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Abstract. We propose here, a new approach of reinforcement learning
which does not need discretization, notion of events, or classification.
Instead of learning rewards for different possible actions of an agent in
all the situations, we propose to only learn the main situations to avoid
and the main situations to reach. After describing the algorithm, we
present the results of an implementation on a real robot learning which
are the sensations it should avoid or reach. We finally conclude with the
promises and limitations of this approach.

1 Introduction

Reinforcement learning aims to make an agent learn which actions it should
perform in order to maximize the obtention of rewards. This learning system is
interesting as it allows to easily “program” agents to make them do whatever
we want simply by emitting different signals (reinforcement) according to the
relevance of its actions. Moreover, animals and humans are very efficient in this
task and it is interesting to know how. That is for example the way dogs can
be trained, or that a rat learns to move in a maze in order to find a source
of food. They can anticipate the reward associated with their actions. However
good models for this kind of behavior are complex to design, the main difficulty
is to identify the cues predicting rewards.

In section 1.1 we present the principle of classical approaches of reinforcement
learning and in section 1.2 we discuss the problems raised by these approaches,
mainly that the environment has to be arbitrarily discretized and that they need
a lot of computational resources. In section 2 we propose a new architecture able
to handle these problems and we present the results of the experiments on a real
robot section 3.

1.1 Classical reinforcement learning

The temporal-difference model (TD learning [1]) is a very common and efficient
method for reinforcement learning, the principle is to discretize the inputs (from



the sensors and the internal states) in order to obtain a finite number of possi-
ble states (inputs). The expected reinforcement for each state is evaluated using
the actual reinforcement of the state more the reinforcement expected in states
immediately accessible. Then the agent acts in order to reach the states maxi-
mizing the expected reinforcement. Even if the convergence of the algorithm is
proved, the learning is very slow because the agent needs to try each state several
times, and it strongly depends on the discretization used, which can lead to a
huge number of different states. It is therefore also very demanding in memory
to store all the expected reinforcement for each possible state.

The Q-learning [2] uses similar principles but it works even if the agent
does not know which action to execute in order to reach a given state. The agent
learns the expected reinforcement for each possible couple state and action. This
increases again the time of learning because there are many more possibilities to
explore, the quantity of memory needed is multiplied by the number of different
possible actions.

1.2 The problem of discretization

In artificial intelligence, numerous of powerful algorithms have been design to
learn, anticipate and decide. However they are often inappropriate when applied
on robots in real world without being prepared to detect specific stimuli. For ex-
ample many models of classical or instrumental conditioning need to predefine
the set of possible stimuli to consider. Information theory [3] provides power-
ful tools to statistically measure the temporal correlation between events and
anticipate them. However, the problem is here again to define the set of events
through the discretization.

Discretization can be adaptive, by grouping together events which carry the
same predictive information. For this we can use classification algorithms like
the k-mean, Kohonen’s maps, Estimation-Maximization algorithm (see [4] for
more ). Many of these algorithms need strong assumptions on the distribution
of classes and the discretization needs to be arbitrarily or randomly initiated
whereas the quality of the learning process depends on this initialization.

When developing the Q-learning algorithm, Watkins was aware of the dif-
ficulty to cope with continuity: “To avoid the complications of systems which
have continuous state-spaces, continuous action sets, or which operate in contin-
uous time, I will consider only finite, discrete-time Markov decision processes”
[2] page 38. Even once the discretization is done, the algorithm converges quite
slowly because it needs to try several times the different possible states in order
to statistically estimate the reinforcement that can be expected for each one.
Once the reinforcement can be reliably anticipated for each state, the agent can
act in order to reach the state with the highest expected reinforcement. These
approaches are very powerful when they are used in simulation as the environ-
ment is often already discretized (e.g. a grid where the agent is moving) and
because it is easy to make an agent try different situations a huge number of
times. They are very well adapted in robotics when the elements of the envi-



ronment are predefined, when there are obvious salient cues that the robot can
consider as classes of events (e.g. salient color or pattern).

In the case of robots in real environments without specific features, the robots
have to find by themselves the cues predicting rewards. These cues are not neces-
sarily salient, it can be a specific light’s intensity, a range of sound’s frequencies
or a specific position and not, as it is commonly used, a binary signal as the
presence or absence of light, sound, shape, etc. Humans and animals are very
efficient to discriminate stimuli a priori similar if they have distinctive predic-
tive values. In this case, using the salience of sensations can be misleading as for
example, a light passing on or off does not have any predictive value whereas a
small change in intensity of a light at a specific level can be significant. Most
algorithms involving discretization are not be able to cope efficiently with this
kind of situation because they waste a lot of memory storing the predictions of
expected rewards for many different values of the sensory input whereas most
of them are not relevant or redundant. Moreover, there is usually no difference
between the effect of a small reward obtained immediately and the promise of
an important reward later. However in some cases, it is very important to make
the difference; if a robot is about to “die” it should go where it is sure to quickly
find at least a small reward, whereas it should try to maximize the long term
reward when it has more time.

2 Our continuous approach of reinforcement learning

As there is no “free lunch” [5]—in average, we cannot have a better algorithm
than another one with the same assumptions—, we need to do assumptions
about the world; we assume that the world is continuous: there are continuous
variations of rewards with continuous variations of the sensory inputs and the
relations between rewards and sensory inputs are consistent. Consequently, if
the agent receives a high reward for a specific sensory input (sensation), it can
anticipate a good reward for other close sensations. Therefore, instead of esti-
mating the expected reward for all the many possible states and trying to reach
the state anticipating the maximum reward, we propose to make the agent only
memorize the sensation associated with the best reward called desired sensation
(see Figure 2).

To illustrate the possibilities, we consider a continuous space (typically, the
environment of a robot in a real world) and we use sets of real variables:
S = {s1, s2, . . .} for sensory input (light intensity, pressure, distance to obsta-
cles, etc.), A = {a1, a2, . . .} for actions (velocity, rotation angle, etc.) and r a
real variable to represent the immediate reward. To simplify, we focus on one
dimension of sensory input (S = {s}) and we consider the problem presented
Figure 1 where a robot moving forward and backward, having the distance to
a landmark as sensory input (S) must be able to anticipate the presence of a
reward (r) on its side.

In order to make the robot learn the sensation associated with the highest
reward, we can simply set the desired sensation (Ŝ) as equal to the current



Fig. 1. Using its distance sensor, the robot must be able to anticipate the presence of
the reward on its side.

sensation (S) only when the reward (r) is higher than the highest known reward
(r̂).

if r > r̂ then
{

r̂ = r

Ŝ = S
(1)

The problem is that if the reward is very high by chance and is never high
again, or if the sensation is very hard to obtain, the desired sensation learned
will be useless. Moreover, the agent is not able to learn more than one sensation
associated with a reward. Actually, even if it memorizes another desired sensation
associated with a slightly smaller reward, the principle of continuity make this
desired sensation to be infinitely close to the previous one learned as we can see
in Figure 3.

Fig. 2. Desired sensation depending on
the reward associated to the sensation

Fig. 3. Impossibility to learn local
maximum.

Therefore to be reliable and robust, the agent should not only memorize the
sensations associated with the highest reward but the sensations associated with
a positive reward at a high probability. We shown in (1) how to memorize the
sensation associated with the maximum reward; we present in (2) how the agent
can compute the most probable sensation (S), as the average of all sensations
at each time (t).

St =
S0 + . . . + St

t + 1
(2)

To implement this, the agent needs to store all the sensations at all the time
which is virtually impossible and moreover it is not biologically plausible. How-
ever, we show how it can be equivalent to use an incremental rule (3) similar to



the learning rule of Rescorla and Wagner [6] used for conditioning.

St =
S0 + . . . + St−1 + St

t + 1

=
S0+...+St−1

t × t + St

t + 1

=
St−1 × t + St

t + 1

=
St−1 × (t + 1) − St−1 + St

t + 1

= St−1 +
1

t + 1
(
St − St−1

)
= St−1 + ηt.

(
St − St−1

)
(3)

The learning rate ηt = 1

T̃t

and in this case we only need a variable increasing

with the time (T̃t = T̃t−1 + 1; T̃0 = 1) and a variable memorizing the current
average sensation (S). The complexity of the calculus is very low and biologically
plausible.

Now the agent can learn two extreme cases: the sensation associated to the
best reward (Ŝ), and the average sensation (S) whatever the reward is. None
of these sensations are very useful to be learned because, the first one indicates
the sensation associated to the best reward but may not be reliable as it may
have happened only once and the second one indicates which are the sensations
happening more often but it does not mean it is a good thing. However, all
the intermediate cases are very important because in order to maximize the
cumulative reward the agent should balance the effect of the reward and the
effect of the probability. If an agent urgently needs a reward (for example a
resource to avoid to die), it will focus on the sensations promising small rewards
with high probabilities (easy to obtain) but if it is not urgent, it will focus on
sensations promising higher rewards in order to maximize the cumulative reward
and also to get more experiences about these high rewards.

The agent has to be able to memorize a range of desired sensations, from
the ones often obtained but predicting small rewards to the ones rarely obtained
but predicting high reward. In [7] we shown how an agent can learn the average
“best” sensation by weighting each sensation with the associated reward 1 simply
by modifying the function of the learning rate ηt with ηt = rt

r̃t

with r̃t = r̃t−1 +
rt; r̃0 = r0. However the agent was not able to balance the importance of the
reward with the importance of its probability. Moreover, past experiences with
highly positive and negative rewards would have the same consequences than
past experiences with an average constant reward.

We propose in (4) a solution to learn different desired sensations (Sk) where
the balance between the importance of the reward and its probability is con-
1 the desired sensations were called desired perceptions and the comfort corresponded

to the reward.



trolled by the parameter k.

Sk
t =

ek.r0 .S0 + . . . + ek.rt .St

ek.r0 + . . . + ek.rt

= Sk
t−1 +

ek.rt

ek.r0 + . . . + ek.rt
.
(
St − Sk

t−1

)
(4)

For extreme values of k, 0 and +∞, we obtain respectively the same result as in
(2) because e0 = 1 and as in (1) because:

lim
k→+∞

ek.r0 .S0 + . . . + ek.rt .St

ek.r0 + . . . + ek.rt
= Sargmax(r0,...,rt)

Another advantage is that only the variation of the reward has an influence, not
its absolute value; we do not need to define a priori which value of reward has
to be considered as a good reward. Actually, we can add any constant (c) to the
reward and it does not change the learning rate:

ηk
t =

ek.(rt+c)

ek.r0+k.c + . . . + ek.rt+k.c

=
ek.rt .ek.c

ek.r0 .ek.c + . . . + ek.rt .ek.c

=
ek.rt

ek.r0 + . . . + ek.rt

=
ek.rt

r̃k
t

(5)

with r̃k
t = r̃k

t + ek.rt−1 . We shown how an agent can learn sensations predicting
rewards, but it can also be useful to learn sensations predicting danger or nega-
tive reward in order to avoid them. With this model, they are easy to compute
as they are equal to the sensations Sk

t for negative values of the parameter k.
They are called avoided sensations.

The problem of computing the desired sensations is that they can be in
between two local maximums and therefore predict a reward where there is no
reward, see Figure 4. The solution is to make the agent partly forget the past and
consequently have its desired sensations moving from local maximums to local
maximums but not staying in between. In [7] we raised the learning rate ηtk to
the power of γ, with γ between 0 and 1, in order to make the agent continuously
learn and partly forgot the effect of the old experiences.

Sk,γ
t = Sk,γ

t−1 +

(
ek.rt

r̃k
t

)γ (
St − Sk,γ

t−1

)
(6)

Smaller is γ, higher is the learning rate and faster the desired sensation changes,
therefore the desired sensation oscillates between local maximums depending on
the exploration of the agent as depicted in Figure 5.



Fig. 4. Wrong desired sensation, aver-
age of multiple local maximums

Fig. 5. Oscillation of a desired sensa-
tion local maximums (γ < 1)

The problem of partly forgetting the past is that the agent will not be able
to remember a sensation associated with a good reward if it did not experience
it recently. However, the desired sensations oscillate from local maximums to
local maximums—and avoided sensations oscillates from local minimums to local
minimums—therefore, if the agent memorizes the extreme values (Ŝ) of the
successive desired and avoided sensations (see Figure 6 for desired sensations),
it can remembers two—the two extremes—sensations anticipating a positive
reward and two sensations anticipating a negative reward (punishment). moving
forward and backward, having the distance to a landmark as sensory input (S)
must be able to anticipate the presence of a reward (r) on its side. In order to

Fig. 6. The desired sensation strictly oscillates between the two rewards.

remember these extreme values, we use a similar equation than in (4) but this
time the agent memorizes the desired sensations (Sk,γ) with extreme values of
themselves instead of memorizing the sensations associated with extreme rewards
! The weight in the exponential function is therefore the desired sensation itself
multiplied by another parameter l defining if the agent memorizes the minimum
value of the desired sensation (l < 0) or the maximum value (l > 0). We can see

in (7) how this extreme values are defined with S̃k,γ,l
t = el.Sk,γ

0 + . . . + el.Sk,γ
t .

Ŝk,γ,l
t = Ŝk,γ,l

t−1 +
el.Sk,γ

t

S̃k,γ,l
t

.

(
Sk,γ

t − Ŝk,γ,l
t−1

)
(7)



Fig. 7. Extreme values of a desired sen-
sation (k > 0). The left extremum is
for l < 0 and the right extremum is for
l > 0

Fig. 8. Extreme values of an avoided
sensation (k < 0). The left extremum
is for l < 0 and the right extremum is
for l > 0

3 Experiments

We test this algorithm, on a real robot (Koala [8]) and want it to memorize sen-
sations associated with reward or punishment. The robot is moving alternatively
forward and backward at the front of a box used as a landmark. The sensory
input (S) we are using is its frontal distance sensor measuring its distance to the
front box. The right distance sensor is used to detect rewards (r), a box on its
right represents a positive reward r. We present in Figure 9 the reward obtain by
the robot depending on its sensation of distance to the landmark. We observe,
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Fig. 9. Value of the reward (r) depending on the sensation (S). We see that the max-
imum of reward is for a sensations of about 75 and 425 (the units does not matter)
which correspond to the presence of a box on the right of the robot.

how the desired sensations of the robot evolve with the time and the experiences
of the robot. We compute the desired sensation (Sk,γ with k = +400; γ = 0.9)
and the avoided sensation (Sk,γ with k = −400; γ = 0.9). If k or γ differ, the



curves are more or less smooth but qualitatively similar. We present the results
in Figure 10. The desired sensation oscillate between the sensations 75 and 425
which correspond to the presence of the reward (boxes). The avoided sensation
oscillates between the boxes at the beginning and then around them notifying
that the robot should avoid to be between the boxes or behind them.

Fig. 10. Evolution of the sensation (St) of the robot in dotted line, the desired sensation
(Sk,γ with k = +400; γ = 0.9) in solid line and the avoided sensation in dashed line
(Sk,γ with k = −400; γ = 0.9). The desired sensation oscillate between the sensations
75 and 425 which correspond to the presence of the reward. The avoided sensation
oscillates between the boxes at the beginning and then around them notifying that the
robot should avoid to be between the boxes or around them.

The desired and avoided sensations are moving all the time therefore, the
robot cannot remember anything for a long time. However, the next step for the
robot is to memorize the extremums of these desired and avoided sensations.
We present in Figure 11 the evolution of these extremums (Ŝk,γ,l) for the same
values of k and γ and −0.1 and 0.1 for l—l is small because the amplitude of the
sensation is high but anyway it does not have a strong effect on the qualitative
result. The extremums of the avoided sensations quickly converge (almost at the
first cycle) to the sensations corresponding to the boxes on the side (the reward
75 and 425). The extremums of the avoided sensations correspond in a first time
to the sensation between the boxes and at the end to the sensations behind the
boxes which mean the robot should avoid to stay between the boxes (no reward)
or behind them (no reward either).

4 Conclusion and perspectives

We have presented the first basic principles and implementation of a new ap-
proach of reinforcement learning where the agents can learn to anticipate reward
using their sensory inputs. In [9], Doya proposes to approximate the reward func-
tion in order to process reinforcement learning in continuous time and space but
we argue that it is enough to only memorize where are the rewards even if the



Fig. 11. Evolution of the extreme values (Sk,γ,l) of the desired and avoided sensations
with the same parameters as previously for k and γ but l worth 0.1 for the curves on the
top, and −0.1 for the curves on the bottom. The extremums of the desired sensations
are in solid line and the extremums of the avoided sensations are in dashed line.

robots cannot know what are these rewards. The advantages are that it memo-
rizes only the relevant information and does not need much memory or computer
time. It does not use notion of events or discretization which strongly reduces the
effects of choices a priori and decreases the learning time. Actually agents can
learn with only one presentation of the reward which is very useful in robotics
where exploration is “expensive”.

Even if the algorithm does not need many a priories on the world, it has a
couple of parameters to set. k to balance the importance of the reward’s value
versus its probability, γ and l to vary the average speed of learning. However,
these parameters only have quantitative effects and we have already proposed
in [7] ways to modulate these kinds of parameters and there are others ([10],
[11]). An agent will also need to decide whether it should explore or exploit its
environment in order to use what it learns efficiently an we could adapt several
strategies like: [12], [13] or [14].

We shown how a robot can predict the presence of only two rewards, however
we can extend it to many more rewards looking for the two extreme desired sen-
sations in between two extreme avoided sensations and so on (see Figure 12). We

Fig. 12. Using successive detections of desired and avoided rewards, robots can antic-
ipate as many rewards as we want.



are also currently working on expending this algorithm to many more dimensions
and it seems promising.
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7. Blanchard, A., Cañamero, L.: From imprinting to adaptation: Building a history
of affective interaction. Proc. of the 5th Intl. Wksp. on Epigenetic Robotics (2005)
23–30

8. K-Team. http://k-team.com/robots/koala (2002)
9. Doya, K.: Reinforcement learning in continuous time and space. Neural Compu-

tation 12(1) (2000) 219–245
10. Arkin, R.: Behavior-Based Robotics. The MIT Press (1998)
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