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Abstract. This paper presents an experimental study using two robots.
In the experiment, the robots navigated through an area with or without
obstacles and had as their goal to shift places with each other. Four dif-
ferent approaches (random, reactive, planning, anticipation) were used
during the experiment and the times to accomplish the task were com-
pered. The results indicate that the ability to anticipate the behavior
of the other robot could be to an advantage. However, the results also
clearly show that anticipatory behavior is not always better than a purely
reactive strategy.

1 Introduction

The ability to anticipate the behaviors of others is something we take more or
less for granted and we often do not appreciate the complexity of this ability.
When attempting to build robots with anticipatory abilities, it becomes clear
that this is far from trivial. Not only does the robot need to control its own
movement, it also needs to predict what other robots or possibly humans will
do. Moreover, it needs to use the anticipated behaviors of others in a sensible
way to change its own behavior.

Consider the following real life situation of the near future. You have sent
your personal shopping robot to the “Autonomous supermarket” to get your
favorite chocolate cake. To get the cake, located at the other end of shop, your
robot cannot chose the straight path toward the cake because of the shelves and
other obstacles, including all the other personal shopping robots in the store.
Instead some alternative strategy must be used.

One possibility would be to move around randomly in the store until it finds
the chocolate cake, but this would probably result in a long period of aimless
wandering before it gets to its goal. This type of random behavior is very in-
efficient and is seldom used in robot navigation, although is rather common in
robot exploration.

It is obvious that better methods can be used. Instead of moving at random,
the robot may try to move in the direction of the goal. This is a reactive place
approach method where the robot reacts to the position of the chocolate cake
and selects actions accordingly [2]. The problem with this approach is that the



robot cannot go straight to the goal because of the shelves and other robots
in the store. It needs to apply an obstacle avoidance strategy when there is
something in its way. For example, it may turn around and move in some other
direction for a short while before turning toward the goal again. This type of
reactive navigation has been widely used in robotics where the relation between
the stimulus and response is often preprogrammed [6][12]. A number of rules
are set up that must be fulfilled for an action to be executed. A problem with
such a reactive approach to navigation is that the robot can easily get itself into
situations where it becomes trapped.

Although the reactive strategy is more efficient than random movements it
would be better to plan a path around the shelves based on knowledge of the
layout of the store. This has traditionally been the most common way of dealing
with robot navigation. This plan can use grids [20], potential fields [20][1][5], or
some symbolic or geometric description of the environment. As long as the map
of the shop is correct, the plan will also be correct and can be used to efficiently
go to the cake.

Unfortunately, when the personal shopping robot reviews the map after a
few seconds of moving according to the planned path, it realizes that the map is
no longer accurate. The shelves are still where they are supposed to, but most
of the other robots have moved and are not where the map indicates. As with
the previous strategy, this makes it necessary to use some obstacle avoidance
strategy to avoid colliding with the other robots which may limit the usefulness
of the plan.

The solution to this problem is to include the movements of the other robots
when the personal shopping robot makes its plan. This is however not trivial as
it does not know where the other robots are heading. One reasonable assumption
is that they will continue in the direction they have now, although this will only
be true for a short while. Better predictions can be made if the robot knows
the goals of the other robots. By anticipating the behaviors of others, it will
be able to chose a better path and do not have to use the obstacle avoidance
strategy as often. The better its ability to anticipate, the less it will need to use
its alternative strategies.

Several different types of anticipatory behavior has been used in robotics and
AI. First, it is possible to use an anticipatory mechanism to reduce the latency of
a control system. For example, Behnke et al. [4] used neural network to reduce
the control latency for the FU-fighter team in RoboCup. The control system
had a delay of four frames (132 ms) and with a speed up to 2 m/s, this could
result in an error between the actual position of the robot and the tracking
of the robots of approximately 20 cm. By feeding a neural network with the
position, orientation and motor commands from the last six frames to anticipate
the current position, the influence of delay in the system was almost eliminated.
A similar method has also been used to predict the location of a moving target
for visual tracking [3].

A second type of anticipation concerns anticipation of the environment, for
example the movement of other robots. Sharifi et al. [18] describe a system for



the simulation league of RoboCup where the future state is used to anticipate
which robot will posses the ball next, while Veloso et al. [21] anticipate the state
of the whole team. This means that a seemingly passive agent is not passive at
all. Instead it actively anticipate opportunities for collaboration.

The anticipation of robot movement can also be based on observation. For
example, Stulp et al. [19] model the goal keeper in RoboCup to be able to
anticipate its behavior. Ledezma et al. [14] used a similar method to model the
behavior of the other players based on their observed input and outputs. Usually,
some type of communication between agents are used in anticipation, either a
complete knowledge of world or broadcasting of individual plans but there is
also work on cooperation without sharing information between agents [17].

Human-robot interaction can also merit from using anticipatory behavior.
Sabanovic et al. [16] used a stationary robotic receptionist that provided in-
formation to visitors and enhances interaction through story-telling to study
human-robot interaction. In this study, the robot receptionist turns toward peo-
ple passing by and tries to interact with them. To be able to interact in a efficient
way, the robot receptionist anticipates the position of people passing by to pro-
duce timing and directions more suitable for interaction.

The importance of anticipation has also been studied in the domain of com-
puter games [13]. In human activities, Saad [15] pointed out the close connection
between driving and anticipation, even stating that “driving is anticipating”.

Davidsson [8] used simulations to investiaget the benefits of anticipation. Two
different types of experiments were conducted. The first investigated competition
between agents and in the second experiment, the agents were cooperative. In the
experiments, the task of the agents was to pick up targets in a two dimension
grid world in a particular order. By using a linearly quasi-anticipatory agent
architecture, one agent could realize that it would not reach the target before
the other agent and would instead start to move toward the following target.
In the second experiment, the agents cooperate which lead to a decreased total
time for fetching all target objects.

Although simulations can be very valuable in testing different strategies, a
simulation must necessarily include a perfect model of the simulated environ-
ment. It will thus always be possible to make perfect predictions in a simulation
if this is desired. It is well known that this can easily lead to solutions that are
not useful when applied to robots that have to operate in the real world [7].

To evaluate the benefit of anticipation in mobile robots, we tested a number
of strategies in three different environments with two robots. We compared a
random and a reactive strategy with control methods based on planing with
or without anticipation of the behavior of the other robot. The goal of the
experiments was to test under what conditions the ability to anticipate would
help the robots in a simple task. In addition, we tested three different methods
to use the anticipated behavior of the other robot.
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Fig. 1: The three environments with different complexity. Left. The empty environment
used in experiment 1. Middle. The environment with a central wall used in experiment
2. Right. The environment with random obstacles used in experiment 3. A and B: goal
locations for the robots.

2 Description of the Experimental System

2.1 Environment

The size of the experimental area was 2×2 m. Bricks marked with white color
were placed in the area in two of the experiments to form obstacles (Fig. 1).
Experiment 1 used the empty environment, Experiment 2 used an environment
with walls and in Experiment 3, obstacles were placed at random in the envi-
ronment.

2.2 Robots

The robots used were two modified BoeBots (Parallax Inc., Rocklin, California).
These robots are approximately 14 cm long and use a differential steering. No
sensors on the robots were used in these experiments. Instead, each robot was
marked with two colors that could be detected by a camera mounted 3.5 m above
the robot area. This camera transmitted images to a computer that calculated
the position and orientation for the two robots four times per second. This
computer also performed all the computations for the two robots and controlled
the robots via wireless bluetooth communication. In addition, it stored tracking
data and collected all statistics for the experiments.

2.3 Control Systems

The control systems of the robots were built using the Ikaros framework1. The
interface components used included processing of the the video stream from
the camera, color tracking to detect the position and orientation of the robots,
and wireless communication. In addition, modules where built for reactive robot
control, path planning, and anticipation.

1 www.ikaros-project.org



Fig. 2: The computer is using the overhead camera to track the two robots and transmits
motor commands via bluetooth.

Random Control A random control system was the first tested in the exper-
iments. This system simply transmits random motor commands to the robot
until it has reached the goal. The robot is instructed to turn toward a random
orientation and then travel in this direction until an obstacle activates an ob-
stacle avoidance system, in which case a new random direction is set. This is
repeated until both robots have reached their goals.

Reactive Approach The next control system performs reactive approach where
the robot always tries to go directly toward the goal. The desired path is calcu-
lated as the straight line between the current location of the robot and the goal
location. This strategy will obviously have problems when there are obstacles in
the way and to handle this situation a reactive avoidance system was added.

Planning System The planning system is responsible for path finding within the
environment. To accomplish this an A* based navigation algorithm is used [11].
This is a grid based navigation algorithm with full knowledge of the environment.
It finds the shortest path to the goal by testing it in the grid-map. If it is unable
to use the shortest path, the second shortest path is tested and so on, until a path
has been found. Each robot uses the algorithm to find the best path through
the robot area. The grid-map is divided into 32×32 elements with a status of
either occupied or free. The planning system takes no account of where the other
robots are located and only uses its own position, the desired position and the
grid-map to find the path.



Anticipation System The anticipation system is similar to the planning system
but also includes the movements of the other robots. If the other robots were
stationary, the A* algorithm could register the other robots as obstacles. When
the other robots are moving it becomes necessary to anticipate their position at
each time-step in the future. To solve this, each robot has a model of the other
robot. This model is built using each robots own planning system, for example,
robot A assumes that robot B would use the path that robot A would have used
if it were located at the position of robot B and heading for the goal of robot B.
Before robot A tries to find its own path, it updates its model of the other robot
and uses this to find the path for robot B by stepping forward in the planning
and checking if there is any collision. If there is a collision, the robot chooses an
alternative path and tests if this is a valid. This is repeated until a valid path
is found. It should be stressed that the individual paths are not shared between
the robots. Only the start and goal position is known by the other robot. With
noise in the system this could lead to inaccurate models of the other robot and
this could in turn lead to more activation of the reactive avoidance system. A
similarly approach was presented by Guo [10].

An obvious problem arises with this approach. If both robots use the same
method to find a valid path, it is possible for both robots to select the alternative
path which will result in an collision. A way to avoid this problem is to assign
a rank [9] to each robot where the robot with the highest rank always takes the
shortest path. For example, let the robot with the longest distance to the goal
have the higher rank and let the other robot replan its path around the more
highly ranked robot. If the present robot has the lowest rank, we let A* see the
other robots as a obstacle but only during that time step. This means that at
just that time step there is an object at that position at some time steps later
the obstacle has moved and the grid that was occupied in the first time step is
free again. In the experiments, we tested three different ways to select the rank
of each robot, (1) a fixed rank, (2) the robot closest to its goal would have the
highest rank, and (3) the robot with the larger distance to its goal would receive
the highest rank. Note that according to the last two strategies, the ranks of the
robots may change when the robots move.

Reactive Avoidance A reactive avoidance system is placed on top of the other
navigation systems and is activated if there is an obstacle too close to the robot.
We divided the reactive area around the robot into 8 regions (Fig. 3). Three in
front of the robot, one on each side of the robot and three behind the robot. The
robot performs different types of avoidance behaviors depending on in which
regions the obstacle was found. If an object is straight ahead, the robot turns
on the spot until the obstacle has disappeared from the region and if an object
is found to the left of the robot, it steers to the right to obtain a free path.
Although the reactive avoidance system mainly helps the robot to reach its goal,
it sometimes counteracts the control of the navigation system. For example, when
the navigation system instructs the robot to turn right, the reactive avoidance
system may detect an obstacle in that area and tell the robot to turn left instead.



Fig. 3: The robot with the reactive field around it. The reactive field divide the sur-
roundings into eight regions and different avoidance behaviors are activated depending
on the location of the obstacle.

2.4 Experimental Procedure

The task for the robots was to switch places with each other. One robot started
at position A and the other started at position B (Fig. 1). When the first robot
had arrived at its goal position, it waited for the other robot to reach its goal.
The goal locations were subsequently switched and same procedure was repeated.
During this experiment, the time for each position switch was recorded together
with the number of times the reactive avoidance system was used. Note that this
was a cooperative task where it is the time for both robots to switch places that
is recorded.

Six different strategies were tested: (RAND) random behavior, (APPR) re-
active approach behavior, (PLAN) planning, (A-fixed) anticipation with fixed
rank, (A-short) anticipation with higher rank for the robot closest to the goal,
and (A-long) anticipation with lowest rank for the robot closet to the goal.

Each strategy was tested twice before the robots shifted to the next strategy.
When all strategies had been tested two times, the procedure was repeated until
in total 40 trials with each strategy had been run. In total, there were 240 trials
in each experiment.

3 Results

The behaviors of the robots in the different conditions are illustrated in Fig. 4.

3.1 Experiment 1

The environment in experiment 1 did not contain any obstacles. As expected,
the random behavior was significantly slower (389s) than all the other strategies
(t-test, one-tailed, p<0.0001 for all test). The reactive approach behavior was
significantly faster than all the other strategies (t-test, on-tailed, p<0.01 for all
tests, Fig. 5 left). Two of the anticipatory strategies (A-fixed and A-long) were
significantly faster than the planning strategy (t-test, one-tailed, p<0.001 and
p<0.05, respectively).
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Fig. 4: Illustration of all the movement of the robots. In the experiments with the ran-
dom behavior, all the available area is covered. It is easy to discern the obstacle location
in experiment 2 and 3. Using the reactive approach behavior, less of the area is covered.
With this behavior, the required movement has been reduces in comparison to the ran-
dom approach behavior. Using the planning behavior, the robots will often take the same
path which will result in a possible collision and extensive use of the reactive avoidance
system. This most clearly seen in experiment 2 where the robots often both select the
top-right path. In the anticipation behaviors, the paths of the robots have more variation
because the anticipation causes the robots to use different paths. Note that the robots
balance the use of the two path between the two goal locations. In experiment 1, one
robot uses the diagonal path while the other moves to the left or right. The same pattern
can be seen in experiment 2 and 3, most clearly in A-long in experiment 3.
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Fig. 5: Left. Switch time for the different strategies in the empty environment in exper-
iment 1. In the empty environment, the reactive approach behavior (APPR) performed
best. The error bars show the standard deviation. Middle. Switch time for the differ-
ent strategies in the environment with walls in experiment 2. The anticipatory strategy
where the robot with longest distance to its goal had highest rank (A-long) was most
efficient. Right. Switch time for the different strategies in the environment with random
obstacles used in experiment 3. Strategy A-short was fastest in this environment.

3.2 Experiment 2

Experiment 2 used an environment with walls. Again, the random behavior
was significantly slower than all the other strategies (774s, t-test, one-tailed,
p<0.0001). The reactive approach strategy was significantly slower than the
planning and anticipatory strategies (t-tests, one-tailed, p<0.0001 for all tests,
Fig. 5 middle). However, of the different anticipatory strategies, only A-long was
significantly faster than the planning strategy (t-test, one-tailed, p<0.05).

3.3 Experiment 3

The environment in the last experiment contained randomly placed obstacles.
Again, the random strategy was significantly slower than all the other strategies
(817s, t-test, one-tailed, p<0.0001). The reactive approach strategy was again
significantly slower than the planning and anticipatory strategies (t-test, one-
tailed, p<0.001 for all tests, Fig. 5 right). Of the different anticipatory strategies,
only A-short was significantly faster than the planning strategy (t-test, one-
tailed, p<0.05).

4 Discussion

We have tested a number of behavioral strategies in robots in three different
environment with varying complexity to investigate the usefulness of anticipatory
abilities.

As expected, a reactive approach behavior that always tries to move in the
direction of the goal performs well in an empty environment but is much worse
when there are obstacles in the way. Also, all strategies were much better than
a random behavior.



In some cases, some of the anticipatory strategies were more efficient than
the planning strategy, but the merit of anticipation clearly depended on how
anticipation was used and in what environment.

In the first experiment, the anticipatory strategies with fixed rank or with
higher rank for the robot closest to the goal were significantly faster than the
planning strategy. However, in experiment 2, it was instead the anticipatory
strategy where the robot with the largest distance had highest rank that was
significantly faster than the planning strategy. Finally, in the last experiment, it
was only the anticipatory strategy where the robot closest to the goal that had
highest rank that was significantly faster than the planning strategy.

The reason why anticipation is not always faster than planning without an-
ticipation in these experiments is probably that there is too much noise in the
system which interferes with the anticipatory behaviors. With anticipation, the
robot will often take a longer path than with only planning and if something
goes wrong during the avoidance of the anticipated obstacles, the robot will loose
much time.

Had the robots been more accurate when they attempt to follow their planned
paths, we expect that anticipation would have been better in most cases. It
can clearly be seen that under optimal conditions, anticipatory behavior is very
efficient but it is very sensitive to different disturbances. In the future, we want
to increase the exactness of the control system to allow more precise movement
control of the robots. This will probably lead to a greater advantage for the
anticipatory strategies.

In the experiments, the robots had total knowledge of the environment as
well as the position and goal of the other robot. It only had to anticipate the
movement of the other robot. In such a situation it may be more advantageous
to make a collective plan for all the robots. What we are aiming at in the
future, however, is the situation where the robots do not have full access to
the environment. In this case, the robots must explore the environment to learn
about different paths and the positions of the other robot. As they will not know
the goal of the other robot, it must be inferred from its observed movements.
In this case, we will be able to explore different learning methods and different
strategies for observing the behavior of the other robot.

In conclusion, we have presented experimental results with two robots in
different environment that show that the ability to anticipate the behavior of
the other robot can make the behavior of the robots more efficient. However,
this is highly dependent on the complexity of the environment and the accuracy
of the control of the robots.
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