
Backward vs. Forward-oriented Decision Making in the 
Iterated Prisoner’s Dilemma: 

A Comparison between Two Connectionist Models 
 

Emilian Lalev1 and Maurice Grinberg1 

1 Central and East European Center for Cognitive Science,  
New Bulgarian University, 21 Montevideo Street, 1618 Sofia, Bulgaria 

 
grimcho_e@yahoo.com, mgrinberg@nbu.bg

Abstract. We compare the performance of two connectionist models developed 
to model specific aspects of the decision making process in the Iterated Pris-
oner’s Dilemma Game. Both models are based on common recurrent network 
architecture. The first of them uses a backward-oriented reinforcement learning 
algorithm for learning to play the game while the second one makes its move 
decisions based on generated predictions about future games, moves and pay-
offs. Both models involve prediction of the opponent move and of the expected 
payoff and have an in-built autoassociator in their architecture aimed at more 
efficient payoff matrix representation. The results of the simulations show that 
the model with explicit anticipation about game outcomes could reproduce the 
experimentally observed dependence of the cooperation rate on the so-called 
cooperation index thus showing the importance of anticipation in modeling the 
actual decision making in human participants. The role of the models’ building 
blocks and mechanisms is investigated and discussed and a comparison with 
experiments with human subjects are presented. 

Keywords: anticipation, cooperation, decision-making, recurrent artificial neu-
ral network, reinforcement learning. 

1   Introduction 

In formal game theory players are described as perfectly rational and possessing per-
fect information about the game including not only their possible moves and payoffs 
but also those of their opponents. On the other hand, the bounded rationality view on 
cognition states that people are almost never perfectly rational (see e.g. [1]). More-
over, they try to minimize the cognitive effort while making decisions. Finally, the re-
sults of experiments involving games demonstrate that people rarely play as pre-
scribed by the normative game theory. We have started a series investigations on the 
cognitive processes involved in decision making in Iterated Prisoner’s Dilemma 
Game (IPDG) from a cognitive science point of view [2-5] using different approaches 
involving psychological experiments, eye-tracking experiments, and modeling and 
simulations.  
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In ref. [3], a simple model based on expected subjective utility theory was put for-
ward. The model used extensively backward reinforcement learning mechanisms and 
based on that made predictions about the move probability of the opponent. Addition-
ally in order to explain some specific characteristics of the decision making process 
explicit accounting of the current game was added. The latter allowed for the descrip-
tion of the well known dependence of the cooperation rate and the structure of the 
payoff matrix expressed by the so called Cooperation Index (CI) (see ref. [6]). This 
property is not available in typical reinforcement learning based models used to 
model playing of IPDG and in which the probability for cooperation is based only on 
past games (see refs. [7-8]). 

Taking into account the results obtained by Hristova and Grinberg [3], here we 
propose a connectionist architecture based on a recurrent network which accounts for 
the payoff structure of the PD game, the past moves and payoffs and predicts the next 
moves of the player and his/her opponent, and the expected payoff from the next 
game. A related attempt, using recurrent neural networks, to model the complexity of 
IPDG have been made by Taiji and Ikegami [10] but in their model only the moves of 
the players are used in the recurrent network and only a single payoff matrix is 
played, so the question of the influence of the different ratios among the payoffs in 
different game matrices (i.e. dependence on game CI) could not be considered.  

Further two variants based on the general architecture were explored. The first in-
volved training of the next-move output node using a backward looking reinforcement 
model (see ref [9] for details), further referred to as Model B. In the second, the train-
ing of the move node was based on evaluation of the future payoffs and thus essen-
tially using anticipation (further referred to as Model A). The analysis and compari-
sons of the simulation results of the two models with recent experimental results and 
the discussion of the importance of the mechanisms involved are the main concern of 
this paper. 

1.1   The Prisoner’s Dilemma Game  

The Prisoner’s dilemma is a two-person game. The payoff table for this game is pre-
sented in Table 1.The players simultaneously choose their move – ‘C’ (cooperate) or 
‘D’ (defect), without knowing their opponent’s choice. 

Table 1. Payoff table for the PD game. In each cell the comma separated payoffs are the Player 
I’s and Player II’s payoffs, respectively. 

  Player  II 

  C D 

C R, R S, T 

Pl
ay

er
 I 

D T, S P, P 
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In Table 1, R is the payoff if both players cooperate (play ‘C’), P is the payoff if 
both players ‘defect’ (play ‘D’), T is the payoff if one defects and the other cooper-
ates, S is the payoff if one cooperates and the other defects. 

The payoffs satisfy the inequalities T > R > P > S and 2R > T + S. This structure of 
the payoff matrix of that game offers a dilemma to the players: there is no obvious 
best move. The dominant ‘D’ move (T>R and P>S) would lead to lower payoffs if 
adopted by all the players (payoff P) although this is the choice prescribed by stan-
dard game theory. Cooperation seems to be the best strategy in the long run (R>P) but 
at the risk of one of the opponents to start to defect and the other to receive the lowest 
payoff S.  

Rapoport and Chammah [6] proposed the quantity CI = (R–P)/(T–S), called coop-
eration index, as a predictor of the probability of ‘C’ choices, monotonously increas-
ing with CI. In Table 2 two examples of PD games with different CI − 0.1 and 0.9, re-
spectively − are presented. 

Table 2. Examples of PD game matrices with different CI – 0.1 and 0.9, respectively. The first 
payoff in each cell is the payoff of the ‘row’ player and the second of the ‘column’ player. 

Player  II CI=0.1 C D 

C 56, 56 0, 60 

Pl
ay

er
 I 

D 60, 0 50, 50 
 

Player  II CI=0.9 C D 

C 56, 56 0, 60 

Pl
ay

er
 I 

D 60, 0 2, 2 
 

 
This quite complicated situation is at the heart of the dilemma in this game and is 

the reason for the on-going interest in this game over the past 50 years and continuing 
today. From a cognitive modeling point of view the challenge is to understand the de-
cision making mechanisms that would lead to the results observed in the experiments 
with human participants taking account of all characteristics (like the dependence on 
CI for instance). We are convinced that the models needed must have a minimal level 
of complexity and account for playing based on the payoff matrix of the game (e.g. to 
be sensitive to CI) and on the opponent moves and game outcomes. In the same time 
human players rely on past experience and predictions of future events. The models 
presented here are aimed at complying with these requirements 

2   Models – Architectures and Functioning 

2.1   Basic Architecture 
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The core architecture (underlying both presented models) is an Elman recurrent neural 
network [11] (see Fig. 1). In ref. [10], a recurrent network has also been used to 
model the behaviour of PD game players. However, the network we used has a much 
more complicated structure to include in the network input/output structure the game 
payoff matrices, the players’ moves and the received payoffs (related to the specific 
game outcome). The network consists of eight input, thirty hidden-layer, and six out-
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put nodes (see Fig. 1). The activation functions of the hidden layer and of the output 
layer are tan-sigmoid and log-sigmoid functions, respectively. Because of the logistic 
output activation function, a part of the network’s outputs could be interpreted as 
probabilities. 

2.1.1   Inputs and Outputs 
All the inputs of the network were rescaled within the range [0, 1]. As can be seen in 
Fig. 1, the values of the payoffs from the current game matrix (excluding the payoff S 
which was always 0), as well as the past game payoff received, the player’s and op-
ponent’s moves in the previous game were presented at the input nodes at each cycle.  

 

Fig. 1. Schematic view of the recurrent neural network and its inputs and outputs/targets. Nota-
tion: Sm and Cm are respectively the simulated subject and computer opponent (probability for) 
moves; Poff(t) is the player’s received payoff at time t. 

The past moves were recoded as [0,1] – for ‘C’ and [1,0] – for ‘D’ moves, so that 
activation would always come from any of the two couples of input  nodes, no matter 
what the moves were – ‘C’ or ‘D’.  

The values of the T, R, and P payoffs from the current game had to be reproduced 
as an output by the model thus implementing an in-built autoassociator. There were 
two reasons to decide to include this component in the network architecture. The first 
was that this would force the network to establish representations of the games in its 
hidden layer which is crucial to account for the game payoff structure in the decision 
making process. The second one was related to the anticipatory decision mechanism 
of Model A where the output nodes concerning T, R, and P were used as predictions 
of the next games’ payoffs (see Section 2.2.2 for details). 

 4 

At the output, the player’s move (‘Sm’ node) and the computer-opponent’s move 
(‘Cm’ node) nodes were interpreted as the probability for cooperation for the player 
and the prediction about the probability of cooperation of his/her opponent in the 
game at hand. The payoff (‘Poff’) node represented the expected gain from the cur-
rent game. 
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2.1.2   Training 
PD games with varying CI – from 0.1 to 0.9 – were presented to the neural network 
(T was always equal to 1, and S was always 0, R and P were distributed in this inter-
val depending on the CI of a particular game). The games were randomized with re-
spect to CI in the same way as in the experiments with human participants (see e.g. 
[2,3]) in order to allow comparison with the experimental results (see Section 3).  

The network was trained using back-propagation on an input consisting of se-
quences of overlapping five games – the current game and the four previous games. 
Such sequences are further called micro-epochs.  

In the very beginning of the IPDG, the length of micro-epochs was increasing with 
each next completed game until it reached five games. The very first inputs were as 
follows: the first game matrix, the player’s move and the prediction of the opponent’s 
move generated with probability 0.5. The first received payoff (Poff) was obtained 
from the averaging of the payoffs of the games. 

The small number of games, the network dealt with at a time, implies sensitivity to 
local changes in the game and to memory constraints we assumed to exist in real 
game playing. On the other hand, the micro-epochs were long enough so that specific 
events in the history of IPDG were able to encode in the memory of the recurrent hid-
den layer. 

The values at the six output nodes were used as predictions when the network was 
trained within the current micro-epoch. The ‘T’, ‘R’, and ‘P’ output nodes were ex-
pected to reproduce the corresponding input values in the input payoff matrices.  

The output of the ‘Sm’ node was the model-player’s probability for cooperation in 
the current game. The output at the node ‘Cm’ was the prediction for the cooperation 
probability of the opponent, and the output at the ‘Poff’ node meant the expected 
game payoff.  

When both player and opponent had made their moves, and the payoff for the 
model-player is known, the new target micro-epoch was updated and the network was 
trained with the inputs it was simulated with and the new targets. For all of the output 
nodes the training signal is supplied by the game (payoffs) and the opponent moves 
except for the model-player’s move probability. The latter has to be supplied either 
from experimental data with a human player (if the model is used to fit the behaviour 
of a real player) or by explicitly modeling the evaluation of the game outcome. Here, 
we will present results along the latter line based on two different choices of such an 
evaluation. 

2.2   Decision Making of the Models 
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In order to build a realistic model able to make decisions comparable to the ones 
made by human subjects, we needed to make an assumption for an evaluation mecha-
nism for the outcomes of the player’s moves. Hereafter, we discuss two such mecha-
nisms, both based on received payoff maximization, which differ in the emphasis on 
backward or forward evaluation. 
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2.2.1   Backward-looking Model (Model B) 
Model B integrates the recurrent network presented in Section 2.1 with the Bush – 
Mosteller (BM) backward-looking reinforcement learning model in the form proposed 
by Macy and Flache in ref. [9]. 

We integrated the Macy and Flache model with our recurrent neural network by 
using the predicted payoff – ‘Poff(t)’ (see Fig. 1) as the player’s aspiration level and 
used it to estimate the target cooperation probability. The current move of the model 
was generated with a probability equal to the output at the ‘Sm’ node (see Fig. 1). Af-
ter the game moves were made by the player and its opponent, and the player’s payoff 
was already known, a target probability was calculated using the Macy’s and Flache’s 
model [9]. The ‘Cm’ target node was trained using the actual opponent’s move and the 
‘Poff’ output node using the received payoff. The latter was considered to be a kind of 
aspiration level based on payoff expectation and was used instead of the aspiration 
update rule from ref. [9]. As explained before, the ‘T’, ‘R’, and ‘P’ output nodes were 
trained using the values from the input game matrix as targets. 

This combination of a neural network model and a reinforcement model was ex-
pected to give a model player sensitive to specific game episodes in IPDG and to the 
payoffs in the game matrix at hand (which could give rise to a CI dependent strategy). 
Theoretically, when the model encountered an episode, in which all predictions, ex-
cept for the move prediction) resembled those from any past episode, it would play 
with a similar cooperation probability from that past episode. The dynamics of the de-
cision making process is illustrated in Fig. 2, where the fluctuation of the aspiration 
level together with the player’s move probability are shown. It is seen from Fig. 2 that 
as expected low aspiration level leads to high probability of cooperation because the 
payoffs R are above the aspiration level. 

Move 'C' probability and Aspiration - model B

0

0,2

0,4

0,6

0,8

1

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196

Game number

le
ve

l

 'C' probability Aspiration  

Fig. 2. Dynamics of aspiration (output ‘Poff’ node) and cooperation probabilities in Model B 
(‘Sm’ node). 

2.2.2   Forward-looking Model (Model A)  
Model A is based on the same neural network architecture as Model B but is aimed at 
using essentially anticipation mechanisms for deciding about its moves. 
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Model A uses the predictive properties of the recurrent network in order to “guess” 
how the game would proceed if its current move were either ‘C’ or ‘D’. An anticipa-
tory module was implemented in the model, so that two sequences of five games pre-
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dicted by the neural network were produced before making a move. The first se-
quence began with a ‘C’ move, and the second one with a ‘D’ move. Only the first 
player move was fixed in any sequence. The recurrent network had as first inputs the 
current game input (together with the other four games from the micro-epoch) includ-
ing the values of the T, R, and P payoffs, and the players’ moves and payoff from the 
previous game. This is a simpler mechanism as the one used in ref. [10], where all the 
combinations of moves are taken into account. Here the first move is chosen and eve-
rything else is based on the network prediction. 

As the player move was known in the first fictitious game (‘C’ or ‘D’), the oppo-
nent move was generated with the probability predicted by the network. The payoff 
for the player from the game was calculated according to the rules of PD game – T, R, 
P or S based on the moves of both players.  

In the second fictitious game the input micro-epoch was updated so that the new T, 
R, and P values are taken from the output layer of the neural network and considered 
as prediction about the fictitious game payoffs. The ‘Poff(t-1)’ node activation got the 
value of the fictitious payoff from the previous game and the previous moves nodes 
(the ‘Sm(t-1)’ and ‘Cm(t-1)’ nodes) activations were the fictitious previous game 
moves. In the next iterations everything was repeated except for that the player move 
was generated with its predicted probability and was no longer fixed. 

So the cycle was closed and the model could predict several future games and re-
lated moves and outcomes. The payoffs from both sequences (  for initial move 

‘C’ and for initial move ‘D’) were then considered. The obtained payoffs from 
the five fictitious games for each initial move choice were evaluated using a discount 
factor as follows:  

CPoff

DPoff

1
5

1
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where  is the value of the payoff at moment , for initial move ‘C’ or ‘D’ 

and

)(, tPoff DC t
β  is the usual discount parameter that indicated to what extend the remote future 

game payoffs were important for making decisions at present. If β  was 0, only the 

first fictitious payoff would matter, and if β  was 1, all the payoffs would be consid-
ered as equally important. 

The probability for cooperation for the current move of the model was then calcu-
lated using a soft-max function: 
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where  is the calculated cooperation probability and  is a parameter for the 
sensitivity of the function towards the difference between  and . The 

smaller the value k had, the greater the sensitivity to the difference between the ‘C’ 
and ‘D’ alternative choices became. 

)(CP k
CPoff DPoff
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3   Game Simulations 

3.1   The Computer Opponent 

The models were run against a probabilistic Tit-for-two-Tats (Tf2T) computer strat-
egy. Its move depended on the player’s two previous moves, thus being adaptive to 
their temporal cooperativeness without being easily predictable. Depending on the 
two previous opponent’s moves the probability for cooperation was respectively: 0.5 
for ‘C, D’ and ‘D, C’, 0.8 for ‘C, C’, and 0.2 for ‘D, D’. Furthermore, the same com-
puter opponent was used in a series of experiments and such a choice for the simula-
tions here allows for a comparison with the experimental results (see Section 3.2). 

They both had the underlying recurrent neural network that provided them with the 
ability to “recognize” and predict events in the IPDG and, therefore, be able to extract 
important information such as the strategy of the opponent from the history of the 
game. Both made their moves probabilistically so that they had the chance to evoke 
different aspects of their adaptive opponent’s strategy, which might have remained 
invisible otherwise.  

3.2   Comparison of Model and Experimental Results 

The results presented in this section are based on 30 IPDG sessions of two-hundred 
games against the Tf2T computer strategy for each model (B and A). For the com-
parisons with experiment the first 50 games are taken (to match the number of games 
played by human participants. From the experiment reported in ref. [2], only data for 
from the first part and for the control condition is used (see [2] for details). 30 partici-
pants played 50 PD games against the computer. The computer used the probabilistic 
Tf2T strategy described above. This was done to allow the subject to choose his/her 
own strategy without easily become aware of the computer-opponent’s strategy. The 
payoffs were presented as points, which were transformed into real money and paid at 
the end of the experiment. After each game the subjects got feedback about their and 
the computer’s choice and could monitor permanently the total number of points they 
have won and its money equivalent. The subjects received information about the 
computer’s payoff only for the current game and had no information about the com-
puter’s total score. This was made to prevent a possible shift of subjects’ goal – from 
trying to maximize the number of points to trying to outperform the computer. In this 
way, the subjects were stimulated to pay more attention to the payoffs and their rela-
tive magnitude and thus indirectly to CI.  

The best fit of the experimental results was obtained with the following parameters 
were used for Model A (see eqs. (1) and (2)): β  = 0.3 and k = 0.05. 

3.3   Mean Cooperation and Payoffs 
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In Model B’s performance, the payoffs were significantly correlated with the mean 
level of cooperation in contrast to Model A whose payoffs were not correlated with its 
cooperation rates against the Tf2T computer player. These results reflect the different 
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nature of the outcome evaluation mechanism – reinforcement learning for Model B 
and payoff anticipation for Model A. 

The results for the mean cooperation and payoffs for Model A, Model B, and hu-
man participants experimental data taken from ref. [2] are presented in Fig. 3. Regard-
ing mean cooperation, only Model A and the experimental data were not statistically 
different (F= 0.121, p = 0.73). The mean cooperation was different for Model B and 
experiment (F=5.858, p=0.019) and for Model B and Model A (F=6.267, p=0.015). 

For the mean payoff no significant difference was found between simulations and 
experiment. 

Mean Rescaled Cooperation and Payoffs for 
Models A, B, and Experimental Subjects
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Fig. 3. Comparison of mean cooperation and payoffs between Model A and B, and experimen-
tal data from human subjects (taken from ref. [2]). 

3.4   Dependence of Cooperation Rate on CI 
To start with a main effect of CI on cooperation rates was observed in Model A 
(F=16.908, p<0.01) whereas there was no such effect in Model B (F=0.367, p=0.83). 
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Fig. 4. Model B, Modle A, and experimental [2] CI influence on cooperation rates. 
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In Fig. 4, a detailed comparison, concerning the cooperation rate dependence on CI, 
between the predictions of the two models and the experimental results is shown. It is 
seen from Fig. 4 that Model B gives a completely inadequate description of the ex-
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perimental results while there were no statistical differences between the mean coop-
eration of both subjects and Model A at all CI levels, and there was no main effect of 
the type of player (Model A or human) on cooperation (F=0.386, p=0.856). 

In Fig. 5, two groups of players are presented: with strongly and weakly CI influ-
enced strategies for the experiment from ref. [2] and for Model A (see Fig. 5, a) and 
b), respectively). The separation in groups was obtained by cluster analysis based on 
the monotonous dependence on CI. As seen from Fig. 5, there is a qualitative agree-
ment between the model and the experimental data.  

a)

Experimental Data - Two Strategies

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

CI 0.1 CI 0.3 CI 0.5 CI 0.7 CI 0.9
game CI

m
ea

n 
co

op
er

at
io

n

CI less-
influenced
CI
influenced

 

b)

Model A -  Two Developed Strategies
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Fig. 5. Comparison of experimental data from: a) human subjects (taken from ref. [2]) and b) 
Model A simulations, concerning the groups of players with strategies influenced by CI and 
otherwise. 
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As stated earlier our main interest is related to the CI dependence of the coopera-
tion rate in both models. The ability to reproduce such details in the experimental data 
seems very important to us in order to assess a model’s validity. In order to under-
stand the presence and lack of CI dependence in both models we analyzed the hidden 
layer activations looking for nodes whose activity is correlated or changes with the 
changes of CI. As discussed earlier in this paper, we included in the architecture of 
the Elman neural network autoassociator nodes to force the representation of the pay-
off structure at the hidden layer thus hoping to help the network to account for it (and 
hopefully for CI). That is why we performed simulations with Model A which essen-
tially used the autoassociator part to make predictions about the payoffs of counter-
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factual games and with Model B with and without autoassociator nodes. The latter al-
lowed us to see what the responses of these nodes to CI are. The analysis shows that 
when the autoassociator nodes are present there are hidden nodes whose activity var-
ies with the CI and their number and correlation with CI increases with playing. Such 
a strong variation of the hidden nodes activations with CI is not observed when the 
autoassociator nodes are switched off. The conclusion can be made that the inclusion 
of the autoassociator part is crucial in order to obtain CI dependence in the model. 
What is the reason for Model B to fail to display CI dependence in its play? One pos-
sible explanation is the use of a backward-looking reinforcement mechanism which 
account mainly the past received payoff and the expected payoff (as aspiration level). 
Although the network could extract information about the game CI, this information 
was not useful in determining the playing strategy because it was not needed by the 
game outcome evaluation mechanism. In the case of Model A, however, the situation 
is different. The simulation by the model of possible games and moves and outcomes 
involves the prediction about the payoff structure of the game and thus indirectly of 
the CI. Thus in the case of Model A the increased sensitivity to CI of the hidden 
nodes influences the move choice of the model. At closer look however, it turned out 
that the developed sensitivity of some hidden nodes is only partly responsible for the 
final dependence of Model A. The largest part is due to the specific anticipatory form 
of evaluation of the best move involving the payoffs of the game at hand and of an-
ticipated payoffs reflecting the structure of the current game. 

4   Conclusion and Discussion 

In this paper, a recurrent neural network architecture was used to simulate IPDG play-
ing. An important addition to usual architectures of this type was the presence of 
autoassocitor nodes related to the payoffs of the games. Based on this architecture two 
models were explored. They differed in the way the training was performed. The first 
(Model B) used the reinforcement model of Macy and Flache [9] to evaluate the 
model player’s moves. The other (Model A) used a simple forward-looking mecha-
nism. Although similar with respect to architecture they displayed very different out-
comes. The most important difference found between the two models was related to 
the CI dependence of their moves. The performance of Model A turned out to be very 
close to human performance (at least with regards to CI dependence of cooperation 
rates) while no such dependence was observed in the moves of Model B. This prop-
erty was traced down to the appropriate response of the hidden nodes due to adequate 
representation of the game payoff matrix related to the added autoassociator part of 
the network. However, the availability of the autoassociator part alone was not suffi-
cient to grant CI dependence. It seems that anticipation mechanism of move evalua-
tion of Model A, based on the generation of counterfactual games, moves, and re-
ceived payoffs, played a decisive role. 
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The two models that we developed were connected with our search for a more 
plausible explanation of the way people play iterated social dilemmas like the Pris-
oner’s Dilemma game. On the basis of comparison with human subjects’ data from 
the same games, and against the same computer opponent, we came up with the con-
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clusion that the Model A, essentially involving anticipation, accounts better for hu-
man performance and can reproduce specific dependencies like the CI dependence. 
Thus Model A seems to be a more realistic and successful alternative to the schematic 
model based on subjective utility theory combined with simple reinforcement learning 
mechanisms proposed in ref. [3]. To our knowledge no other models able to account 
for the CI dependence in IPDG exist to date. 

Of course much more further exploration of the proposed architecture as well as 
extensive comparisons to experimental results are needed in order to understand and 
make use of its full potential and clarify completely the role of anticipation in its func-
tioning. Research along these lines is currently in progress and the results will be re-
ported elsewhere. 
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