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Abstract. In a previous paper, we have proposed a visuo-motor control
architecture, which we called MEP, oriented to the execution of Goal Ori-
ented actions (GO-action). Here the expression ”Goal Oriented action”
is used to denote a series of prehension movements that relate body parts
of the subject to a three-dimensional object. MEP architecture is based
on a biologically inspired expected perception mechanism. In this paper
we discuss some issues concerning the implementation of the proposed
architecture. In particular, we focus our attention on the implementation
of the expected perception mechanism. To this end, we argue some basic
hypothesis regarding the semantic segmentation of GO-action and their
observer independence representation. We give a preliminary account of
how the plausibility of such hypothesis can be fulfilled and tested in
experimental settings.

1 Introduction

It has been shown the existence of a population of neurons in the macaque’s
F5 motor area which are ”active” during both the execution of a Goal Oriented
action (GO-action) and the observation of the same action executed by another
individual. Because of their characteristic activation, these neurons have been
called mirror neurons [1–3]. The expression ”Goal Oriented action” is used to
denote a series of prehension movements that relate body parts (effectors like a
hand or a foot) of the subject to a three-dimensional object (target), such as to
grasp a piece of food by a precision grip. We have found in the literature several
functional interpretations of mirror neurons: i) Action understanding and repre-
sentation [4, 1], ii) language evolution [5], iii) evolution of mind-reading abilities
[6].
In our work we focus on action understanding and representation. Moreover,
we suppose that action understanding can be subdivided into two subsequent
stages: i) a structural description of the observed behavior and ii) an interpre-
tation stage.
We suppose that mirror activity is involved in both recognizing the structural
features of an action and associating these features to motor abilities. In our sup-
position, understanding of an observed GO-action is the capability to associate
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Fig. 1. Architecture of the MEP model

the correspondent visual sequence with a sequence of motor commands such
that if the motor command sequence is carried out then the same GO-Action is
performed. To achieve this functionality, we suppose that mirror neurons take
part in an anticipatory mechanism which verifies whether the actual visual input
matches a predicted visual input computed on the basis of a motor command
sequence. The proposed mirror neuron functionalities can be achieved through
a hypotized mechanism of expected perception [7, 8]. As explained in [7], an
expected perception mechanism mainly involves comparison processes between
incoming actual sensory perception and Expected Perception (EP). In a sensory
- motor control model based on EP mechanisms an action is not construed as the
result of continuous sensory-motor coordination, as in typical reactive architec-
ture; it is basically viewed as a pre-planned execution, continuously monitored
by comparisons between actual and expected perceptions. Sensory data are more
extensively processed for the purpose of action re-planning only when actual sen-
sory perception conflicts with the current EP.
We have proposed a biologically inspired visuo-motor control model, which we
called MEP (Mirror Expected Perception model, see Figure 1), based on the
above mentioned interpretation of mirror neurons [9]. MEP model enables us to
explain the following biological data: i) mirror neurons are equally active during
both executed-GO-actions and observed-GO-actions [10, 1, 2, 11], ii) inactivation
of mirror neurons causes a motor slowing but the correct action is still performed
[12]. On the basis of MEP model, when an agent A observes another agent B
to carry out a GO-action the understanding of the observed action is the A’s
capability to associate the incoming visual sequence v1v2...vk+1with a sequence
of motor commands cs = c1c2...ck such that if cs is carried out by A then A



should be able to perform the same GO-action of B. Thus, according to MEP,
the role of F5 Mirror neurons is to control whether the sequence cs is correct on
the basis of the EP mechanism.

2 MEP Basic Hypothesis

In order to make our model work, the EP mechanism has to be implemented.
In the rest of this section we will focus our attention on the basic hypothesis
underlying the proposed model.

2.1 Observer Independence

From neurophysiologic data it appears that the activity of several cortical areas
(e.g. AIP, F5 canonical) involved in recognizing and executing a particular GO-
action is independent/tolerant of the location of the observed target relative to
the observer [3]. This independence/tolerance begins from the very first steps of
the processing of visual information [13, 14]. These findings seem to support the
hypothesis, implicitly assumed in MEP, that:

Hyp. 1 An agent A observing himself to perform a GO-action or observing an
agent B to carry out the GO-action computes a sequence s = v1, v2, , vn of N -
dimensional visual feature vectors in an observer independent/tolerant internal
representation.

This assumption allows us to refer to the GO-action through its internal repre-
sentation s. It implies that the same sequence s = v1, v2, , vn is computed when
an agent A observes himself to perform a GO-action or when he observes an
agent B to carry out the same GO-action.

2.2 Observed GO-Action Structural Description

The aim of this Subsection is to refine the notion of GO-action structural de-
scription. Let’s consider the set of all GO-actions and let’s call V the set of all
instances of their visual feature vectors. We suppose that:

Hyp. 2 V is composed of a collection of equivalence classes V C1, V C2, ..., V CM .

Let us now call S the set composed of all instances of s, i.e., the set of the internal
representations of all observed GO-actions. Under the hypothesis 2 it exists a
unique partition s1, s2, ..., sk of s into subsequences such that (∀i∃!ki : x ∈ si ⇒
x ∈ V Cki) and (∀i(∀x ∈ si, ∀y ∈ si+1 6 ∃k : x, y ∈ V Ck)). Consequently, under
the hypothesis 2, it is possible to segment each GO-action s in one and only one
sequence of V ’s equivalence classes. This corresponds to assuming that it exists
a dictionary of tokens (V Ci) such that every observed GO-Action is composed
of tokens belonging to the dictionary.
Let us define the following equivalence relation:
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Fig. 2. V is the set of all instances of the visual feature vector. S is the set composed
of the instances of the internal representations of all observed GO-actions. Both V and
S are subdivided in equivalence classes. Each S’s class is associated with one and only
one sequence of V’s equivalence classes

Definition 1. ∀s’,s”∈ S s′ = s′′ if and only if it is possible to associate to both
s′ and s′′ the same sequence of V ’s equivalence classes.

From definition 1 the set S is divided into K equivalence classes SC1, SC2, ...
, SCK such that each class is associated with one and only one sequence of V ’s
equivalence classes, i.e., SCi ≡ V Ci

1 V Ci
2...V Ci

r (see Figure 2). We now make
this basic assumption:

Hyp. 3 Each SCi class corresponds to a set of semantically related GO-actions.

Hypothesis 2 and 3 enables us to define how an EP (Expected Perception) can
be computed and how the matching between the EP and the actual perception
can be implemented. The computation of an EP becomes indeed the selection of
a sequence of V’s equivalence classes. In fact, when an agent A observes an agent
B carrying out a GO-action, he, on the basis of an initial actual visual vector v1

incoming at the time t1, pick up the equivalence class V Ck to which v1 belongs.
An equivalence class SCi ≡ V CkV Ci

2 ... V Ci
r is then selected from V Ck, i.e.,

the agent A supposes that the achievement of the GO-action will produce, at
selected times t2 < ... < tr, a sequence of visual vectors v2, ..., vr belonging to
V Ci

2, V Ci
3, ..., V Ci

r , respectively. Let’s call the classes V Ci
2, .., V Ci

r Expected
Visual Classes (EVCs). Hence the matching between the EP and the following
actual perception becomes a classification problem, i.e., verifying if at each time
ti the actual perception vi belongs to the EVC V Ci. Therefore, the behavior of
the MEP model illustrated in the Introduction can be formally defined by the
algorithm in Table 1.

Note that according MEP-algorithm if the visual feature vectors are extracted
in an observer independent manner we have the same sequence of commands
cs ≡ c1c2...cr−1 when either the agent A carries out a GO-Action or the agent
A observes an agent B carrying out the same GO-action.

In the remaining part of the paper we will give a preliminary account of
how the plausibility of the hypothesis 1, 2 and 3 can be fulfilled and tested in an



MEP algotithm

– REPEAT
• t1 ← 0
• Compute the visual feature vector v1 at the time t1 and
Select k : v1 ∈ V Ck

• Choose both a sequence of EVCs SCh = V Ch
1 V Ch

2 ... V Ch
r

such that V Ch
1 = V Ck and a time-sequence t2 < ... < tr. A

sequence of commands cs= c1c2...cr−1 is computed on the basis
of SCh. {The execution of ci is equivalent to hypothesizing an environment
modification so that the agent A computes a visual feature vector belonging to
V Ch

i+1 at the time ti+1}
• i← 1, success← FALSE , match← TRUE
• WHILE (success = FALSE) AND (match = TRUE)
∗ Command ci is sent to a controller which transforms

ci in an arm motor program and a hand motor program
controlling the motor apparatus {note that this step is absent
when an agent A observes another agent B}

∗ i← i + 1
∗ At the time ti compute the new feature vector vi {get next

percept}
∗ match← (vi ∈ V Ch

i )
∗ IF (cs = V OID) AND (match = TRUE) THEN success ← TRUE

– UNTIL success = TRUE

Table 1. Behavior of the MEP model is formally defined by the MEP algorithm

experimental setting. In the next Section we show how a set of scale and position
independent/tolerant features of a GO-action can be computed.

3 The computation of GO-action’s invariant features

In [13, 14] a quantitative theory is described to account for the computation
performed by the feedforward path of the ventral stream of visual cortex. The
theory is shown to be consistent with several properties of neurons in areas
V1, V2, V4, IT. According to the model, computation of visual features which
are invariant to scale and position is performed in a feedforward fashion by a
hierarchy of cells of increasingly receptive fields and responding to increasingly
complex preferred stimuli. The computation is sequentially performed in two
main phases, the view-tuned phase and the object-tuned phase [14]. According
to the model, simple S cells take their inputs from units that ”look” at the same
local neighborhood of the visual field but are tuned to different preferred stimuli,
while complex C cells pool over inputs from S units tuned to the same preferred
stimuli but at a slightly different positions and scales. In the overall architecture,
layers of simple S cells with Gaussian-like tuning to provide data-selectivity
(generalization) are interleaved with layers of complex C cells which perform



a soft-max operation on their inputs in order to provide invariance to position
and scale. We implemented a version of the view-tuned module using four layers
of cells: S1, C1, S2 and C2 for the extraction of position and scale tolerant
features of observed GO-actions. The different responses of both S and C cells
having varying receptive fields and responding to different preferred stimuli were
obtained by hierarchical convolution of the input image with a bank of Gabor
functions with varying spatial extent and which were tuned to different spatial
frequencies. Our implementation does not use learning. The scale and position
independent features as computed by the architecture thus implemented appear
in the form of 256 features maps which constitute the input to the clustering
program which will be described later on.

4 Experiment 1

In order to test the validity of the hypothesis 2 and 3 we have chosen two
semantically different classes of GO-actions: Precision Grip (PG) and Whole-
Hand prehension (WH). Two GO-actions belonging to PG and two GO-actions
belonging to WH have been selected, viz., ”paperclip gripping” and ”bottle-tap
gripping” for PG, and ”tennis-ball gripping” and ”piece-of-wood gripping” for
WH. Twenty subjects from faculty, staff and graduate students were selected.
Each subject was asked to perform all four mentioned GO-actions. The actions
were executed with the subjects seated at a table with two marks (m1 and m2)
at a distance of roughly 40cm from each other: each GO-action starts at m1

and ends at m2. For each target-object, each subject was asked to position the
hand on starting position m1 and to reach and grasp the target object located
on mark m2. Each action was recorded using a fixed video camera (see Figure
3-b).

Each GO-action is therefore represented as a sequence of frames (160X160
pixels). For each frame, a N -dimensional visual feature vector F is extracted.
F is composed of the C2 layer output values. Although the general scheme
requires that F be composed of the features relative to both the target and the
agent performing the action, only features relative to hand shape and target
location relative to the hand were considered in this experiment. The feature
extraction phase consists of two steps: the skin detection module and the view
tuned module. For each GO-action, a skin model is computed from an histogram
color model in RGB color space. A simple non-parametric model is therefore used
to transform each frame in a gray-level image where each pixel value represents
the probability of that pixel to be skin. The image thus obtained is further post-
processed by morphological filtering to eliminate the effect of image noise on
the segmented image. The final result is a gray-level image in which the hand is
shown as a gray region on a black background (Figure 3).

This image is given as input to the view-tuned module described previously
for the subsequent feature extraction step. The process of feature extraction is
performed for all recorded GO-actions. Each GO-action is therefore represented
as a sequence of the F vectors thus extracted. In the limited setting of this exper-
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iment, the set of all sequences thus obtained constitutes S, while the complete set
of feature vectors constitutes V (Figure 2). Let’s recall that the main goal of this
experiment is to verify the plausibility of hypothesis 2 and 3 as previously stated.
In our case, this correspond to verifying that S can be ”naturally” segmented in
two classes, which we will call SCPG and SCWH , such that elements belonging
to class SCPG are coded sequences of PG GO-actions and elements belonging to
class SCWH are coded sequences of WH GO-actions. To this end, a clustering
algorithm is applied to the elements of V to obtain k clusters V C1,V C2,..., V Ck.
As a consequence, as pointed out in a previous section, each sequence belonging
to S can be coded as a unique sequence of V clusters. Therefore, each of such
sequences can be treated as a string defined over the alphabet V C1, V C2, ... ,
V Ck. Under a suitable measure of string similarity a clustering algorithm should
be able to group the whole set of strings in the classes SCPG and SCWH .

4.1 Preliminary results

We have implemented the module for the extraction of features (skin-detection
followed by the view-tuned module). We applied the well known k-means algo-
rithm for the initial segmentation of V , setting different values for the number
k of clusters. Evaluation of the results thus obtained show that the algorithm
performs the best for k=6. Results are dependent from the initial setting of clus-
ter centers. Presently, we are experimenting with a better performing clustering
algorithm - Fuzzy-C-means algorithm [15]. In order to test the correctness of our
results, we manually created the two SCPG and SCWH string classes correspond-
ing to the PG and WH GO-actions. We computed the intra-class distances,
IaC(SCPG) and IaC(SCWH), and the inter-class distance, IrC(SCPG, SCWH),
for the two classes. Under our assumption, the inter-class distance has to be con-
sistently greater than the intra-class distances. In order to compute the above
distances we have to define a string distance measure. A commonly used tech-
nique for measuring string similarity is to look for the longest common subse-
quence (LCS) of characters in two strings. The length of the LCS is usually
divided by the length of the longer string of the two original tokens in order
to obtain a normalized value. This score is called the longest common subse-
quence ratio (LCSR) [16]. We have defined d(x, y) = 1− LCSR(x, y) ∈ [0, 1] as



measure of distance between strings x and y. Results from our data show the
encouraging values of IrC(SCPG, SCWH) = 0.7 for the inter-class distance and
IaC(SCPG) = 0.4 and IaC(SCWH) = 0.5 for the the intra-class distances.

4.2 Discussion

In the previous sections we have presented a preliminary experiment to test the
validity of hypothesis 2 and 3. As already said, the results proved encouraging.
However, in this experiment the hypothesis 1, observer independence (view inde-
pendence), is not fulfilled. Let’s not forget that the feature vector F is composed
of scale and position indipendent/tolerant values, but this vector is not invari-
ant under view changes. In order for the conditions stated on hypothesis 1 to
be fulfilled an observer independent/tolerant measure of object features needs
to be given. In [14] the classical task of observer independent object recognition
takes place in the object-tuned stage of the recognition process, but the problem
of how to extract observer independent features is not been explicitly tackled.
How can the observer independent features be extracted? For example, how
can features such as grip-size (measured by the index-thumb distance [17]), or
hand-target distance be extracted in an observer independent way? In the next
Section we propose a neuronal architecture for performing an observer indepen-
dent/tolerant measure of some relevant hand-target features which is based on
the very same Poggio’s recognition system.

5 Observer independent measure of hand features

As we have said before, although our general schema requires that during grasp
actions the visual feature vector F be composed of the features relative to both
the target and the agent performing the action, in the following paragraphs we
will consider only features relative to hand shape. Santello [18, 19] argued that:
i) hand shape evolves gradually, ii) hand shape depends on object shape and iii)
hand shape can be completely individuated from very few features.
Based on the above mentioned considerations, we think that to focus on one hand
feature only could be appropriate as a first approach. In the next paragraph
a feed-forward Neural network architecture representing a Grip-size Observer
Independent measure (NeGOI) is defined. According to Jeannerod [17] we define
the hand grip-size measure as the distance between thumb and index tip.

5.1 NeGOI architecture

We assume that for a given observer point of view the hand grip-size can be com-
puted as the superposition of K basic hand postures corresponding to predefined
grip-size such as ”maximum grip size”, ”middle grip size” and ”minimum grip
size”. Once a hand grip-size measure is obtained from N selected points of view,
the observer independence can be achieved by an integration of the N measures.
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NeGOI architecture is composed of three layers (Figure 4). The first layer con-
sists of neurons selective to both basic grip-size and point of view. The layer is
composed of K ordered groups of neurons. Each group is composed of N ordered
neurons. Let be GVij the j-th neuron belonging to i-th group, with i = 1, 2, ...,K
and j = 1, 2, ...N . Each GVij neuron is selective to the basic grip-size i and the
point of view j. The input of each GVij is the vector F (output of C2 layer). The
second layer is composed of K observer independent neurons selective to basic
grip-sizes . Let be GSi the i-th neuron of the second layer, with i = 1, 2, ..., K.
The neuron GSi receives only connections from neurons belonging to i-th group
of the first layer. The third layer is composed of just one neuron. Let us call it
GS. GS neuron receives connections from all GSi. GS output is scale, position
and observer independent.

6 Experiment 2

In order to test the observer independence property of the architecture just
described we have recorded 8 grasp actions with 8 targets (cubes) of different
dimensions (cm 2,3, ...,9). Each grasp action is recorded from two different point
of view, view1 and view2 (see Figure 4-b). The first point of view, view1 , can be
taken as the point of view of an agent A observing a grasp action, while view2

can be taken as the point of view of an agent A carrying out a grasp action. It
is known [17] that during a grasp action the hand grip-size profile has a typical
form (see Figure 5-a). Moreover, the value of the maximum grip size occurs at
roughly 70 − 80% of the action duration and it has a linear relation with the
dimension of the target.
The correctness of NeGOI approach to measure grip-size can be proved if the
values thus obtained exhibit the above mentioned properties.



6.1 NeGOI implementation

The first layer neurons are the output neurons of a Radial Basis Function neural
network (RBF) [20] receiving the F vector as input. In this experiment we have
only six neuron, i.e., two neurons for each selected basic grip-size: GV1j selective
to both maximum grip-size and viewj , GV2j selective to both middle grip-size
and viewj , GV3j selective to both minimum grip size and viewj , with j = 1, 2.
In the second layer the GSi neurons (i = 1, 2, 3) compute the maximum of
the outputs of GVij , with j=1,2. Therefore, the GS1,GS2 and GS3 neurons are
selective to maximum, middle and minimum grip-size, respectively (Figure 4-b).
In the last layer, the neuron GS is obtained as output node of a RBF network.

6.2 Training phase

We have trained the GVij neurons using two different sets. The first set is com-
posed of 600 frames of hand postures recorded from the point of view view1, of
which 200 frames of hand postures representing maximum grip-size, 200 frames
representing middle grip-size and 200 frames representing minimum grip-size.
The second set is composed as well of 600 frames of hand postures recorded
from the point of view view2 subdivided as the first set. The GS neuron has
been trained under the hypothesis that the output of the GS1, GS2 and GS3

neurons are Gaussians centered on maximum grip-size, middle grip-size and min-
imum grip-size, respectively.

6.3 Preliminary Results

For all eight grasp actions the profile of grip-size as measured by NeGOI (Figure
5-b) has the same form as the one predicted by Jeannerod [17] (Figure 5-a). The
maximum grip size value presents a clear linear relation with the dimension of the
target, see Figure 5-c. By performing a linear regression between maximum grip
size value and the target dimensions we obtain a determination index r2 = 0.98.

7 Conclusions

In a previous paper [9], we have proposed a visuo-motor control model, which
we called MEP, based on a specific functional interpretation of mirror neurons.
This functional interpretation can be explained through a mechanism of expected
perception. In this paper we have focused our attention on some issues concerning
the implementation of the expected perception mechanism. To this end, we have
discussed some basic hypothesis regarding the semantic segmentation of GO-
actions, and we have given a preliminary account of how the plausibility of such
hypothesis can be fulfilled and tested in an experimental setting. Preliminary
results are encouraging. More thorough experimentation is in progress. Be aware
that we have not yet addressed some central questions, such as, how is the
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command sequence computed? How is the sequence of expected classes selected?
We have merely supposed that it is possible to perform these subtasks. We want
to stress again that our chief concern here has been to expose some basic issues
regarding the implementation of the expected perception mechanism.
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