! This is called pseudo-code
! it isn't a real piece of computer code

! but it tells us in computer-like way what the computer code would do.

20

Summary

! Later on we'll use pseudo-code to describe what a progam does before we
actually write the computer program

! This 'preliminary draft' of the program is called design

! It is a crucial part of the overall process of writing computer software

21

The Computer Model

! Assuming we have designed and written a C program, we now
we want to run it

! Let's do that together

22

A Second Example Program

In this section we will develop another
slightly more complicated program

23

A Second Example

! Let's say we want the program to compare two numbers and tell
us if they are the same

! a simple task but all decisions basically come down to comparing two
values

! This time, rather than start with the finished program, we'll take
one step back and figure out for ourselves what it should look like

! We'll do this using the pseudo-code we met above

24

A Second Example

Ask the user to type in the first number
Read the first number
Ask the user to type in the second number
Read the second number
Compare the two number and print out a number

! This is fine but the last line is a bit too general

! To formulate exactly what we mean, let's try an example

25

A Second Example

! Let's say the first number is 10 and the second number is 12

! How do we compare them?
! see if they are the same number.

! How can we say that?

! We could ask are they equal.

! In C the way we check to see if things are equal is to say something like:

if one_thing == another_thing

26

A Second Example

! In the number system, 10 comes before 12

! How might we formulate that? We simply say:

if one_thing < another_thing

! Similarly, we might ask:

if one_thing > another_thing

27

A Second Example

! That's progress but we need more

! What are we going to do if one thing is equal to another (or if
one thing is less than another)

! Again, it's fairly straightforward. You just say

then do something

28

A Second Example

! And what if the answer to our question wasn't correct (or true)?

! We have two options:

" do nothing
or

" do something else

if one_thing < another_thing
then do one thing
else do a different thing

29

A Second Example

! We normally write this as follows:

if one_thing < another_thing
then

do one thing
else

do a different thing

! This indentation doesn't matter to the computer1but it's very
important readability by humans, especially as the programs
become large

1 Except in Python and some other languages

30

A Second Example

! This is called an if-then-else construct

! It can be stated more formally:

"if the following condition is TRUE then do one thing else
(i.e. otherwise) do a different thing"

! Note that if we didn't want to do anything at all if the test was not
TRUE (that is, if it was FALSE) we'd just leave out the else part
(often called the else-clause)

31

A Second Example

Now we can expand the 'Compare' statement:

ask the user to type in the first number
read the first number
ask the user to type in the second number
read the second number
if the first number == the second number
then

print: the numbers are identical
else

print: the numbers are different

32

/* Example 2 */
/* This is a C program to ask you to enter two */
/* numbers; it then compares them and prints a */
/* message to say whether they are equal or not */

#include <stdio.h>

void main() {

int first_number, second_number;

printf("Type a number and then press Enter >>");
scanf("%d",&first_number);

printf("Type another number and then press Enter >>");
scanf("%d",&second_number);

33

/* Example 2 */
/* This is a C program to ask you to enter two */
/* numbers; it then compares them and prints a */
/* message to say whether they are equal or not */

#include <stdio.h>

void main() {

…TEXT DELETED…

if (first_number == second_number)
printf("The two numbers %d are identical",

first_number);
else

printf("The two numbers %d and %d are different",
first_number, second_number);

}

34

A Second Example

Several things to note:

We now have void main() {

This means that the main program does not return any value

35

A Second Example

Several things to note:

We now have two integer variables (first_number, second_number)

We declared them in the same way as before but we separated them with a
comma.

int first_number, second_number;

36

A Second Example

We could also have said

int first_number;
int second_number;

Note that we put an underscore instead of a space.
As a general rule, you can't have spaces in the middle of the name of a
variable.

37

A Second Example

We changed the names of the variables in the scanf statements to
first_number and second_number

Note that we put a pair of brackets around the test in the if statement;
these brackets MUST be there

if (first_number == second_number)

38

A Second Example

In the second printf statement, we now have two variables:
first_number and second_number

printf("The two numbers %d and %d are different",
first_number, second_number);

These are separated by a comma

Because we have a second variable, the value of which is to be printed out in the
message, we also need a second %d

Note that the value of the number will go into the message exactly where each %d is
placed

39

A Second Example

! Finally, did you notice that we left out the word then in the C
program?

! In C, the then is omitted

! Since it is normally required in many other programming
languages and since it sounds more natural anyway, we'll keep
on using it in our pseudo-code and then simply drop it when
we write the corresponding C program

! Now, let's enter and run the program

40

Example No. 3

! Learn a little more C

! Begin to learn how to solve problems

! Software development is more about solving problems than it is about writing
code

! As we become more proficient at software development, we begin to take the
underlying skills (or writing code) for granted

41

Example No. 3

! Compute the 'Scrabble' value of a collection of 7 letters

Scrabble

" a word-game

" players are awarded points for creating words from a random sample of seven letters

" Each letter carries a different point value

" the value of the word is the sum of the point values of each letter in the word

" We will assume we have a word with 7 letters … later we will modify the program to
deal with words with between 1 and 7 letters.

S1

42

C3 O1 M3 P3 U1 T1 E1

43

Example No. 3

! First: how would you solve the problem if you had seven letters in
front of you?

! Probably, you'd pick up the first letter and find out its value

! Then you'd pick up the second letter,
" find out its value,

" and add that to the first

! Then you'd pick up the third,
" find its value,

" and add it to … what? To the running total

! And again with the fourth, the fifth, the sixth, and the seventh

44

Example No. 3

! That's the beginning of a solution

! we call this type of solution an algorithm

! a step-by-step set of guidelines of what we have to do to get the answer we seek

! Let's try to write it out in pseudo-code

45

Example No. 3

Pick up the first letter
Find its value
Add this value to a running total

Pick up the second letter
Find its value
Add this to a running total
...
Pick up the seventh letter
Find its value
Add this to the running total

Print out the value of the running total

46

Example No. 3

What if we had not just 7 letters but 70

! The approach above is not going to work simply because we'd need to write out
the above program segment 10 times

! Instead of writing out each and every step, we can say

'do the following again and again and again until you have done it enough.'

! This means we loop around the same code again and again until we are finished

47

Example No. 3

In pseudo-code:

Do the following seven times
Pick up a letter
Find its value
Add this to the running total

! We have reduced 21 lines of pseudo-code to 6

! If we were had 70 letters instead of 7: our savings would have been even
greater (6 lines instead of 210)

48

Example No. 3

Note the way we indented the three statements with respect to the
'Do the following seven times'

! this indentation is a way of visually saying that these are the statements which
are governed by the loop i.e. which are done seven times

! We'll see in a moment that the C language needs a little extra help in addition to
the indentation but we'll retain the indentation nonetheless

49

Example No. 3

How do we know when we have looped seven times?

! We count! And when we have counted up to the total of seven, we're finished

! Of course, that means we start counting at 1

! Note that there are other way of counting
" 11 to 17

" 0 to 6

50

Example No. 3

The C programming language has shorthand way of saying all this

! It uses a counter

! gives it an initial value

! tells it to add a number each time round the loop

! and also says when to stop counting

! Actually, it doesn't say when to stop, it says when it is allowed to keep on
counting – the exact opposite of when to stop

! That simply means: keep counting if we haven't reached the required number
yet. Here's the C code:

51

Example No. 3

for (i=1; i<= 7; i = i+1)

! The i=1 part set the value of i to 1

! The i<=7 says keep counting as long as i is less than or equal
to seven

! The i=i+1 simply adds 1 to i each time around the loop.
! This means we'll count 1, 2, 3, 4, 5, 6, 7 and when we get to 8 we stop

52

Example No. 3

! What about the next pseudo-code statement: pick up a
letter?

! We've done that already in our first program. We simply ask the
user of the program for a letter and then we read it:

printf("Please type a letter & then press Return >>");

scanf("%c",&letter);

53

Example No. 3

Now the next part: Find the value of the letter

! Each letter has a given fixed value

! We encode these values in the program

! There are many ways of doing this; some are very efficient and elegant - others
are more obvious and not so efficient

! We'll use the if-then-else approach

" check to see if it is an A; if it is we set a variable to the value of the A letter

" If it's not an A then we need to check B; if it is a B then we set the variable to the B
value

" Otherwise (else) we set check C, and then D, and so on.

" (Note: there are better ways of doing this … more later).

54

Example No. 3

if letter == 'A'
then

value is 10;
else

if letter == 'B'
then

value is 2;
else

....
if letter == 'Z'
then
value is 10;

55

Example No. 3

Note something very important:

! we wrote the actual letter, not on its own, but in between two inverted commas
(e.g. 'Z')

! Why didn't we just write the letter on its own (e.g. Z)?

! When we wrote the word letter we were referring to a variable called
letter, an object into which we could place a value when we needed to (and
change the value later, if we needed to)

! Similarly, if we write A then this is just a variable with a very short name

! We want the value of the letter 'A', i.e. the C representation of the letter 'A'

56

Example No. 3

To make this a little clearer, let's consider another example.

! A short while ago, we used a variable called i as a counter

! i took on the numerical values 1, 2, 3, 4, 5, 6, and 7 in turn

! In this case, i is a number variable and we give it number values

57

Example No. 3

Actually, there are two types of numbers we could choose:

" real numbers (i.e. numbers with a decimal place)

" whole numbers (i.e. numbers with no decimal place)

" In computer terminology, we refer to real numbers as floating point numbers (there is
a technical reason for this to do with their computer representation but we don't have
to bother with it at this point)

" In C, we call floating point numbers float for short

" We refer to the whole numbers as integers or int for short

58

Example No. 3

! So what about our letters?

! Letters are just a subset of things called characters which also include
exclamation mark (!), commas (,), full stops (.), and so on

! In fact anything you can type on a keyboard is a character

! In C, we call them char for short

59

Example No. 3

! Whenever we declare a variable in a program,
we must say what type of variable it is

! Is it an int (integer or whole number)

! a float (floating point number or real number)

! or a char (character)?

! We'll see how to do this in a moment when we write out this C
program

60

Example No. 3

! Note that float, int, and char are not the only types in C

! There are many other types and we'll even define our own types

! However, the float, int, and char types form the basic
building blocks for all these more advanced types

! Almost everything we can think of can be described
(i.e. represented) by a sequence of characters or a collection of
numbers

61

Example No. 3

! In Scrabble, not all the letters have different values: some letters
have the same value

! We can use this fact to help reduce the number of if-then-else
statements by grouping the letters which have the same value
together:

62

Example No. 3

Letter Value

A E I L N O R S T U 1

DG 2

B C M P 3

F H V W Y 4

K 5

J X 8

Z Q 10

63

Example No. 3

Our series of checks now becomes:

if letter == ' 'or letter == ' '
then

value is ;
else

if letter == ' '
then

value is ;
else

...
if letter == ' '
then
value is 10;

64

Example No. 3

! We are almost ready to write our program

! We have decided on the actions we need to take – the logic of
the program – now all we need to do is to decide what variables
we need to represent our information

! In this example, we have only three pieces of information:

! The letter entered by the user

! its Scrabble value,

! the total Scrabble value
! (the enter character)

65

Example No. 3

! Have we forgotten anything?

! Yes, we have! We forgot our loop counter i

! Let's give these four variables names and types.

Variable Name Variable Type
letter char
enter char
scrabble_value int
total_scrabble_value int
i int

66

/* Example 3 */
/* Compute the total value of 7 Scrabble letters */
/* Input: the user is prompted to enter each letter */
/* in turn */
/* Output: the program prints the sum of the seven */
/* individual letter values */

#include <stdio.h>

void main() {

char letter, enter;
int scrabble_value,

total_scrabble_value,
i;

/* initialize variables */

total_scrabble_value = 0;

/* use a for loop to read seven variables */

67

/* use a for loop to read seven variables */

for (i=0; i < 7; i++) {
printf("Please type a letter and then press Return >>");
scanf("%c",&letter);
scanf("%c",&enter); /* skip enter character */

if ((letter == ' ') ¦¦ (letter == ' '))
scrabble_value = 0;

else
if ((letter == ' ') ¦¦ (letter == ' '))

scrabble_value = 0;
MORE.…

/* now add the value to the total */

total_scrabble_value = total_scrabble_value + scrabble_value;
}

printf("The Scrabble value of the seven letters is %d",
total_scrabble_value);

}

68

Example No. 3

Again, several things are worth noting about this program:

Did you notice the { which follows immediately after the for statement?

In C, only one statement is part of the loop
(i.e. only one statement is repeated again and again)

This is the statement which follows immediately after the for statement

If we want more than one statement to be repeated (and we certainly do in this
case) then we simply enclose them in a pair of braces or curly brackets

69

Example No. 3

We call the statement or group of statements to be repeated the
body of the loop

We indent the body of the loop with respect to the loop control
statement to show the structure of the logic of the program visually

70

Example No. 3

Note how we translated our pseudo-code statement:

if letter == 'A'or letter == 'B'

into

if ((letter == 'A') ¦¦ (letter == 'B'))

71

Example No. 3

We see three things:

! First, we use the two-character symbol || instead of the word or

" Note that these two characters go side-by-side; we can't put any spaces in between
them.

72

Example No. 3

We see three things:

! Second, we put brackets around each test

" This isn't strictly necessary but it's good practice

" C has its own rules about how it goes about figuring out whether or not the if
statement is true or false and, on occasion, the rules can be tricky to follow

" However, if we put brackets around the test like we have, it's clear how things work

" We call one of these tests (e.g. letter == 'A') a relational expression because it finds
out the relationship between the object on the left (in this case the variable letter) and
the object on the right (the character value 'A')

73

Example No. 3

We see three things:

! Thirdly, we put a pair of braces around the entire if test just as we did in the
second example.

74

Example No. 3

As a general rule, when we use variables we should never assume
anything about their initial values

Variables are like boxes for holding things

When you declare a variable, you get a box but you have no idea what's in it

So, we always – repeat, always – initialize the variables with some value before
we ever use that variable

Think about it: it makes a lot of sense to put something into the box before taking
anything out!

75

Example No. 3

When we declared the four variables, we put one on each line
but we didn't have to

We do it just to make the presentation visually appealing and to improve
readability

We assigned a value to total_scrabble_value with the =
operator

A very common mistake made by people who are new to C is to
get the two operators = and == mixed up

76

Example No. 3

The difference is crucial:

= is an assignment operator and assigns values to variables

== is a relational operator and it is used to test the equality of the two objects on
either side of it. Actually, these two objects are called operands: the things that
the operators operate on!)

77

Example No. 3

At this point, we've learned quite a lot of C programming.
We know how to:

! Write a complete program

! Read and write messages, numbers, characters

! Use an if [then] else statement

! Use a loop

! Know how to declare variables

! Know how to assign values to variables

78

Practise Solving Problems
& Creating Algorithms

Key Skills

! Manual walkthroughs

! Creative thinking about the problem

! Spotting patterns

! Using pseudo-code

79

Practise Solving Problems
& Creating Algorithms

Manual walkthroughs

! Do it

! Do it again and watch yourself doing it

! Write down what you saw

! Polish (refine) what you wrote into pseudo-code
" Assignment

" Iteration / loops

" Conditional execution

! Manually execute your pseudo-code on input with a window
(with a letter-box view, i.e. line by line)

80

Example 4:
Comparing Numbers

! Design and write a program to prompt the user
three times and reads three numbers

! It should then compare these three numbers
and tell the user whether
! all three numbers are the same

! all three numbers are different

! just two numbers are the same
" tell the user which two numbers they are

! The program should continue to ask the user
for input until she or he enters three zeros

81

In pseudo-code:

n1 = 1; n2 = 1; n3 = 1;
While the three numbers are not all zero

(i.e. NOT(all three numbers are zero))
do the following

Read a number n1
Read a number n2
Read a number n3

if n1 == n2 and n2 == n3 and n1 == n3
then

print the numbers are all the same
else

if n1 != n2 and n2 != n3 and n1 != n3
then

print the numbers are all different

82

else
/* two are the same … which are they? */

if n1 == n2
then

print two are the same:
the first and the second: n1, n2

else
if n1 == n3

print two are the same:
the first and the third: n1, n3

else
print two are the same:
the second and the third: n2, n3

83

/* A program to prompt the user three times and reads three numbers. */
/* It compare these three numbers and tell the user whether */
/* */
/* - all three numbers are the same */
/* - all three numbers are different */
/* - just two numbers are the same */
/* in this case, it also tells the user which two numbers they are */
/* */
/* The program continues to ask the user for input until he enters */
/* three zeros. */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

void main() {

84

int n1, n2, n3;

/* give the numbers initial values */

n1 = 1;
n2 = 1;
n3 = 1;

/* while the three numbers are not all zero */

while (! ((n1 == 0) && (n2 == 0) && (n3 == 0))) {

printf("Please enter the first number >>");
scanf("%d",&n1);

printf("Please enter the second number >>");
scanf("%d",&n2);

printf("Please enter the third number >>");
scanf("%d",&n3);

85

/* check to see if they are all the same */

if ((n1 == n2) && (n2 == n3) && (n1 == n3)) {
printf(" The three numbers are all the same. \n");

}
else {

if ((n1 != n2) && (n2 != n3) && (n1 != n3)) {
printf("The three numbers are all the different.\n");

}
else {

/* two are the same - which are they? */

if (n1 == n2) {
printf("The first and second numbers are the same: %d\n", n1, n2);

}
else {

if (n2 == n3) {
printf("The second and third numbers are the same: %d\n",n2, n3);

}
else {

/* no need to check if the first and third */
/* are the same ... it's the only possibility */
printf("The first and third numbers are the same:%d\n", n1, n2);

}

86

}
}

}
}

}

87

Example No. 4

Note how we translated our pseudo-code statement:

if n1 == n2 and n2 == n3 and n1 == n3

into

if ((n1 == n2) && (n2 == n3) && (n1 == n3))

88

Example No. 4

We used a while loop rather than a for loop

It has the format:

while <condition is true>
statement

statement is executed as long as the condition is true

Obviously, we need a compound statement {}
if we want to repeat several statements

89

Example No. 4

while (! ((n1 == 0) && (n2 == 0) && (n3 == 0))) {

/* all the statements are repeatedly */

/* executed while this condition is true */
/* i.e. while NOT all numbers are zero */

/* so we finish when they are all zero! */

}

90

Example No. 4

We used the ! operator for the
logical NOT operation

We used the && operator for the
logical AND operation

91

Example No. 4

We could also have used a third type of loop:
the do while loop

It has the format:

do
statement

while <condition is true>

statement is executed as long as the condition is true

92

Example No. 4

while (! ((n1 == 0) && (n2 == 0) && (n3 == 0))) {

/* all the statements in repeatedly */

/* executed while this condition is true */
/* i.e. while NOT all numbers are zero */

/* so we finish when they are all zero! */
/* */
/* we could have written this in another */

/* way: */
/* while ((n1!=0) || (n2!=0) || (n3!=0)) */

}

93

Aside: De Morgan's Laws

94

A More Formal Treatment of C

95

Programs:
Statements + Data Constructs

! Every C program is built up from two different
types of construct:

! Data constructs
" often called data-structures

" these hold, or represent, information

! Statements
" these define actions

" the actions usually process the data

o input data

o transform data

o output data

96

Programs:
Statements + Data Constructs

! Each program contains one or more functions,
one of which is called main
int main()

{ /* beginning of body */
…

} /* end of body */

! A function is a logical collection of statements
which can be referred to by the function name
! e.g. cos(x) is a function which computes the cosine of an angle x

97

Data Constructs

Declarations

Define variables:
" name

o a sequence of characters by which we refer to that variable: this is
called an identifier

" type

o a definition of all the possible values that the variable can have.

" For example:
int counter;
o declares a variable called counter which can take on any of the

integer values

o We say the counter variable is instantiated

98

Data Constructs

Declarations

! Optionally, declarations initialize variables

! For example:
" int counter = 0;

" declares a counter of type integer and gives it an initial value zero

99

Data Constructs

! An identifier is a sequence of characters in
which only letters, digits, and underscore _ may
occur

! C is case sensitive ... upper and lower case
letters are different

! int counter = 0;

! int Counter = 0; /* different */

100

Data Constructs

! There are three basic types in C:
int

float

char

! int variables can have integer values

! float variable can have real number (floating point) values

! char variables can have character values

! So, how do we write integer, floating point, and
character values in C?

101

Data Constructs

Integer values:

! 123 (decimal)

! 0777 (octal)

! 0xFF3A (hexadecimal)

! 123L (decimal, long - 4 bytes)

! 12U (decimal, unsigned - no sign bit)

102

Data Constructs

Floating Point Values

! Type float
82.247

.63l

! Type double (8 byte representation)
82.247

.63

83.

47e-4

1.25E7

61.e+4

103

Data Constructs

Character Values

! 'A' enclosed in single quotes

! Special characters (escape sequences)
'\n' newline, go to the beginning of the next line

'\r' carriage return, back to the beginning the
current line

'\t' horizontal tab

'\v' vertical tab

'\b' backspace

'\f' form feed

'\a' audible alert

104

Data Constructs

Character Values

'\\' backslash

'\'' single quote
'\"' double quote

'\?' question mark

'\000' octal number

'\xhh' hex number

105

Data Constructs

Floating Values

Type Number of Bytes
float 4

double 8

long double 10

Implementation dependent

106

Data Constructs

String Values

! String literal

! String
"How many numbers?"

"a"

! "a" is not the same as 'a'

! A string is an array of characters terminated by the escape
sequence '\0'

! Other escape sequences can be used in string literals, e.g. "How
many\nnumbers?"

107

Statements: Comments

! /* text of comment */

! The characters contained in a comment are
ignored by the compiler

108

Statements: Assignment

Assignment Statement

! Syntax:
variable = expression ;

! For example

x = p + q * r;

! Operators:
+, *, =

! Operands:
p, q, r, x

109

Statements: Unary Operators

Unary operator: -, +

neg = - epsilon;

pos = + epsilon;

110

Statements: Binary Operators

Binary operators: +, -, *, /, %

a = b + c;

! Integer overflow is not detected

! Results of division depends on the types of the operands
float fa = 1.0, fb = 3.0;
int a = 1, b = 3;

what is the value of fa/fb;

what is the value of a/b;

111

Statements: Modulus

Remainder on integer division

%

39 % 5 /* value of this expression? */

112

Statements: Arithmetic Operations

Assignment and addition

x = x + a

x += a

! These are expressions and yield a value as well as performing an
assignment

! We make them statements by adding ;
x = x + a;

x += a;

113

Statements: Arithmetic Operations

Other assignment operators

x -= a

x *= a

x /= a
x %= a

++i /* increment operator: i += 1 */

--i /* decrement operator: i -= 1 */

114

Statements: Arithmetic Operations

Other assignment operators

/* value of expression = new value of i */

++i // increment operator: i += 1
--i // decrement operator: i -= 1

/* value of expression = old value of i */

i++ // increment operator: i += 1

i-- // decrement operator: i -= 1

115

Types, Variables, and Assignments

Type Number of Bytes
char 1

short (short int) 2
int 2

long (long int) 4

float 4

double 8

long double 10

116

Types, Variables, and Assignments

Use sizeof to find the size of a type
e.g.

sizeof (double)

117

Statements: output

For output, use (C library function) printf

char ch = 'A'; int i = 0;
float f = 1.1; double ff = 3.14159;

printf("ch = %c, i = %d\n", ch, i);
printf("f = %10f, ff = %20.15f\n", f, ff);

118

Statements: output

! To use printf you must include stdio.h

#include <stdio.h>

! syntax:
printf(<format string>,

<list of variables>);

! <format string>

String containing text to be printed and
conversion specifications

119

Statements: output

! Conversion specifications

%c characters
%d decimals
%f floats or doubles

%s strings

! can also include field width specifications:
%m.kf m is the field width

k is the number of digits
after the decimal point

120

Statements: input

! For input, use (C library function) scanf

char ch = 'A'; int i = 0;
float f = 1.1; double ff = 3.14159;

scanf("%c %d %f %lf", &ch, &i, &f, &ff);

! The ampersand & is essential
! It takes the address of the variable that follows

! scanf expects only variables

121

Compound Statement

! Statements describe actions

! Expressions yield values

! We use braces {} to build a complex, i.e.
compound, statement from simpler ones

! Typically, we use compound statements in places
where the syntax allows only one statement

{ x = a + b;

y = a - b;

}

122

Comparison and
Logical Operators

Operator Meaning
< less than
> greater than

<= less than or equal to
>= greater than or equal to

== equal to

!= not equal to

&& logical AND
|| logical OR

! logical NOT

123

Comparison and
Logical Operators

! <, >, <=, >= are relational operators

! == and != are equality operators

! relational operators have a higher precedence than equality
operators (i.e. they are evaluated first in an expression)

! Expression formed with these operators yield one of two possible
values
0 means false

1 means true

Both are of type int

124

Conditional Statements

! Syntax
if (expression)

statement1
else

statement2
! The else clause is optional

! Semantics
! statement1 is executed if the value of expression is non-zero

! statement2 is executed if the value of expression is zero

125

Conditional Statements

! Where appropriate statement1 and
statement2 can be compound statements
if (a >= b)
{ x = 0;

if (a >= b+1)

{ xx = 0;
yy = -1;

}
else

{ xx = 100;

yy = 200;

}

}

126

Iteration Statements

! while-statement syntax
while (expression)

statement

! semantics
! statement is executed (repeatedly) as long as expression is non-zero

(true)

! expression is evaluated before entry to the loop

127

Iteration Statements

/* compute s = 1 + 2 + ... + n */

s = 0;

i = 1;

while (i <= n)

{ s += i;

i++;

}

128

Iteration Statements

! do-statement syntax
do

statement
while (expression);

! semantics
! statement is executed (repeatedly) as long as expression is non-zero

(true)
! expression is evaluated after entry to the loop

129

Iteration Statements

/* compute s = 1 + 2 + ... + n */

s = 0;

i = 1;

do /* incorrect if n == 0 */

{ s += i;

i++;

} while (i <= n)

130

Iteration Statements

! for-statement
for (statement1 expression2; expression3)

statement2

! semantics
! statement1 is executed

! statement2 is executed (repeatedly) as long as expression2 is true
(non-zero)

! expression3 is executed after each iteration (i.e. after each execution
of statement2)

! expression2 is evaluated before entry to the loop

131

Iteration Statements

/* compute s = 1 + 2 + ... + n */

s = 0;

for (i = 1; i <= n; i++)

s += i;

132

Switch

! switch (expression) statement

! the switch statement causes an immediate jump to the
statement whose label matches the value of expression

! statement is normally a compound statement with several
statements and several labels

! expression must be of type int, char

133

Switch

/* example of the switch statement */

switch (letter)

{ case 'N': printf("New York\n");

break;

case 'L': printf("London\n");

break;

case 'A': printf("Amsterdam\n");

break;

default: printf("Somewhere else\n");

break;

}

134

Switch

/* example of the switch statement */

switch (letter)

{ case 'N': case 'n': printf("New York\n");

break;

case 'L': case 'l': printf("London\n");

break;

case 'A': case 'a': printf("Amsterdam\n");

break;

default: printf("Somewhere else\n");

break;

}

135

Bit Manipulation

The following bit manipulation operators can be
applied to integer operands:

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

~ Inversion of all bits

<< Shift left

>> Shift right

136

File Input/Output

! So far, we have read all input from the keyboard
and written all output to the screen

! Often, we want to be able to read and write
information to and from files on disk

! We can use everything we learned about printf
and scanf to do this, with just a few changes

137

File Input

! Declare a file pointer
FILE *fp;

! Open the file for reading
fp=fopen("input.txt", "r");

! Read from the file
fscanf(fp, "%d", &number); /* assume int number */

! Close the file
fclose(fp);

138

File Input

We may also need to check if the file open operation
was successful

fp=fopen("input.txt", "r");

if (fp == 0) {

printf("unable to open input.txt\n");
exit();

}

139

File Input

! We can also check if we have reached the end of the
file

int end_of_file;

end_of_file = fscanf(fp,"%d",&number);

if (end_of_file == EOF) {
printf("end of input.txt reached\n");
exit();

}

! Usually use this to control a loop

140

File Input

int end_of_file;

end_of_file = fscanf(fp_in, "%d", &n);
while (end_of_file != EOF)
{

/* do something with n here */

……

/* now read another value */
end_of_file = fscanf(fp_in, "%d", &n);

}

141

FILE *fp; /* declare a file pointer */
int number; /* number to be read */

/* open the file: filename is input.txt */
/* r means open for reading */

fp=fopen("input.txt", "r");

/* check to see if we could open the file */
/* if not, issue an error message and quit */

if (fp == 0) {
printf("unable to open input.txt\n");
exit();

}

142

/* read a number */

fscanf(fp, "%d", &number); /* similar to scanf */

/* rest of processing goes here … */

/* when you have finished reading all the numbers, */
/* close the file */

fclose(fp);

143

File Output

! Declare a file pointer
FILE *fp;

! Open the file for writing
fp=fopen("output.txt", "w");

! Write to the file
fprintf(fp, "%d", number); /* assume int number */

! Close the file
fclose(fp);

144

FILE *fp_out; /* declare a file pointer */
float pi=3.14; /* number to be written */

/* open the file: filename is output.txt */
/* w means open for reading */

fp_out=fopen("output.txt", "w");

/* check to see if we could open the file */
/* if not, issue an error message and quit */

if (fp_out == 0) {
printf("unable to open output.txt\n");
exit();

}
fprintf(fp_out, "%f", pi);
fclose(fp_out);

145

File Input/Output

Exercise

! Write a program to read a file containing five integers and
find the maximum value

! Input: input.txt

! Output: maximum is written to the screen

146

File Input/Output

Exercise

! Write a program to copy a file of integers to another file

! Input: input.txt

! Output: output.txt

! Note: we don't know how many numbers are in the file

147

File Input/Output

Exercise

! Write a program to read a file of floating point numbers and
find the maximum value

! Input: input.txt

! Output: output.txt

! Note: we don't know how many numbers are in the input file

148

Functions

C allows us to create our own functions

! We normally use functions if we have a well-
defined segment of code which we wish to use
many times in a program

! We can then use that segment of code simply
by referring to the function name

149

Functions

Function A

Function B

Main(){
A();
B();

}

Question:
How do we provide
the functions with information
or data to use?

Answer:
We use parameters
and arguments

150

Functions

void A(int x)

void B(float y)

Main(){
float z;
A(10);
B(z);

}

Parameter

Argument

The value of z is passed
to the function B

This is called
parameter passing

151

Functions

! Function Definition:
! Function name

! Function type

! Function parameters

! Constituent statements

! Local variables

! Function Call
! Passing parameters (arguments)

! Execution of a function

152

/* Definition of a function to print a message */

void message(int message_number)
{

switch (message_number)
{

case 1: printf("Hello World");
break;

case 2: printf("Goodbye World");
break;

default: printf("unknown message number");
break;

}
}

153

/* Example function call */

void main()
{

int x=2;

message(1); /* what will happen? */
message(x);
message(0);

}

154

Functions

Points to notice:

! the function name is message and we call the function simply
by naming it

! the function has a type void (more later)

! the function has one parameter: message_number

! when we call the function we must provide a corresponding
argument (and the types of the parameter and argument
must be the same).

155

Functions

Points to notice:

! the argument doesn't have to be a variable in this case; we
can use a literal value

! this is true only because we are passing the parameter by
value

! this means we take a copy of the argument and pass to the
function

! the function is then free to do whatever it likes with it and it
will have no effect on the argument

156

Functions

2 Pass parameter
by value:

make a copy
of the argument

2

message_number

message

x

message

157

Functions

! What happens if we DO want to change the
argument?

! Pass the parameter by reference

! This means we don't make a copy but use the
address of the argument instead

158

Functions

/* Example function call */

void main()
{

int x=2, check;

message2(1, &check);
message2(x, &check);
message2(0, &check);

}

159

/* Pass a parameter by reference */

void message2(int message_number, int *valid)
{

switch (message_number)
{

case 1: printf("Hello World");
*valid = 1;
break;

case 2: printf("Goodbye World");
*valid = 1;
break;

default: printf("unknown message");
*valid =0;
break;

}
}

160

Functions

/* Example function call */

void main()
{

int x=2, check;

message2(1, &check); /* what will happen? */
message2(x, &check);
message2(0, &check);

}

161

Functions

! Points to notice:

! we now have two parameters and two arguments;
both agree in type

! The first parameter is passed by value

! The second parameter is passed by reference

! Anything we do to the parameter passed by reference also
happens to the corresponding argument because they both
refer to the same variable

162

Functions

2

Pass parameter
by reference

2
message_number

message

x

0
*valid0

check

163

Functions
Altering Variables via Parameters

C++ allows reference parameters

void swap1(int &x, int &y) // C++

{ int temp;

temp = x;

x = y;

y = temp;

}

swap1(i, j); // function call

164

Functions
Altering Variables via Parameters

! C does not allow reference parameters

! Instead of passing parameters by reference
! we pass the address of the argument

! and access the parameter indirectly in the function

! & (unary operator)
address of the object given by the operand

! * (unary operator)
object that has the address given by the operand

165

Functions
Altering Variables via Parameters

void swap(int *p, int *q)

{ int temp;

temp = *p;

*p = *q;

*q = temp;

}

swap(&i, &j); // function call

166

Functions
Altering Variables via Parameters

Pointers

! *p has type int

! But p is the parameter, not *p

! Variables that have addresses as their values
are called pointers

! p is a pointer

! The type of p is pointer-to-int

167

Functions

! There is one other way of getting a result out of a
function: through the function name

! The function has a type so we can assign a value to it

! We do this using the return statement

! We can then use the function value in the calling
program by treating the function just like an ordinary
variable

168

/* definition of a function which returns a value */

int message3(int message_number)
{ int valid; /* declare a local variable */

switch (message_number)
{

case 1: printf("Hello World");
valid = 1;
break;

case 2: printf("Goodbye World");
valid = 1;
break;

default: printf("unknown message");
valid = 0;
break;

}
return(valid);

}

169

Functions

/* Example function call */

void main()
{

int x=2, check;

check = message3(1); /* what will happen? */
check = message3(x);
check = message3(0);
if (message3(x) == 0)

exit();
}

170

Functions

Points to notice:

! the type of the variable (or value) used in the return statement
must be the same as the type of the function

! we declared a local variable called valid;
this variable is only defined inside the function and is not visible
(i.e. usable) outside it

! it disappears when we leave the function

171

Functions

If you want the local variable to retain its value after returning

(i.e. after exiting the function) declare the variable to be static

int count_calls(){
static int count = 0;
count = count + 1;
printf("count_calls: called %d times \n", count);
return(count);

}

172

Functions

#include <stdio.h>
#include <time.h>
#include <math.h>

int samplePoisson(double lambda) {
static bool first_call = true; // C++
double product;

/* Seed the random-number generator with current time so */
/* that the numbers will be different every time we run */

if (first_call) {
srand((unsigned)time(NULL)); // seed the random
first_call = false;

}
product = (double) rand() / (double) RAND_MAX;

}

173

Functions

Example 1:

! write a function to return the maximum of two floating point
numbers, each passed as a parameter

174

Functions

Example 2:

! Write a function to sort two floating point numbers, each
passed as a parameter

! On returning from the function, the first argument should be
the smaller of the two number

! The function should return 0 if the numbers are different, 1 if
they are the same

175

Data Constructs - Arrays

! We know that there are three basic types in C:
int
float

Char

! However, C also allows us to organize these
basic types into more structured types

! One of these is the array

176

Data Constructs - Arrays

! An array is a collection of many variables which
are all of the same type

! We declare an array by

! giving its base type (i.e. the type we are collecting together)

! giving the number of elements in the collection
! int a[30]; /* declare an array of */

/* 30 integers */

177

Data Constructs - Arrays

! We access (i.e. use) an individual element by
! writing the array name

! and the element number in square brackets
! printf("%d", a[6]); /* print out the */

/* value of the */
/* SEVENTH element!*/

! In C, the first element is element 0

178

Data Constructs - Arrays

In C, the first element is element 0

z a

char example[9]; /* an array of 9 characters */
example[0] = 'z';
example[6] = 'a';

0 1 2 3 4 5 6 7 8

179

Data Constructs - Arrays

! We can have any type as the base type (int,
char, float, even other structured types)

! You must say how many elements are in an
array when you declare it

180

Data Constructs - Arrays

Example 1:

! read a sequence of 25 integer numbers from a file called
input.txt

! compute the average of these numbers, but ignore any
numbers with the value zero

! replace all occurrences of the number zero with the average

! write out the 5 numbers to a file called output.txt

181

Data Constructs - Arrays

Example 2:

! Do each of the four main tasks using a function
" input_numbers

" compute_average

" replace_number

" output_numbers

! Point to watch: how do we pass an array as a parameter?

182

Data Constructs - Arrays

Passing arrays as arguments to a function

! In C, you can't pass arrays by value

! they are only passed by reference

! However, to do this you DON'T use the & operator as you
would with a normal variable

! The argument is simply the array name

! The parameter is declared as follows:

183

Data Constructs - Arrays

void function_x(int array_1[])
{ …
}

! This declares a parameter called array_1
which is of type array of integer

! You don't have to say how big the array is (but
see an exception later for 2-D arrays)

184

#include <stdio.h>

/* function to initialize an array of integers to */
/* a given initial value */
/* parameters passed: a, the array of integers */
/* n, number of elements to be */
/* initialized */
/* val, the initial value */

void initialize(int a[], int n, int val)
{

int i;
for (i=0; i<n; i++) {

a[i] = val;
}

}
void main()
{

int x[40];
initialize(x, 40, 0); /* init array values to zero */

}

185

Data Constructs - Arrays

2-D arrays

! you can declare a 2-D array in C as follows:
float array[4][5];

! This creates a 2-D array of floating point numbers with 4 rows
and 5 columns

186

Data Constructs - Arrays

2-D Arrays

float a[4][5];
a[3][0] = 6.1;

6.1

187

Data Constructs - Arrays

Passing 2-D arrays as arguments to a function

! The argument is simply the array name

! However, the parameter is declared as follows:

void function_y(float array_1[][5])

{ …
}

You MUST provide the number of columns

188

#include <stdio.h>

/* function to initialize a 2-D array of floats to */
/* a given initial value */
/* parameters passed: b, the array of floats */
/* x, y, dimensions to be */
/* initialized */
/* val, the initial value */

void init_2D(float b[][6], int x, int y, float val)
{

int i, j;
for (i=0; i<x; i++) {

for (j=0; j<y; j++) {
b[i][j] = val;

}
}

}

189

void main()
{

float x[5][6];

/* initialize the entire array to zero */

init_2D(x, 5, 6, 0);

/* initialize the first row to 7 */

init_2D(x, 1, 6, 7);
}

190

Data Constructs - Arrays

character arrays

! a 1-D array of characters is used to represent a string
char s[12];

! a string value is written "hello world"

! all strings have an extra character at the end to mark the end
of the sequence of characters: '\0'

191

Data Constructs - Arrays

Strings: character arrays

h e l l o \0

char example[9]; /* an array of 9 characters */
example = "hello";
printf("%s", example);

0 1 2 3 4 5 6 7 8

192

Data Constructs - Arrays

Strings: character arrays

H I \0

char example2[8]; /* an array of 8 characters */
example2[0] = 'H';
example2[1] = 'I';
example2[2] = '\0';
printf("%s", example2);

0 1 2 3 4 5 6 7

193

Data Constructs - Arrays

character arrays

! the C library contains many useful string handling functions

#include <string.h>

! More on this in the next unit

194

Data Constructs - Structures

! Arrays allowed us to group together collections
of variables of the same type

! Structures allow us to group together
collections of variables of different types

! The members of a structure can be simple
types (char, float, int)

! But they can also be structured types (arrays,
structures)

195

Data Constructs - Structures

! We declare a structure using the keyword
struct and enclosing a list of members in
braces, e.g.

struct colour {
int r;
int g;
int b;

}

! Note: this declares a new type, not a variable.

196

Data Constructs - Structures

! To create a variable of type colour, we write:
struct colour white, black;

! We access the members by writing the name of the
structure variable followed by a dot and the name of
the member:

white.r = 255;
white.g = 255;
white.b = 255;
black.r = 0; black.g = 0; black.b = 0;

197

Data Constructs - Structures

For example, to print the r, g, b colour values of the
variable white we would write

printf("%d,%d,%d", white.r, white.g, white.b);

198

Data Constructs - Structures

! Structures can be nested (i.e. a structure can be a
member of another structures)

! For example:

struct point {
int x;
int y;
struct colour clr;

}

199

Data Constructs - Structures

And we can access each member as follows:

struct point p1, p2;

p1.x = 10;

p1.y = 20;

p1.clr.r = 128;

p1.clr.g = 128;

p1.clr.b = 128;

p2 = p1; /* structure assignment */

200

Data Constructs - Structures

We can also have arrays of structures

struct point p[10];

p[3].x = 10;

p[3].y = 20;

p[3].clr.r = 128;

p[3].clr.g = 128;

p[3].clr.b = 128;

p[0] = p[3]; /* structure assignment */

201

Data Constructs - Structures

Exercise: write a program to

! read a file of integer coordinates and RGB values

! store the input in an array of points

! write out the colour of each point to an output file

! the input file is points.txt

! the output file is colours.txt

202

Data Constructs - Structures

! Example input:
1 2 23 45 67

2 3 44 55 0

3 3 0 0 0

4 4 255 255 255

! Example output:
23 45 67

44 55 0

0 0 0

255 255 255

203

Data Constructs - Structures

! Exercise: write a program to
! read a file of integer coordinates and RGB values

! store the input in an array of points

! delete any duplicate points (keep the first point)

! write out the coordinates and RGB values to an output file

! the input file is points.txt

! the output file is new_points.txt

204

Data Constructs - Structures

! Example input:
1 2 23 45 67

3 3 44 55 0

3 3 0 0 0

4 4 255 255 255

! Example output:
1 2 23 45 67

3 3 44 55 0

4 4 255 255 255

205

Arrays, Pointers, and Strings
Address Arithmetic

! "Address of" operator &
The value of an expression &x is an address

! Other expressions yield addresses
! the name of an array, written without brackets

! the address is that of the first element of the array
char s[50];

s is equivalent to &(s[0])

! we can combine the name of an array with integers
s is equivalent to &(s[0])
s+i is equivalent to &(s[i])

206

Arrays, Pointers, and Strings
Address Arithmetic

! Such expressions are valid even when the array
elements are not 1 byte in size

! In general address arithmetic takes into account
the size of the element

int a[10];

a+i is equivalent to &(a[i])

! Such a capability leads some people to write:
for (i=0; i<10; i++) scanf("%d", a+i);

rather than
for (i=0; i<10; i++) scanf("%d", &a[i]);

207

Arrays, Pointers, and Strings
Address Arithmetic

! Indirection operator *
The value of an expression such as *a is the
object to which the address a refers

*a is equivalent to a[0]

*(a+i) is equivalent to a[i]

208

Arrays, Pointers, and Strings
Function Arguments and Arrays

! In C and C++ there is no need for special
parameter-passing for arrays

! We pass the address of the first element of the
array

! Which is the array name!

! We automatically have access to all other
elements in the array

209

Functions
Function Arguments and Arrays

// MINIMUM: finding the smallest element of an

// integer array

#include <iostream.h>

int main() {
int minimum(int *a, int n);

int table[10];

cout << "Enter 10 integers: \n";

for (int i=0; i<10; i++) cin >> table[i];
cout << "\nThe minimum of these values is "

<< minimum(table, 10) << endl;
return 0;

}

210

Functions
Function Arguments and Arrays

// definition of minimum, version A

int minimum(int *a, int n)

{ int small = *a;
for (int i=1; i<n; i++)

if (*(a+i) < small)
small = *(a+i);

return small;
}

211

Functions
Function Arguments and Arrays

// definition of minimum, version B (for Better!)

int minimum(int a[], int n)

{ int small = a[0];
for (int i=1; i<n; i++)

if (a[i] < small)
small = a[i];

return small;
}

212

Arrays, Pointers, and Strings
Pointers

! In the following p is a pointer variable

int *p, n=5, k;

! Pointers store addresses

p= &n;

k = *p // k is now equal to???

! * is sometimes known as a dereferencing operator and
accessing the object to which the pointer points is known as
dereferencing

p = &n

213

Arrays, Pointers, and Strings
Pointers

It is essential to assign value to pointers

after declaring p we must not use *p before assigning a value to
p.

int main()

{ char *p, ch;

*p = 'A'; // Serious error! Why?

return 0;

}

214

Arrays, Pointers, and Strings
Pointers

It is essential to assign value to pointers

after declaring p we must not use *p before assigning a value to
p.

int main()

{ char *p, ch;

p = &ch;

*p = 'A';

return 0;
}

215

Arrays, Pointers, and Strings
Pointers

Pointer conversion and void-pointers

int i;

char *p_char;

p_char = &i; // error: incompatible types
// pointer_to_char and

// pointer_to_int

p_char = (char *)&i;
// OK: casting pointer_to_int

// as pointer_to_char

216

Arrays, Pointers, and Strings
Pointers

In C++ we have generic pointer types:
void_pointers

int i;

char *p_char;

void *p_void;

p_void = &i; // pointer_to_int to pointer_to_void
p_char = (char *)p_void;

// cast needed in C++ (but not ANSI C)

// for pointer_to_void to

// pointer_to_int

217

Arrays, Pointers, and Strings
Pointers

! void_pointers can be used in comparisons

int *p_int;
char *p_char;

void *p_void;

if (p_char == p_int) ... // Error

if (p_void == p_int) ... // OK

! Address arithmetic must not be applied to
void_pointers. Why?

218

Arrays, Pointers, and Strings
Pointers

Typedef declarations

used to introduce a new identifier denote an (arbitrarily complex) type

typedef double real;

typedef int *ptr;
...

real x,y; // double
ptr p; // pointer_to_int

219

Arrays, Pointers, and Strings
Pointers

Initialization of pointers

int i, a[10];

int *p = &i; // initial value of p is &i
int *q = a; // initial value of q is the

// address of the first element
// of array a

220

Arrays, Pointers, and Strings
Strings

! Recap: addresses can appear in the following
three forms
! expression beginning with the & operator

! the name of an array

! Pointer

! Another, fourth, important form which yields an
address
! A string (string constant or string literal)

! "ABC"

221

Arrays, Pointers, and Strings
Strings

"ABC"
! effectively an array with four char elements:

! 'A', 'B', 'C', and '\0'

! The value of this string is the address of its first character and
its type is pointer_to_char

*"ABC" is equal to 'A'

*("ABC" + 1) is equal to 'B'
*("ABC" + 2) is equal to 'C'

*("ABC" + 3) is equal to '\0'

222

Arrays, Pointers, and Strings
Strings

"ABC"
! effectively an array with four char elements:

! 'A', 'B', 'C', and '\0'

! The value of this string is the address of its first character and
its type is pointer_to_char

"ABC"[0] is equal to 'A'

"ABC"[1] is equal to 'B'
"ABC"[2] is equal to 'C'

"ABC"[3] is equal to '\0'

223

Arrays, Pointers, and Strings
Strings

Assigning the address of a string literal to a
pointer variable can be useful:

// POINTER

#include <stdio.h>

int main()
{ char *name = "main";

printf(name);

printf("The string is %s\n", name);

return 0;
}

224

Arrays, Pointers, and Strings
Strings Operations

Many string handling operations are declared in
string.h

#include <string.h>

char s[4];
char *p;

s = "ABC"; // Error: can't do this in C; Why?

strcpy(s, "ABC"); // string copy
strcpy(p, "PQR"); // ARGHH@!!!!!! don't do this

225

Arrays, Pointers, and Strings
Strings Operations

Many string handling operations are declared in
string.h

#include <string.h>

#include <iostream.h>

int main()

{ char s[100]="Program something.", t[100];

strcpy(t, s);

strcpy(t+8, "in C++.";
cout << s << endl << t << endl;

return 0;

} // what is the output?

226

Arrays, Pointers, and Strings
Strings Operations

Many string handling operations are declared in
string.h

strlen(string);

// returns the length of the string

E.g.

int length;

char s[100]="ABC";

length = strlen(s); // returns 3

227

Arrays, Pointers, and Strings
Strings Operations

Many string handling operations are declared in
string.h

strcat(destination, source);

// concatenate source to destination

strncat(destination, source, n);

// concatenate n characters of source

// to destination

// programmer is responsible for making
// sure there is enough room

228

Arrays, Pointers, and Strings
Strings Operations

Many string handling operations are declared in
string.h

strcmp(string1, string2);

// returns 0 in the case of equality

// returns <0 if string1 < string2
// returns >0 if string1 > string2

strncmp(string1, string2, n);

// same as strcmp except only n characters
// considered in the test

229

Arrays, Pointers, and Strings
Dynamic Memory Allocation

! Array declarations
! require a constant length specification

! cannot declare variable length arrays

! However, in C++ we can create an array whose
length is defined at run-time

int n;
char *s;

...
cin >> n;

s = new char[n];

230

Arrays, Pointers, and Strings
Dynamic Memory Allocation

// TESTMEM: test how much memory is available

#include <iostream.h>

#include <new.h> // may not be required ... must check

int main() {

char *p;

for (int i=1;;i++){ // horrible style $
p = new char[10000]; // intentional memory leakage

if (p == 0) break;

cout << "Allocated: " << 10 * i << "kB\n";

}
return 0;

} // rewrite in a better style!

231

Arrays, Pointers, and Strings
Dynamic Memory Allocation

Memory is deallocated with delete()

! p = new int // deallocate with:
! delete p;

! p = new int[m] // deallocate with:

! delete[] p;

! delete is only available in C++

232

Arrays, Pointers, and Strings
Dynamic Memory Allocation

malloc()

! standard C memory allocation function

! declared in stdlib.h

! its argument defines the number of bytes to be allocated

#include <stdlib.h>

int n;
char *s;

...
cin > n;

s = (char *) malloc (n);

233

Arrays, Pointers, and Strings
Dynamic Memory Allocation

malloc()

! but to allocate an array of floats:

#include <stdlib.h>

int n;
float *f;

...

cin > n;

f = (float *) malloc (n * sizeof(float));

! malloc() returns NULL if allocation fails

234

Arrays, Pointers, and Strings
Dynamic Memory Allocation

malloc()

s = (float *) malloc (n * sizeof(float));

if (s == NULL)
{ cout << "Not enough memory.\n";

exit(1); // terminates execution of program
} // argument 1: abnormal termination

235

Arrays, Pointers, and Strings
Dynamic Memory Allocation

calloc()

! Takes two arguments
" number of elements

" size of each element in bytes

! all values are initialized to zero

! calloc() returns NULL if allocation fails

236

Arrays, Pointers, and Strings
Dynamic Memory Allocation

Memory is deallocated with free()

free(s);

237

Arrays, Pointers, and Strings
Input and Output of Strings

Input

char[40] s;
...

scanf("%s", s); // skips whitespace and terminates on

// whitespace

cin >> s; // same as scanf
gets(s); // reads an entire line

// problems if more than 40 chars are typed:

// ABCDEFGHIJKLMNOPQRSTUVWZYZabcedfghijklmnopqrstuvwzyz
// requires a string of 53 elements

238

Arrays, Pointers, and Strings
Input and Output of Strings

Input

char[40] s;
...

scanf("%39s", s); //reads at most 39 characters

cin >> setw(40) >> s; // same as scanf

fgets(s, 40, stdin); // reads a line of at most 39
// characters, including \n

cin.getline(s, 40); // reads a line of at most 39

// characters, including \n

// but doesn't put \n in s

239

Arrays, Pointers, and Strings
Input and Output of Strings

Output

char[40] s;
...

printf(s); // Display just the contents of s

printf("%s", s); // same

cout << s; // same
printf("%s\n", s); // Display s, followed by newline
puts(s); // same

240

Arrays, Pointers, and Strings
Input and Output of Strings

Output

// ALIGN1: strings in a table, based on standard I/O
#include <stdio.h>

int main()

{ char *p[3] = {"Charles", "Tim", "Peter"};
int age[3] = {21, 5, 12}, i;
for (i=0; i<3; i++)

printf("%-12s%3d\n", p[i], age[i]); // left align

return 0;
}

241

Arrays, Pointers, and Strings
Input and Output of Strings

Output

// ALIGN2: strings in a table, based on stream I/O
#include <iostream.h>

#include <iomanip.h>

int main()

{ char *p[3] = {"Charles", "Tim", "Peter"};
int age[3] = {21, 5, 12}, i;
for (i=0; i<3; i++)

cout << setw(12) << setiosflags(ios::left) << p[i]

<< setw(3) < resetiosflags(ios::left)
<< age[i];

return 0;

}

242

Arrays, Pointers, and Strings
Multi-Dimensional Arrays

A table or matrix
! can be regarded as an array whose elements are also arrays

float table[20][5]

int a[2][3] = {{60,30,50}, {20,80,40}};
int b[2][3] = {60,30,50,20,80,40};

char namelist[3][30]

= {"Johnson", "Peterson", "Jacobson");

...

for (i=0; i<3; i++)

cout << namelist[i] << endl;

243

Arrays, Pointers, and Strings
Multi-Dimensional Arrays

Pointers to 2-D arrays:

int i, j;

int a[2][3] = {{60,30,50}, {20,80,40}};

int (*p)[3]; // p is a pointer to a

// 1-D array of three int elements

...
p = a; // p points to first row of a

a[i][j] = 0; // all four statements
(*(a+i))[j] = 0; // are equivalent
p[i][j] = 0; // remember [] has higher

(*(p+i))[j] = 0; // priority than *

244

Arrays, Pointers, and Strings
Multi-Dimensional Arrays

Function Parameters

int main()

{ float table[4][5];
int f(float t[][5]);

f(table);

return 0;
}

int f(float t[][5]) // may omit the first dimension
{ // but all other dimensions must
} // be declared since it must be

// possible to compute the

// address of each element. How?

245

Arrays, Pointers, and Strings
Multi-Dimensional Arrays

Table[2][3]

The address of Table[i][j] is computed by the
mapping function 5*i + j (e.g. 5*2+3 = 13)

246

Arrays, Pointers, and Strings
Multi-Dimensional Arrays

Arrays of Pointers

we can create 2-D 'arrays' in a slightly different (& more efficient) way
using

" an array of pointers to 1-D arrays, and

" a sequence of 1-D arrays

float *dtable[4]; // array of 4 pointers to floats

for (i=0; i<4; i++)
{ dtable[i] = new float[5];

if (dtable[i] == NULL)

{ cout << " Not enough memory"; exit(1);
}

}

247

Arrays, Pointers, and Strings
Multi-Dimensional Arrays

dtable[2][3]

dtable[i][j] is equivalent to (*(dtable+i))[j] ...

there is no multiplication in the computation

of the address, just indirection.

dtable

248

Arrays, Pointers, and Strings
Program Parameters

The main() function of a program can have parameters

! called program parameters

! an arbitrary number of arguments can be supplied

! represented as a sequence of character strings

! two parameters
" argc ... the number of parameters (argument count)

" argv ... an array of pointers to strings (argument vector)

249

Arrays, Pointers, and Strings
Program Parameters

Program parameters for an invocation of the form

program ABC PQ XYZ

argv

argc = 4

Program name

A B C \0

P Q \0

X Y Z \0

250

Arrays, Pointers, and Strings
Program Parameters

// PROGPARAM: Demonstration of using program parameters

#include <iostream.h>

int main(int argc, char *argv[])

{ cout << "argc = " << argc << endl;

for (int i=1; i<argc; i++)
cout << "argv[" << i << "]= " << argv[i] << endl;

return 0;
}

251

Arrays, Pointers, and Strings
In-Memory Format Conversion

sscanf()

! scans a string and converts to the designated type

#include <stdio.h>

...

char s[50]="123 456 \n98.756";

int i, j;

double x;

sscanf(s, "%d %d %lf", &i, &j, &x);

! sscanf returns the number of value successfully scanned

252

Arrays, Pointers, and Strings
In-Memory Format Conversion

sprintf()

! fills a string with the characters representing the passed
arguments

#include <stdio.h>

...

char s[50]="123 456 \n98.756";

sprintf(s,"Sum: %6.3f Difference:%6.3f",
45 + 2.89, 45 - 2.89);

253

Arrays, Pointers, and Strings
Pointers to Functions

In C and C++ we can assign the start address of
functions to pointers

// function definition

float example (int i, int j)

{ return 3.14159 * i + j;

}

float (*p)(int i, int j); // declaration

...

p = example;

254

Arrays, Pointers, and Strings
Pointers to Functions

! And we can now invoke the function as follows

(*p)(12, 34); // same as example(12,34);

! We can omit the * and the () to get:

p(12, 34); // !!

! Pointers to function also allow us to pass
functions as arguments to other functions

255

Arrays, Pointers, and Strings
Exercise

11. Write and test a function to

! read a string representing a WWW URL
(e.g. http://www.vernon.eu)

! replace the // with \\

! write the string back out again

256

Arrays, Pointers, and Strings
Exercises

12. Write a interactive user interface which allows a
user to exercise all of the set operators for three pre-
defined sets A, B, and C

Commands should be simple single keywords with
zero, one, or two operands, as appropriate

! add A 10

! union C A B

! list A

! intersection C A B

! remove 1 B 28%

257

Two strings walk into a cafe. The first string says to the waitress: 'Waitress,
I'll have a coffee. u.5n$x5t?*&4ru!2[sACC~ErJ'. The second string says:
'Pardon my friend, he isn't NULL terminated'.

