
A Framework for Anticipatory Machine
Improvisation and Style Imitation

Arshia Cont1,2, Shlomo Dubnov2, and Gérard Assayag1

1 Ircam - Centre Pompidou - UMR CNRS 9912, Paris.
{cont,assayag}@ircam.fr

2 Center for Research in Computing and the Arts, UCSD.
sdubnov@ucsd.edu

Abstract. We present a first step towards anticipatory machine impro-
visation systems. The proposed system, based on fundamentals of music
cognition, is a multi-agent memory-based collaborative and competitive
reinforcement learning architecture, capable of live interaction with a
musician or a music score. Results demonstrate the ability to model
long-term stylistic planning and need for much less training data than
reported in previous works.

1 Introduction

Musical style modeling consists of building a computational representation of
the musical data that captures important stylistic features. Considering sym-
bolic representations of musical data, such as musical notes, we are interested in
constructing a mathematical model such as a set of stochastic rules, that would
allow creation of new musical improvisations by means of intuitive interaction
between human musicians or music scores and a machine.

About half a century ago, the musicologist Leonard Meyer drew attention to
the importance of expectation in the listener’s experience of music. He argued
that the principal emotional content of music arises through the composer’s
choreographing of expectation [1]. Most musical improvisation systems (reviewed
in section 2) define this expectation effect in terms of prediction process that
is based on the past. In this paper we extend this view using the concept of
Anticipation. Anticipation, in short, is different from prediction in the sense
that an anticipatory system is “a system containing a predictive model of itself
and/or of its environment, which allows it to change state at an instant in accord
with the model’s predictions pertaining to a later instant” [2].

In this paper, we present an anticipatory machine improvisation system capa-
ble of formal long-term planning of musical material and which handles multiple
representations of music signals at the same time. In section 2 we provide per-
tinent literature background on previous works done on machine improvisation
and style modeling, fundamentals of music cognition for this work and some
literature review on anticipatory systems. The proposed architecture is based on
reinforcement learning with multiple-agents in interaction with an environment,

2

which we overview in section 3. Each agent handles a specific musical attribute
and they all collaborate and compete during learning and event generation.
Section 4 introduces the representation of musical material in our multi-agent
architecture, followed by the definition of interaction and reward and the notion
of guides in section 5. Section 6 explains the proposed learning algorithm to
achieve memory-based collaborative and competitive behavior in a multi-agent
structure and finally, we present some result and analysis, followed by discussions
and future development of the system.

2 Background

2.1 Machine Improvisation and Style Modeling

Earlier works on style modeling employed information theoretical methods in-
spired by universal prediction. In many respects, these works build upon a long
musical tradition of statistical modeling that began in the 50s with Hiller and
Isaacson’s “Illiac Suite” [3] and Xenakis using Markov chains and stochastic pro-
cesses for musical composition [4]. The most prevalent type of statistical model
encountered for music are predictive models based on context ; referred to as con-
text models implying general Markov models [5]. Universal prediction methods
improved upon the limited memory capabilities of Markov models by creating
context dictionaries from compression algorithms, specifically using the Lempel-
Ziv incremental parsing (IP) [6], and employing probability assignment accord-
ing to Feder et al. [7]. Music improvisation was accomplished by performing a
random walk on the phrase dictionary with appropriate probabilistic drawing
among possible continuations [8–10]. Later experiments explored Probabilistic
Suffix Tree (PST) [11], and more recently in [12] using Factor Oracle (FO) [13].
Other methods include the use of Genetic Algorithms [14] and neural networks
[15] just to name a few. This last group require elaborate training and intricate
supervision schemes due to their architecture.

One of the drawbacks of the above methods is lack of responsiveness to
changes in musical situations that occur during performance, such as dependence
of musical choices on musical form or changes in interaction between players
during improvisation. Interaction has been addressed previously in [10] for PST
based improvisation by means of a fitness function that influenced prediction
probabilities according to an ongoing musical context, with no consideration of
planning or adaptive behavior. Statistical approaches seem to capture only part
of the information needed for computer improvisation, i.e. successfully modeling
a relatively short term stylistics of the musical surface. Although variable Markov
length and universal methods improve upon the finite length Markov approach,
they are still insufficient for modeling the true complexity of music improvisation.

Another significant challenge faced with music signals arises from the need to
simultaneously represent and process many attributes of music information. Pre-
viously, this problem has been tackled by cross-alphabet models [9, 12, 10] where
each parsed signal represents an alphabet as a vector of multiple attributes
and multiple viewpoints [16], by deriving individual expert models for any given

3

representational viewpoint and then combining the results obtained from each
model. Cross alphabet methods have proven to be useful for single attribute
information types such as text, and are intractable when the dimension of at-
tributes increases as in the case of music. Researchers have considered various
membership functions to allow for these context dependencies through various
heuristics [12, 10]. Such heuristics might make the system dependent upon the
style of music being considered or reduce generalization capabilities. Multiple
viewpoint models are more expressive than cross-alphabet models since by com-
bining models we allow the system to reach parts of the hypothesis space that the
individual models would not be able to reach. However, learning requires huge
amounts of training data and this representation might be extremely redundant
in view of the repetitive structure of music information.

2.2 Psychology of music expectation

Expectations imply some sort of mental representation. On the other hand, one
of the main characteristics of music information is its multi-dimensional aspect.
Huron, in his recent book, suggests that brain uses a combination of several
underlying representations and expectation plays a major role in realizing which
representation to use, and provides evidence for a system of rewards and punish-
ment that evaluates the accuracy of our unconscious predictions about the world
[17]. Our mental representations are being perceptually tested by their ability to
usefully predict ensuing events, suggesting that competing and concurrent rep-
resentations may be the norm in mental functioning. This view is also strongly
supported by the neural Darwinism theory of Edelman [18]. According to Huron,
it is during the prediction response that the reinforcement feedback is provided
and serves at least three functions: motivation, preparation and representation.

Another concept in music perception important for this work is the role of
memory. Snyder in [19] proposes an auditory model of memory that consists
of several layers, from which we consider feature extraction, Long Term Mem-
ory (LTM) and Short Term Memory (STM). Feature extraction is some sort of
perceptual categorization and grouping of data. Events processed at this stage
can activate those parts of LTM activated by similar events in the past. Not all
LTM at this point become conscious, but form a context for current awareness.
This context takes the form of expectations that can influence the direction that
current consciousness takes. LTM acts like a filter determining which aspects of
our environment we are aware of at a given time. LTM that reaches this higher
state of activation can then persist as current STM. Information in STM might
be repeated or rehearsed. This rehearsal greatly reinforces the chances that the
information being circulated in STM will cause modifications in permanent LTM.

2.3 Anticipatory Systems

There has been collective interest in the recent years on simulating anticipa-
tory behavior in robotics and animat design among others [20]. These works
are commonly based on foundations from psychological research of behaviorists

4

and/or latent learning in animals. In general, anticipatory behavior research is
interested in systems that base their action decisions on future predictions as
well as past inference and simulate adaptive frameworks in the light of different
anticipatory behavior in animals [21].

Davidsson in [22] proposes a framework for preventive anticipation where he
incorporates collaborative and competitive multiple agents in the architecture.
While this has common goals with the system proposed in this paper, our pro-
posals are different since the system in [22] uses rule-based learning with ad-hoc
schemes for collaboration and competition between agents, which is not the case
here. Recently, in the computer music literature, Dubnov has introduced an an-
ticipatory information rate measure that when run on non-stationary and time
varying data such as audio, can capture anticipatory profile and emotional force
data that has been collected using experiments with humans [23].

3 General Architecture

The most common methods to simulate anticipatory behavior has been rein-
forcement learning (RL) and learning classifier methods [20]. Here, we adopt an
RL view of musical interaction in an anticipatory framework.

3.1 RL view of Musical Interaction

In a RL system, rewards are defined for goal-oriented interaction. In musical
applications, defining a goal would be either impossible or would limit the utility
of the system to certain style. In this sense, the rewards used in our interaction
are rather guides to evoke or repress parts of the learned model in the memory.
We define two execution modes for our system demonstrated in Figure 1. In
the first, referred to as Interaction mode, the system is interacting either with
a human performer (live) for machine improvisation or with music score(s) for
style imitation and occurs when external information is being passed to the
system from the environment (either human improvisor or music score). During
the second mode, called self listening mode, the system is in the generation phase
and is interacting with itself, or in other words it is listening to itself, in order
to decide how to proceed.

The agents in both modes are model-based RL frameworks. They include
an internal model of their environment plus a reinforcement learner for plan-
ning. This internal model plays the role of memory and representation of input
sequences from the environment. Our model, presented in section 4, leads to
multiple agents which collaborate and compete during learning and planning.
This aspect is quite important since it reduces the cost of learning and storage,
overcomes the curse of dimensionality, and makes it possible for the system to
interact in realtime with small data available. During the self-listening mode
reinforcement learning is model-free, meaning that the internal model of the
environment rests intact but the planning is influenced by the latest musical
sequence that has been generated by the system itself, thus, the idea of self
listening.

5

(a) Interaction Mode (b) Self Listening Mode

Fig. 1. Machine Improvisation modes diagram

3.2 Anticipatory Framework

At each interaction with the environment, agents receive immediate scalar re-
wards, r, which serve as guides in stimulating the internal memory of agents
(section 5). This way the reward would be the manner in which this new in-
formation reinforces the current stored model in the agent. In an anticipatory
system, we are interested in the impact of future predictions on the current state
of the system. In a RL framework, this means that the reward for a state-action
pair would correspond to future predicted states. Equation 1 demonstrates the
RL reward used in different stages of our system to be discussed in section 6
with γ as a discount factor and st as the chosen state by the system at time t.

R(st) = r(st) + γr(st+1) + · · · + γmr(st+m) + · · · (1)

Rewards or guides are calculated the same way for both modes of the sys-
tem described before with a small difference. We argue that the rewards for
the interaction mode (Figure 1(a)) correspond to a psychological attention to-
wards appropriate parts of the memory and guides for the self-listening mode
(Figure 1(b)) correspond to a preventive anticipation scheme. This means that
during interaction with a human improvisor or a score, the system needs to be at-
tentive to (new) input sequences from the environment and during self-listening
in needs to be preventive so that it would not generate the same (optimal) path
over and over. This is achieved by treating the same environmental rewards with
positive and negative signs appropriately. Following the distinctions of Butz et
al. in [21], the proposed framework attempts to model two types of anticipations:
state anticipation in which predictions about future states directly influence cur-
rent behavioral decision making, and payoff anticipation where the influence of
future predictions on behavior is restricted to payoffs during self-listening.

6

4 Musical Representations

In this section, we present how the music data is represented and stored in
the agent. The input of the system is polyphonic MIDI signals, sliced vertically
between successive onsets. The unit of time used for the system is assumed
to be the smallest significant time interval that a musical event would occupy
during a piece (referred to as tatum). In our multiple-agent framework, each
agent learns and stores a model for a specific attribute of music signal using the
Factor Oracle (FO) algorithm [13]. FO has been previously used for machine
improvisation using cross-alphabets in [12].

We give a short description of the properties and construction of FO and
leave the formal definitions in [13]. Basically a factor oracle is a finite state
automaton constructed in linear time and space in an incremental fashion and
can be learned online. A sequence of symbols A = a1a2 · · · an is learned in such
an automaton, whose states are S0, S1, S2 · · ·Sn. There is always a transition
arrow labeled by symbol ai going from state Si−1 to state Si. Depending on the
structure of A, other arrows will be added to the automaton. Some are directed
from a state Si to a state Sj , where 0 ≤ i < j <= n. These also belong to
the set of transitions and are labeled by symbol aj . Some are directed backward,
called suffix links, and bear no label. The transitions model a factor automaton,
that is every factor p in A corresponds to a unique transition path labeled by
p, starting in S0 and ending in some other state. Suffix links connects repeated
patterns of A. In general, given a sequence, the constructed FO returns two
deterministic functions: a transition function Ftrn : S × A → {S ∪ ∅} and suffix
links Fsfx : S → {S ∪ ∅}.

For this experiment, we use 6 different attributes taken out of musical events
which consist of pitch, duration in quantized beats and harmonic interval(s)
relative to a leading pitch and their first derivatives. Note that while the deriva-
tives of pitch and harmonic interval are subtractive, the derivative of duration
would be multiplicative. Upon the arrival of a sequence, these attributes are ex-
tracted and would update corresponding FOs. Table 1 shows 6 attributes com-
puted for the score shown in Figure 2 with four sample learned FOs in Figure 3.

 = 100

Fig. 2. First bar of J.S.Bach’s two-part
Invention No.5

Event Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pitch (MIDI) 0 51 63 62 63 0 65 0 67 67 63 68 68 58 60

Harmonic Int. 0 0 0 0 24 0 0 0 4 5 0 8 6 0 0

Duration 4 4 4 4 4 4 4 8 4 4 4 4 4 4 4

Pitch Deriv. 0 0 12 -1 1 0 0 0 0 0 1 -3 0 -4 2

Harm. Deriv. 0 0 0 0 0 0 0 0 0 1 0 0 -2 0 0

Dur. Deriv. 1 1 1 1 1 1 1 2 0.5 1 1 1 1 1 1

Table 1. Attributes for parsed events in
Figure 2

7

0 1
0.0

2

51.0

3

63.0

4

62.0

7

65.0

9

67.0

12

68.0

14

58.0

15

60.0

51.0

65.0

67.0

63.0 62.0

68.0

6

0.0

5
63.0

8
0.0

11

63.0
10

67.0

58.0

13
68.0 60.065.00.0 67.0 68.063.0 58.0

(a) Pitch FO

0 10.0

3

12.0

4

-1.0

5

1.0

12

-3.0

14

-4.0

15

2.0

12.0

-4.0

2

0.0

11

1.0

-1.0 1.0

-3.0

60.0

130.0 2.0
12.0

1.0

8

0.0

-3.0

1.0

90.0

7
0.0

0.0
1.0

100.0 1.0 -4.0

(b) Derivative of Pitch FO

0 14.0

8

8.0
8.0

24.0

9
4.0

8.0

34.0

8.0

44.0

8.0

54.0

8.0

64.0

8.0

7

4.0

8.0

104.0 114.0 124.0 134.0 144.0 154.0

(c) Duration FO

0 11.0

8
2.0

9

0.5

2.0

2
1.0

0.5

10
1.0

2.0

31.0

2.0

41.0

2.0

51.0

2.0

61.0

2.0
71.0

2.0

111.0
12

1.0
131.0 141.0 151.0

(d) Derivative of Duration FO

Fig. 3. Factor Oracles learned over sequences in Table 1. Each node represents a state,
each solid line a transition and dashed line a suffix link.

5 Interactions and Rewards

When a new music sequence Ot = o1o2 · · · oN is received from the environment,
an ideal reward signal should reinforce the part of memory which most likely
evoke the sequence received to be able to generate recombinations or musically
meaningful sequences thereafter. In the RL framework, this means that we want
to assign numerical rewards to transition states and suffix states of an existing
Factor Oracle with internal states si. Reward computation occurs before inte-
grating the new sequence into the model.

After different attributes of Ot is extracted as separate sequence each in
form {x1 . . . xN} (as in Table 3), we use a probability assignment function P
from S∗ → [0, 1] (where S∗ is the set of all tuple of states available to FO) to
assign rewards to states in the model as follows:

P (s1∗s2∗ . . . sN∗ |St) =
N

i=1

p(xi|si∗) /N (2)

where

p(xi|si) =
{

1 if Ftrn(si−1, xi) = si

0 if Ftrn(si−1, xi) = ∅ , s0 ≡ {∀st ∈ Sspan : Ftrn(st, x1))= ∅}(3)

with s0 as an initialization set for the search space, and Sspan corresponding to
a finite recent history of states emphasizing the finite memory process property
of a finite state machine model such as FO.

To interpret Equation 2 by words, it reinforces the states in the memory
that can most regenerate the new sequence. In other words, it will guide the

8

learning described later to the places in the memory that should be mostly
regarded during learning and generation. For example, for an attribute sequence
{e1, . . . , eN}, a sequence of state transitions for {s1∗ , . . . , sN∗} in a FO structure
would get a reward of 1 if they can regenerate all the original, and so on.

To assign rewards to suffix links, we recall that they refer to previous states
with largest common suffix. Using this knowledge, a natural reward for a suffix
link would be proportional to the length of the common suffix that the link is
referring to. Fortunately, using a factor oracle structure, this measure can be
easily calculated online and has been introduced in [24].

6 Interactive Learning

In our architecture, each musical event is defined by its corresponding state
numbers in different FOs. For example, an event defined by a tuple <pitch,
duration, harmony> gives indices to states in FOs for pitch, duration, harmony
or their derivatives (see section 4). This way, the RL framework learns policies
(Q matrices) over FOs’ transition and suffix links. Correspondingly, this policy
matrix will be used during music generation to activate the appropriate states
in the model to generate certain music sequences or variants of them.

The main structure of the learning algorithm is based on a Dyna architecture
[25] as a model-based learning with FOs used for representation and model
learning. The main cycle of the algorithm consist of internal environment model
(FOs) update and Q-learning. Planning in a musical system should be memory
based, collaborative, competitive and anticipatory as discussed in section 2.2. In
our application, each RL episode can be viewed as an improvisation simulation
with the terminal state corresponding to the length of the simulation. In other
words, during each learning episode, the system is practicing what it has learned
based on updated rewards to learn new policies.

We present a method for combining multiple agents on the same domain and
in parallel which uses the same experience knowledge and learns collaboratively
and competitively inspired by [26]. As discussed in section 2.2, different mental
representations of music work in a collaborative and competitive manner based
on their predictive power to make decisions. This can be seen as kind of a model
selection where learning uses all the models available and chooses the best one
for each episode. This winning model would then become the behavior policy
with its policy followed during that episode and other agents being influenced
by the actions and environmental reactions from and to that agent.

At the beginning of each episode, the agent selects the policy of one module
following the probability in Equation 4, with parameter βsel being positive and
the inverse temperature. Low βsel causes equi-probable selection of all modules
and vice versa. This way, a behavior policy πbeh is selected competitively at the
beginning of each episode based on the value of the initial state s0 among all
policies πi as demonstrated in Equation 4.

Pr(i|s0) =
eβsel a′ Qi(s0,a′)

N
j=1 eβsel a′ Qj(s0,a′)

, πbeh = argmax
i

Pr(i|s0) (4)

9

During each learning episode, the agent would be following the behavior pol-
icy. For update of πbeh itself, we can use a simple Q-learning algorithm but in
order to learn other policies πi, we should find a way to compensate the mis-
match between the target policy πi and the behavior policy πbeh. Uchibe and
Doya [26] use an importance sampling method for this compensation and demon-
strate the implementation over several RL algorithms. Adopting their approach,
during each update of πi when following πBeh we use a compensation factor
IS = Qi(sm,am)

Q∗(s,a) during Q-learning as depicted in Equation 5, where (sm, am)
are mapped state-action pairs of (s, a) in behavior policy to attribute i. This
would define the collaborative aspect of our learning, with α as learning rate and
R(sm) as in equation 1. Due to different natures of Qis, we enforce an upper
and a lower bound on IS.

Qi(sm, am) = Qi(sm, am) + α R(sm) + γ · IS · max
a′

(Qi(sm, a′)) − Qi(sm, am) (5)

In a regular Dyna agent, simulated transitions are started in state-action
pairs selected uniformly at random from all previously experienced pairs. But
a uniform selection is not the best and planning can be much more efficient
if simulated transitions and backups are focused on useful state-action pairs.
In general, we want to go back in the memory from any state whose value has
changed. Equally as the frontier of useful backups propagates, not all of them will
be equally useful. The value of some states may have changed a lot while others
rest intact, suggesting that the predecessor pairs of those who have changed
a lot are more likely to change a lot as well. So it is natural to prioritize the
backups according to measures of their urgency and perform them in order of
priority. This is the idea behind prioritized sweeping or memory-based learning
[27] embedded in our learning with the priority measure as in Equation 6 for a
current state s and next state s′, leading to a priority queue of state-action pairs
(chosen by a threshold θ) to be traced backwards during updates.

p ← |R(s) + γ max
a′

(QBeh(s′, a′)) − QBeh(s, a)| (6)

7 Generation

There are many ways to generate or improvise once the policies for each attribute
are available. We represent just one simple solution using the proposed architec-
ture. At this stage, the system would be in the self listening mode (Figure 1(b)).
The agent would generate phrases of fixed length following a behavior policy
(learned from the previous interaction). When following the behavior attribute,
the system needs to map the behavior state-action pairs to other agents in order
to produce a complete music event. For this, we first check and see whether
there are any common transitions between original attributes and if not, we
would follow the policy for their derivative behavior. Once a phrase is gener-
ated, its (negative) reinforcement signal is calculated and policies are updated
as in section 6 but without updating the current models (FOs).

10

8 Results and Discussions

As a sample result for this paper, we include a sample run of the system on a
single polyphonic piece, two-part Invention No.3, by J.S. Bach, for style imita-
tion. For this example, the learning phase was run in interaction mode with a
sliding window of 50 events with no overlaps over the original MIDI score. After
the learning phase, the system entered self listening mode where it generates
sequences of 20 events and reinforces itself until termination. Parameters used
for this session were α = 0.1, γ = 0.8, θ = 2, and ε = 0.1 for the epsilon-greedy
of state-action selection. Number of episodes simulated during each RL phase
was 100. The generated score is shown in Figure 4(a) for 240 sequential events
(as described in section 4) where the original score has 348. For this generation,
the pitch behavior has won all generation episodes and direct mappings of dura-
tion and harmonic agents have been achieved 76% and 83% in total respectively
leaving the rest for their derivative agents.

&
?
&
?

##
##
##
##

83
83
83
83

Track 1

Track 2

œ œ œ œ œ
∑

≈ ≈‰ ‰
‰ ≈ œ œ œ

œ œ œ œ œ
∑

‰ ≈ œ œ
œ œ œ ≈ œ

œ
œ œ œ œ

œ
∑

‰ œ œ œ
œ Jœ

œ
œ œ œ
œ

∑
≈ œ œ œ
Rœ Œ
5

≈ œ œ œ œ
Rœ Œ
5

≈ œ œ œ œb
∑

œ
œ œ# œ œ œ
∑

œ œ œ œ
∑

œ œ œ œ œ œ#
∑

≈ œ œ œ
∑

œ œ œ# œ œ œ
∑

œ# œ œb œ œn
∑

œ œ œ œ œ œ
∑

≈ œ œ œ
∑

œ œ œ# œ œ
∑

≈ .œ œ
‰ œ œ œ

.œ .œ
‰ œ
∑
œ œ œ

œ œ œ œ œ œ
∑

œ œ# œn œ œ
∑

œ# œ œ œ œb
∑

œ œ œ œ
∑

œ œ œ œ œ œ
∑

œ œ œ
∑

&
?
&
?

##
##
##
##

15 œ œ œ œ œ
15 ∑
15 œ œ œn œ œb
15 ∑

.œ

∑
∑
.œ

œ œ œ# œ œ œ
∑

≈ œ œ œ
r
œn
Œ5

œ œ œ œ œ œ
∑

œ œ œ œn
∑

œ œ œ œ œ œ
∑
∑
∑

œ œ œ œ œ œ
∑
∑

Œ œ œ

œ œ œ œ
Œ Jœ

œ œ .œ
≈ œ œ œ œ

œ œ œ
œ œ

Œ Jœ
≈ œ œ œ
r
œ
Œ5

œ œ
œ
œ œ

‰ œ
≈ œ œ œ œ
‰ ≈ œ œn

œ œ œ œ œ œ
∑

≈ œ œ œ œ
∑

œ
œ
œ œ œ œ
∑

≈ œ œ œ
‰ œ

œ œ œ
œ œ œ
∑

≈ œ œ œ œ
∑

œ œ œ œ œ œ#
∑

‰ ≈ œ œ
∑

œ œ œ œ
∑

≈ œ œ œ œ
∑

œ œ2

∑
Œ jœ
≈ œ œ œ œ

&
?
&
?

##
##
##
##

30 œ œ œ œ œ
œ

30 ∑
30

œb œ œ œ
œ

30 ∑

≈ œ œ œ œ œ

Rœ Œ
5

≈ œ œ œ œ
∑

œ œ œ œ œ œb
∑

‰ œ œ# œ
rœ Œ5

.œ œ œ œ
∑

œ œ œ .œ
∑

œ œ œ œ# œb
∑

œ œ# œ
∑

œ œ œ œ œ œ
∑

œ œ .œb
Œ jœ

œ œ œ œ œ œ
∑

œ œ œb .œ
∑

œ œ œ œ
Œ Rœ

5

‰ ≈ .jœ
Œ œ œ

œ œ
œ œ

≈ œ œ œ œ
‰ œ œ
œ rœ

œ œ
œ œ œ

≈ rœ ‰ ‰
‰ œ œ
Rœ Œ
5

œ œ
œ œ

≈ œ œ œ œ
œn œ œ
Œ rœ5

∑
∑
∑
∑

(a) Style imitation sample result

0 10 20 30 40 50 60 70 80 90
!10

!5

0

5

10

15

20

25

30

35

Pitch (MIDI)

Ha
rm

on
ic

In
te

rv
al

 (M
ID

I)

Original
Improvisation

(b) Improvisation vs. Original

Fig. 4. Machine Improvisation sample run results

While both voices follow a polyphonic structure, there are some formal musi-
cological structures that can be observed in the generated score. Globally, there
are phrase boundaries in measures 11 and 29 which clearly segment the score
into three formal sections. Measures 1 to 11 demonstrate some sort of exposi-
tion of musical materials which are expanded in measures 12 to 29 with a weak
cadence in measure 16. There are several thematic elements which are reused
and expanded. For example, the repeated A note appearing in measures 3 and 4
appear several times in the score notably in measure 22 as high D with a shift
in register and harmony. More importantly, these elements or their variants can
be found in the original score of Bach.

Figure 4(b) shows the pitch-harmony space of both the original MIDI and
the generated score. As is seen, due to the collaborative and competitive multi-
agent architecture of the system, there are new combinations of attributes which
do not exist in the trained score.

11

9 Conclusion

We proposed an anticipatory framework for machine improvisation and style
imitation of music. Our anticipatory framework is a result of fundamentals of
music cognition and incorporates multiple collaborative and competitive agents
each handling part of the musical attribute and through memory-based learning.
This anticipatory scheme serves to motivate, prepare and represent music data
in interaction with its environment. Besides the results demonstrated earlier,
the proposed architecture addresses two main challenges of music information
processing systems reviewed earlier: that of complex structure of music signals
as they inherit a conjunction of different features and that of formal planning
through interactive learning with an environment. In contrary to similar systems,
the proposed architecture achieves certain formal planning and with only small
data available through unsupervised learning and no a priori information of
formal structure for any style of music. We demonstrated results using 6 different
musical attributes but it should be noted that the architecture is independent
of the number and nature of attributes used.

Despite its achievement, this anticipatory scheme is rather simple and does
not address the wide role of musical expectation in listening and generating
music. Future work should consider more elaborate models of musical memory
or representations than the one presented. The musical representation used here,
despite its linear and expressive formalisms, does not reveal all the structures
necessary that occur during early processing in our auditory systems. Also, in a
music generation system, it is desirable to combine local rule-learning schemes
with long-term formal planning described before. More anticipatory schemes
such as sensory anticipation should also be studied to achieve more interesting
interactive music systems.

References

1. Leonard B. Meyer. Emotion and Meaning in Music. University of Chicago Press,
1956.

2. Robert Rosen. Anticipatory Systems, volume 1 of IFSR International Series on
Systems Science and Engineering. Pergamon Press, Oxford, 1985. Editor-in-Chief:
George J. Klir.

3. Lejaren A. Hiller and L. M. Isaacson. Experimental Music: Composition with an
Electronic Computer. McGraw-Hill Book Company, New York, 1959.

4. I. Xenakis. Formalized Music. University of Indiana Press, 1971.
5. Darrell Conklin. Music generation from statistical models. In Proceedings of the

AISB 2003 Symposium on Artificial Intelligence and Creativity in the Arts and
Sciences, pages 30–35, 2003.

6. Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-
rate coding. IEEE Transactions on Information Theory, 24(5):530–536, 1978.

7. M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual se-
quences. IEEE Trans. Inform. Theory, 38(4):1258–1270, Jul 1992.

8. Shlomo Dubnov, R. El-Yaniv, and Gérard Assayag. Universal classification applied
to musical sequences. In Proceedings of International Computer Music Conference,
pages 322–340, Michigan, 1998.

12

9. Shlomo Dubnov, Gerard Assayag, Olivier Lartillot, and Gil Bejerano. Using
machine-learning methods for musical style modeling. IEEE Computer Society,
36(10):73–80, October 2003.

10. François Pachet. The continuator: Musical interaction with style. In Proc. of
International Computer Music Conference, Gotheborg, Sweden, September 2002.
ICMA.

11. Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia: Learning
probabilistic automata with variable memory length. Machine Learning, 25(2-
3):117–149, 1996.

12. Gérard Assayag and Shlomo Dubnov. Using factor oracles for machine improvisa-
tion. Soft Computing, 8-9:604–610, 2004.

13. Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Factor oracle: A new
structure for pattern matching. In Proc. of Conference on Current Trends in
Theory and Practice of Informatics, pages 295–310, London, 1999. Springer-Verlag.

14. John A. Biles. Genjam in perspective: A tentative taxonomy for genetic algorithm
music and art systems. In Colin G. Johnson and Juan Jesus Romero Cardalda,
editors, Genetic Algorithms in Visual Art and Music, pages 133–135, Las Vegas,
Nevada, USA, 8 July 2000.

15. Judy A. Franklin. Predicting reinforcement of pitch sequences via lstm and td. In
Proc. of International Computer Music Conference, Miami, Florida., September
2004. ICMA.

16. Darrell Conklin and I. Witten. Multiple viewpoint systems for music prediction.
In Journal of New Music Research, volume 24, pages 51–73, 1995.

17. David Huron. Sweet Anticipation: Music and the Psychology of Expectation. MIT
Press, 2006.

18. G. Edelman. Neural Darwinism: The Theory of Neuronal Group Selection. Basic
Books, 1987.

19. Bob Snyder. Music and Memory: An Introduction. MIT Press, New York, 2000.
20. Martin Butz, Olivier Sigaud, and Pierre Gérard, editors. Anticipatory Behavior in

Adaptive Learning Systems, Foundations, Theories, and Systems, volume 2684 of
Lecture Notes in Computer Science. Springer, 2003.

21. Martin Butz, Olivier Sigaud, and Pierre Gérard. Internal models and anticipa-
tions in adaptive learning systems. In Anticipatory Behavior in Adaptive Learning
Systems, pages 86–109, 2003.

22. Paul Davidsson. A framework for preventive state anticipation. In Anticipatory
Behavior in Adaptive Learning Systems, pages 151–166, 2003.

23. Shlomo Dubnov. Spectral anticipations. Computer Music Journal, 2006.
24. A. Lefebvre and T. Lecroq. Computing repeated factors with a factor oracle. In

L. Brankovic and J. Ryan, editors, Proceedings of the11th Australasian Workshop
On Combinatorial Algorithms, pages 145–158, Hunter Valley, Australia, 2000.

25. Richard S. Sutton. DYNA, an Integrated Architecture for Learning, Planning
and Reacting. In Working Notes of the AAAI Spring Symposium on Integrated
Intelligent Architectures, 1991.

26. E. Uchibe and K. Doya. Competitive-cooperative-concurrent reinforcement learn-
ing with importance sampling. In Proc. of International Conference on Simulation
of Adaptive Behavior: From Animals and Animats, pages 287–296, 2004.

27. Andrew Moore and Chris Atkeson. Prioritized sweeping: Reinforcement learning
with less data and less real time. Machine Learning, 13:103–130, 1993.

