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Abstract. We introduce information theoretic tools that can be used
in an animat for constructing an internal predictive model. This model
is based on two different kinds of causal relationships: time-delay rela-
tionship, where two events are related by a nearly constant time-delay
between their occurence; and contingency relationships, where proxim-
ity in time is the main property. We propose an anticipation architecture
based on these tools that allows the construction of a relevant internal
model of the environment through experience. This internal model can
then be used for anticipation and action-decision according to reward
expectation. The proposed architecture takes into account the problem
of learning complex causal relationships involving many events. We il-
lustrate the effectiveness of the tools proposed with preliminary results
about their ability to identify relevant relationships. We conclude by
discussing issues not addressed by our model and future investigations.

1 Introduction

Designing agents that can act smartly in a previously unknown environment is
one of the most challenging issues in behavioural robotics. Such an agent must
have the ability to construct an internal model describing the dynamics of the
environment and the effect of its own actions on this environment. This can be
mainly understood as extracting causal relationships between events occuring in
the environment, whether these events are under the control of the agent (its
actions) or if they are externally generated. This internal model allows the agent
to predict forthcoming events, as well as the effects of its own actions on the
environment. Such a predictive ability paves the way to anticipation and smart
decision making by allowing the agent to decide which action to perform to ob-
tain a given outcome. According to the classification of [1], these agents are said
to perform state anticipation.

Our main focus in this paper is to define and evaluate tools that allow the con-
struction of such an internal model regardless of any reinforcement. In this sense
we are very close to latent learning and the concept of expectancies proposed
by Tolman [6]. We also describe a global architecture for using these tools in a



reward based action-decision system but we only sketch out the main guidelines
for the reward and action system. On the other hand we will focus on principles
of the architecture that allow handling of complex causal relationships involving
more than two variables (i.e. combination of events being the cause of a given
effect).

The paper is structured as follows: in section 2 we introduce the main infor-
mation theoretic concepts used in our model and the two kinds of relationships
they allow us to identify. Section 3 describes the anticipation architecture embed-
ding these concepts and mechanisms for handling complex causal relationships.
In section 4 we describe preliminary results concerning the predictive efficiency
of the proposed tools in a simple simulation experiment. Section 5 summarizes
the issues our model addresses and we discuss some of those it does not.

2 Information Theory and Anticipation

According to a given past, anticipation can be seen as being able to predict
which events will occur in the future and when they will occur. Without any
other knowledge, such predictions can only be completely uncertain. The goal
of constructing an internal predictive model is to reduce the uncertainty of
these predictions. This construction can only be based on information acquired
through experience, and therefore on a partial view of the environment, leading
to probabilistic representations. Tools for dealing with such representations have
been increasingly used in the context of sensorimotor coordination (for exam-
ple Bayesian modelling in [5]), to analyze properties of the coupling between an
agent and its environment (information theoretic approach in [4]) and also to
describe conditioning processes with information theory (see [3]). In our context
we decided to use information theory because it is an efficient tool to deal with
uncertainty and also because recent extensions to this framework seem promis-
ing.

2.1 Basis of Information Theory

Shannon’s information theory is a mathematical framework that provides quan-
tities about probability distributions of events. We refer the reader to [2] for a
complete introduction to the field. One of the main quantities we will be using
is the entropy of a probability distribution. Consider a random variable X for
which each event x can take a value in the set X . The entropy of this random
variable is defined as

H(X) = −
∑
x∈X

p(x)log2p(x) (1)

This value reflects the uncertainty about the outcome of this random variable.
The minimum is 0 for an absolutely predictable outcome (for example one out-
come has a probability of 1) and the maximum is log2(|X |) if all outcomes are
equiprobable.



The information content or self-information of one particular event x according
to a given probability distribution is defined as

I(x) = −log2p(x) (2)

The minimum information content is 0 if this outcome has a probability of 1 and
goes toward infinity when the probability reaches 0.
Our use of information theory in this model concerns the extraction of relation-
ships between time-located events such as perceptions or actions. For under-
standing the tools described below, it is only necessary to keep in mind that
high entropy H means high uncertainty, and low information content I means a
low probability event (or surprising event).

2.2 Time-delay relationships

We will first focus on time-delay relationships between two events. For example,
if an event b always occurs 50 timesteps after another event a, then we would
like to identify this relationship. Also we would like the method to have some
tolerance for variability, i.e. if b sometimes occurs 49 or 51 timesteps after a, we
still consider that there exists a time-delay relationship between them.
For identifying these relationships, we will use information quantities. The prin-
ciple used is based on the concept of causal entropy (see [7]) (which can be
interpreted as an easy-to-compute approximation of the information flow model
[4]). The idea of causal entropy is the following. Let us consider that we want
to identify a time-delay relationship between an event a and an event b always
occurring after a. We will then use a random variable Da,b that represents the
probability distribution of the time delay between a and b. The entropy of this
random variable reflects the strenght of the relationship. The lower the entropy,
the stronger the relationship. For example if b always occurs 50 timesteps after
a, the entropy of Da,b will be 0 (only one event with a probability of 1, see figure
1).

Fig. 1. Histograms of random variables, number of realizations (vertical axis) for
each possible event (horizontal axis). (a) Histogram of an event b always occuring 50
timesteps after a, H(Da,b) = −log2(1) = 0. (b) Example of a high entropy histogram.
(c) Example of a low entropy histogram.

The original purpose of causal entropy is to determine whether the causal
relationship between two events is from a to b or from b to a. This can be



determined by comparing the entropies of Da,b and Db,a. In our context, the goal
is to identify relationships between many events. Therefore, we need a criterion
for saying that there exists a time-delay relationship. In [3], the author states
that the baseline from which the information provided by a conditional stimulus
can be estimated is the prior estimate of the unconditional stimulus frequency. In
our framework this can be translated as saying that the criterion for identifying
a relationship from a to b is based on the self-relationship Db,b, i.e. the average
time delay between two successive b events. We will therefore consider that there
exists a relationship from a to b if a is a less uncertain predictor for b than b
itself, i.e. if

H(Da,b) < H(Db,b) (3)

Using causal entropy in our context leads to some problems that we need
to solve. The first problem is that it is not robust at all to variability in time.
If we consider for example two different conditions, in the first one, b occurred
2,10,50 and 100 timesteps after a. In the second case, b occurred 48, 49 ,50 and 51
timesteps after a. For both conditions, H(Da,b) = 2 (4 equiprobable outcomes,
so H(Da,b) = log2(4) = 2 ), therefore, we cannot identify which condition re-
flects a relationship. Obviously the second one seems to be a relationship where b
occurs approximatively 50 timesteps after a, whereas the first condition doesn’t
seem to be a time-delay relationship.

To solve this problem, the idea is to introduce some variability in the prob-
ability distribution. Therefore rather than updating the statistics of Da,b by
adding one realization of a given time delay t, we add a gaussian distribution
of time-delays centered around t, i.e. we add many realizations of t, then a bit
less realizations of t − 1 and t + 1, even less for t − 2 and t + 2, and so on...
Now if we get back to our example, adding gaussian realizations of 48, 49, 50
and 51 will lead to overlapping gaussians, and therefore to less variability than
in the first condition, and consequently to a lower entropy (see figure 2). For a
given time-delay t, the number of realizations to add is computed for growing
distances ∆t as

floor

(
β

σ
√

2π
exp

(
− (∆t − t)2

2σ2

))
(4)

until this number reaches 0. The parameters β and σ of this function will be
detailed in the Architecture section.

According to the quantity of information gained from using Da,b rather than
Db,b, we can compute a confidence value of the time-delay expectation as

τa,b =
H(Db,b)−H(Da,b)

H(Db,b)
(5)

We can also compute the average expected time-delay between a and b as

δa,b =
∑

t∈Da,b

p(t)t (6)



Fig. 2. Usefulness of adding gaussian realizations for time-delay events. (a) For one
occurrence of a time-delay event, we add a discretized gaussian distribution of re-
alizations centered around the occurring event. (b) Example: histogram of the first
condition without gaussian realization, H(Da,b) = 2. (c) Example: histogram of the
second condition without gaussian realization, H(Da,b) = 2. (d) Example: histogram of
the first condition with gaussian realization, H(Da,b) is high. (e) Example: histogram
of the second condition with gaussian realization, H(Da,b) is low.

Another problem that has to be solved is the following. Let us suppose that
after some time we have identified the time-delay relationship between a and b
that has been described in the example above (figure 2.e). Now if we consider
that a new event c happened 10 timesteps before b, then the histogram of the
random variable Dc,b would be a perfect gaussian centered on 10. The entropy
of this random variable will be lower than the entropy of Da,b because of the
small time variation between a and b. But obviously, if we had 4 realizations of
b after a (48, 49, 50 and 51 timesteps), then we should be more confident into
this relationship than for b after c which had only 1 realization. Put another
way, we should be more confident in a relationship that has occurred several
times, even with some variation, than into a relationship that occurred only a
few times, even with a perfectly constant time-delay. A way to solve this problem
is to initialize any random variable Da,b with a uniform probability distribution
of time-delays, e.g. an initial white noise. Then multiple realizations of a time-
delay, even with some variability, will increase the probability of this time-delay
and its neighbourhood, and decrease the probability of the noise values, therefore
the entropy of such a random variable will be lower than the entropy of a noisy
random variable with only one realization of a time-delay.

2.3 Causal relationships extracted from contingency

Now we will focus on another type of relationship for which there is no precise
delay between events a and b. We consider here relationships of the type ”when
a occurs, b is likely to occur soon”. These relationships can be extracted from
the contingency of events in the flux of perceptions. We will speak about them as
contingency relationships, and we will consider that the closer b occurs after a,



the stronger the relationship. Also we will consider that a predicts b if a mainly
predicts b (relatively to predicting other events) and if b is mainly predicted by
a (relatively to other events it is predicted by). The purpose of this criterion is
the following: let consider an event a than happens all the time, and sometimes
an event b, c or d happens. On one hand we can say that b, c and d are well
predicted by a, because among all the possible predicting events, a is the most
frequent. But on the other hand we cannot say that a predicts correctly b, c or
d, because it predicts nearly everything (even itself), and therefore it is a useless
predictor. That is why for establishing a predictive relationship from a to b, our
criterion takes into account the future of a and the past of b.
We can translate these by the following principle: for each event e, we have
two random variables, one is related to its past, i.e. it reflects the probability
distribution of events that happened before e, we will refer to it as CPe; and one
is related to its future, i.e. the probability distribution of events that happened
after e, we will refer to it as CFe. In this context we will say that there is a
relationship between a and b, i.e. that b is a consequence of a if

ICFa(b) < H(CFa) (7)

and
ICPb

(a) < H(CPb) (8)

This means that the information carried by b is less than the average information
carried by an event that has occurred after a, thus b is more likely to occur after
a than other events, and also that a carries less information than the average
information carried by an event in the past of b, i.e. a is more likely to have
occurred before b than other events.

For each of these variables, event realizations are added according to their
distance in time, i.e. when close in time, many realizations of the same event
are added (for one true occurrence), the number of realizations added decreasing
with the distance. The exact number of realizations follows the same gaussian
equation 4, in which we replace t by 0, and ∆t by the actual distance between
the two events (negative values are discarded). Again we can define a confidence
value of the contingency expectation, based on the loss of uncertainty, as

κa,b =
1
2

(
H(CFa)− ICFa(b)

H(CFa)
+

H(CPb)− ICPb
(a)

H(CPb)

)
(9)

3 Architecture

The different tools described above are put together in an action-decision archi-
tecture based on expectations and reward. In this context we will consider that
some perceptions are inherently associated with a reward (negative or positive).
The main components of the architecture are the following. First saliency eval-
uation filters perceptions, forwarding only the unusual ones (those that carry
most of the information) or those that are internally associated with a reward.



These perceptions are first stored in short-term memory. Then this short-term
memory is used to identify time-delay and contingency relationships in order
to build an internal model of the environment and of the agent’s interactions.
The internal model and the short-term memory are then used together to build
expectations about forthcoming events. These three elements are finally used to
choose the best action to perform so as to maximize the expected reward. An
outline of the architecture is shown in figure 3.

Fig. 3. Main architecture. Circles represent stored information, black boxes are pro-
cesses that generate information, gray boxes define main blocks. See text for details.

3.1 Construction of the Internal Model

Our main focus in this architecture is its ability to construct the predictive in-
ternal model using the information theoretic tools described above. The goal
of this predictive model is to account for the dynamics of the environment (so
finding relationships between events in the environment) but also to account for
the effect of the agent’s actions on the environment. The idea to solve this issue
in a natural way is to consider any action performed by an agent as en event
which is then processed as if it has been generated by the environment.
When an event (or an action) is perceived, it is first stored into short-term mem-
ory and replaces any previously stored occurrence of this event. The construction



of the internal model is based on the two processes of finding time-delay and con-
tingency relationships. When an event b is processed, for all events a that are in
short-term memory, if it is the first occurrence of b since a occurred, we update
the statistics of the random variables Da,b, CFa and CPb. The parameters of
the gaussian used for updating the statistics are fixed for Da,b to β0 and σ0.
For the two other random variables, these are adapted according to the event
they concern, i.e. the longer the expected self time-delay between the concerned
event, the more the gaussian is flattened. The idea is to adapt to events that
occur at very different timescales. Also the β parameter (the heigth of the gaus-
sian) is adapted according to the frequency of the added event, here the idea is
to strenghten the association with rare events and to weaken associations with
very common events. Therefore when adding and event b to the statistics of a,
the parameters used are

σ = σ0(1 + αδa,a) (10)

and
β = β0(1 + αδa,a + λδb,b) (11)

where α is the range adaptation coefficient and λ is the intensity adaptation
coefficient (both low positive value). The higher α, the more the gaussian is
flattened for a given self time-delay. The higher λ, the more the added event is
important for a given self time-delay.

The constructed internal model, along with short-term memory of the last
occurred events, can easily be used to determine the expected events using the
following principles. For each past event a in the short-term memory, all the
Da,b random variables are evaluated, and for each of them which validate the
condition 3, the event b is added into the expectation list, along with its average
time-delay δa,b and its confidence value τa,b. Then for each possible event b,
if we can find any event a in short-term memory that is valid according to
contingency conditions 7 and 8, then b is added to the expectations list, again
with its average time-delay δa,b and its confidence value κa,b. Also the outcome
of potential actions can be determined by the agent using this internal model.

3.2 Handling complex causal phenomena

One of the most difficult issues of anticipation systems is to be able to identify
complex causal phenomena involving many different events. An example of such
a phenomena is that when an event a occurs, doing the action b will result in
the event c occuring. This issue is tackled in our architecture by the concept
of sequence of events. The idea is to construct sequences of events that will be
processed as normal events and that can therefore be used as predictors for other
events. This process is included in the internal events generator. The problem
here is to take care of the combinatorial explosion when grouping events. There-
fore we need a criterion for creating new sequences, and also another one for
discarding them when they have proved unsuccessful. The idea is to introduce
a sequence generation probability psg that will be used each time an event b



is processed to decide if a new sequence has to be created, another event a is
then chosen randomly and a new sequence a, b is registered. Then each time
an event is processed, the internal events generator will check if the new event
associated with the older ones matches one of the sequences defined. If it is
the case, a sequence event is generated and stored in the short-term memory,
with the averaged time-distance and saliency of the constituting events. Using
a sequence destruction probability psd evaluated at each time-step, a randomly
chosen sequence may be destroyed if it has no predicting power, with a prob-
ability growing with the ’age’ of this sequence. Forwarding sequence events in
the normal events’ pathway allows for the construction of longer sequences by
associating already existing sequences with other events.

Another case of complex relationship is when an event c predicted by a can
be avoided if the action b is performed before c occurs. In this case we have to
take into account the NON-occurrence of an expected event. The idea is that
when an expected event did not happen after a sufficiently long time, a signal
is transmitted to internal event generator which will then generate a special
event, opposite of the expected one, and forward it into the normal pathway.
For example if an event a predicts an event c, and if after some time this event
c still has not arrived, then we will generate an event c and forward it into the
event processing pathway. This event can then be associated with another event
b that caused this non-occurrence, or to the sequence of events a, b.

3.3 Extra Mechanisms

Two other mechanisms are introduced to improve efficiency of the architecture.
The first principle is to filter out some of the perceptions to avoid overloading the
system with useless information. The precise criterion we use is that according to
a distribution probability of perceptions E, which is constantly updated with new
perceptions, we consider salient perceptions those that carry more information
than the average information carried. Therefore the saliency criterion can be
expressed as

I(e) > H(E) (12)

We also introduce a forgetting mechanism to allow for a quick replacement
of relationships that are not relevant anymore. The principle of the forgetting
mechanism is to define an upper bound to the total number of realizations of the
random variables describing the internal model. When a new realization is added
and increases the total number above the defined bound, one other realization
is removed, by randomly choosing one of the events stored and removing one
realization of this event.

4 Experiments

In this section we will evaluate the ability of the architecture described above to
extract relevant causal relationships from the flux of perceptions. The agent is not



allowed to act, it can only passively perceive events coming from its environment.
We first detail the experimental setup then we analyze the confidence value of
relationships of interest.

4.1 Experimental setup

Here we simulate some kind of Skinner box where the agent is situated. The per-
ceptions of the agent are taken from the set N1, N2, N3, N4, N5, N6, L1, Food.
The events from N1 to N6 are noise events that have no causal value, whereas
events L1 and Food are causally associated, L1 predicting the Food event (L1
stands for Light 1, we consider than when the light is flashed, food will be
given to the agent in a given delay). L1 − Food sequence has a probability of
0.02 of being initiated at each timestep. The noise events are generated at each
timestep with the respective probabilities (N1 : 0.2, N2 : 0.1, N3 : 0.05, N4 :
0.025, N5 : 0.0125, N6 : 0.00625). Other parameters of the simulation are the
following. Gaussian parameters σ0 = 3 and β0 = 100. Range adaptation coeffi-
cient α = 0.25. Intensity adaptation coefficient λ = 0.1. Random variables have
an upper bound of 1000 realizations.
The first experiment measures the confidence values of the contingency and time-
delay relationships after 10000 steps of simulation for different time-delay of the
L1− Food association. The time-delays evaluated range from 1 to 80 timesteps
with a variability of +/− 3 timesteps.
For the second experiment we use the same procedure but the parameter inves-
tigated is the variability of the time-delay of the L1 − Food association. The
base time-delay used is 14 timesteps and with a variability rangind from +/− 0
to 20 timesteps.
The third experiment aims at evaluating the dynamics of the internal predictive
model over time. The L1 − Food association has a time-delay of 14 timesteps
and a variability of +/ − 3 timesteps. The experiment is running over 100000
timesteps, and during the range 40000 to 60000 L1 and Food are not associated
anymore, they are both presented at each timestep with the same probability of
0.01.

4.2 Results

Results of the first and second experiment are shown in figure 4. We can see from
these results that contingency relationships are successfully extracted for short
time delays, less efficiently when the time delay increases, but they are robust
to variability of this time delay. On the other hand, time-delay relationships
have the opposite behavior, i.e. they are robust for long time delays, but they
loose efficiency as the variability increases. These results confirm the expected
behavior of these two anticipation mechanisms, which used together should allow
the extraction of most relevant relationships.

Results of the third experiment are shown in figure 5. We can see that both
relationships are quickly learned, correctly forgotten when the two stimuli are



Fig. 4. Plotting of κL1,Food (black) and τL1,Food (gray) after 10000 steps simulations.
(a) Plotting against time delay between L1 and Food. Time-delay relationship is robust
whereas contingency is not. (b) Plotting against variability of the time delay between
L1 and Food. Contingency relationship is robust whereas time-delay relationship is
not.

not associated anymore, and then their confidence value increases as soon as
the events are paired again. These results show that the architecture correctly
account for forgetting mechanism. We can see that for a long enough time of
exposure to the unpaired events during a typical run, the agent can completely
forgot the contingency relationship. On the other hand, the time-delay relation-
ship is maintained for a longer time and its original confidence value is recovered
very quickly when the events are paired again, whereas the contingency relation-
ship shows a slower recovery rate.

Fig. 5. Plotting of κL1,Food (black) and τL1,Food (gray) against time during 100000
steps of simulation. In the range 40000 to 60000 L1 and Food are not causally asso-
ciated (shown in gray on the horizontal axis). (a) A typical run. (b) Average of 20
experiments.



5 Conclusion

We have introduced two information theory based tools for extracting time-delay
and contingency relationships in the flux of perceptions. These tools have been
put together into an architecture that uses them for constructing an internal
model of the environment. We have shown two distinct properties of contin-
gency and time-delay relationships, the former is robust to variations of the
delay between two stimuli, and the latter keeps its efficiency when the time-
delay becomes long. We have also shown the efficiency of this architecture for
constructing a relevant internal model that is able to quickly adapt to a changing
environment.
Some aspects of the architecture could not be detailed here, the first one is its
ability to construct and manipulate sequences of events, the second one is the
handling of non-occurring expected events, nevertheless the main principles have
already been validated. Also as our focus was the construction of the internal
model, the action-decision mechanism and reward evaluation could not be in-
vestigated, but they have been taken into account in the overall architecture.
Experiments illustrating the behaviour generated by the complete architecture
will be conducted in future work, and we will especially focus on complex situ-
ations involving two-steps learning. Also the architecture does not solve in any
way the problem of generalizing learned associations, this could be investigated
by introducing concepts already used in learning classifier systems at the level
of perceptions.
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