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Abstract. Visual forward models predict future visual data from the
previous visual sensory state and a motor command. The adaptive ac-
quisition of visual forward models in robotic applications is plagued by
the high dimensionality of visual data which is not handled well by most
machine learning and neural network algorithms. Moreover, the forward
model has to learn which parts of the visual output are really predictable
and which are not. In the present study, a learning algorithm is proposed
which solves both problems. It relies on predicting the mapping between
the visual input and output instead of directly forecasting visual data.
The mapping is learnt by matching corresponding regions in the visual
input and output while exploring different visual surroundings. Unpre-
dictable regions are detected by the lack of any clear correspondence.
The proposed algorithm is applied successfully to a robot camera head
with additional distortion of the camera images by a retinal mapping.

1 Visuomotor Prediction

Sensorimotor control is an important research topic in many disciplines, among
them cognitive science and robotics. These fields tackle the questions how com-
plex motor skills can be acquired by biological organisms or robots, and how
sensory and motor processing are interrelated to each other. So-called “internal
models” help to clarify ideas of sensorimotor processing on a functional level [8,
13]. “Inverse models” or controllers generate motor commands based on the cur-
rent sensory state and the desired one; “forward models” (FWM) predict future
sensory states as outcome of motor commands applied in the current sensory
state. The present study focuses on the anticipation of visual data by FWMs.

The anticipation of sensory consequences in the nervous system of biological
organisms is supposed to be involved in several sensorimotor processes: First,
many motor actions rely on feedback control, but sensory feedback is generally
too slow. Here, the output of FWMs can replace sensory feedback [9]. Second,
FWMs may be used in the planning process for complex motor actions [12].
Third, FWMs are part of a controller learning scheme called “distal supervised
learning” [7]. Fourth, FWMs can help to seperate self-induced sensory effects
(which are predicted) from externally induced sensory effects (which stand out
from the predicted background) [2]. Fifth, it is suggested that perception relies



on the anticipation of the consequences of motor actions which could be applied
in the current situation. For the anticipation, FWMs are needed [10].

Regarding the fourth function mentioned above, a classical example is the
reafference principle suggested by Holst and Mittelstaedt [6]. It explains why
(self-induced) eye movements do not evoke the impression that the world around
us is moving. As long as the predicted movement of the retinal image (caused
by the eye movement) coincides with the actual movement, the effect of this
movement is canceled out in the visual perception.

In fields like robotics or artificial life, studies using FWMs for motor control
focus mainly on navigation or obstacle avoidance tasks with mobile robots. The
sensory input to the FWMs are rather low-dimensional data from distance sen-
sors or laser range finders (e.g.: [12, 14]), optical flow fields [3], or preprocessed
visual data with only a few remaining dimensions [5].

We are especially interested in the learning of FWMs in the visual domain,
and its application to robot models. In our understanding, visual FWMs predict
representations of entire visual scenes. In the nervous system, this could be the
relatively unprocessed representation in the primary visual cortex or more com-
plex representations generated in higher visual areas. Regarding robot models,
the high-dimensional sensory input and output space of visual FWMs poses a
tough challenge to any machine learning or neural network algorithm. Moreover,
there might be unpredictable regions in the FWM output (because parts of the
visual surrounding only become visible after execution of the motor command).
In the present study, we suggest a learning algorithm which solves both prob-
lems in the context of robot “eye” movements. In doing so, our main goal is to
demonstrate a new efficient learning algorithm for image prediction.

2 Visual Forward Model for Camera Movements

In our robot model, we attempt to predict the visual consequences of eye move-
ments. In the model, the eye is replaced by a camera which is mounted on a pan-
tilt unit. Prediction of visual data is carried out on the level of camera images.
In analogy to the sensor distribution on the human retina, a retinal mapping is
carried out which decreases the resolution of the camera images from center to
border. We use this mapping to make the prediction task more difficult; we do
not intend to develop, implement, or test a model of the human visual pathway.
The input of the visual FWM is a “retinal image” at time step t (called “input
image” in the following) and a motor command mt. The output is a prediction
of the retinal image at the next time step t + 1 (called “output image” in the
following; see left part of Fig. 1).

The question is how such an adaptive visual FWM can be implemented and
trained by exploration of the environment. A straight-forward approach is the use
of function approximators which predict the intensity of single pixels. For every
pixel 〈xOut, yOut〉 of the output image, a specific forward model FWM〈xOut,yOut〉
is acquired which forecasts the intensity of this pixel (see right part of Fig. 1).
Together, the predictions of these single FWMs form the output image as in Fig.



Fig. 1. Left: Visual forward model (FWM). Right: Single component of a visual forward
model predicting the intensity of a single pixel 〈xOut, yOut〉 of the output image.

Fig. 2. Left: Mapping model (MM). Right: Validator model (VM) (for details see text).

1 (left). Unfortunately, this simple approach suffers from the high dimensionality
of the input space (the retinal image at time step t is part of the input), and
does not produce satisfactory learning results [4].

Hence, in this study we pursue a different approach. Instead of forecasting
pixel intensities directly, our solution is based on a “back” prediction of where
a pixel of the output image was in the input image before the camera’s move-
ment. The necessary mapping model (MM) is depicted in Fig. 2: As input, it
receives the motor command mt and the location of a single pixel 〈xOut, yOut〉 of
the output image; as output it estimates the previous location 〈x̂In, ŷIn〉 of the
corresponding pixel (or region) in the input image. The overall output image is
constructed by iterating through all of its pixels and computing each pixel inten-
sity as ÎOut

〈xOut,yOut〉 = IIn〈x̂In,ŷIn〉 (using bilinear interpolation).1 Moreover, an ad-

ditional validator model (VM) generates a signal v〈xOut,yOut〉 indicating whether
it is possible at all for the MM to generate a valid output for the current input.
This is necessary because even for small camera movements parts of the output
image are not present in the input image. In this way, the overall FWM (Fig. 1,
left) is implemented by the combined application of a mapping and a validator
model.

The basic idea of the learning algorithm for the MM is outlined in the fol-
lowing for a specific mt and 〈xOut, yOut〉. During learning, the motor command is
carried out in different environmental settings. Each time, both the actual input
and output image are known afterwards, thus the intensity IOut

〈xOut,yOut〉 is known
as well. It is possible to determine which of the pixels of the input image show
a similar intensity. These pixels are candidates for the original position 〈xIn, yIn〉
of the pixel 〈xOut, yOut〉 before the movement. Over many trials, the pixel in the
input image which matches most often is the most likely candidate for 〈xIn, yIn〉

1 In this study, pixel intensities of the retinal input and output images are three-
dimensional vectors in RGB color space.



and chosen as MM output 〈x̂In, ŷIn〉. When none of the pixels matches often
enough, the MM output is marked as non-valid (output of VM).

3 Method

To acquire such a MM and VM as in Fig. 2, the following steps are executed.
First, a grid of points is defined in the input space of the MM and VM (composed
of mt and 〈xOut, yOut〉), ranging from the minimum to the maximum value in
each input dimension. For each grid point, the most likely estimate 〈x̂In, ŷIn〉 is
determined by collecting candidate pixels in many different visual surroundings.
Along the way, the VM output v〈xOut,yOut〉 is determined as well. Thereafter, one
radial basis function network (RBFN) is trained to interpolate the MM output
between the grid points, and another RBFN to interpolate the VM output.
The resulting networks can be applied to image prediction afterwards. In the
following, the methods are outlined in more detail.

3.1 Setup

The robot setup is shown in Fig. 3 (left). Only the right camera is used. A central
quadratic region of the original camera image (captured in RGB color) with a
resolution of 240× 240 pixels is used for further processing (and called “camera
image” in the following for simplicity). The horizontal and the vertical angle of
view of this region amount to 48.5 degrees. The camera is mounted on a pan-tilt
unit with two degrees of freedom. In this study, the valid range for the pan angle
is between −60.4 and 23.8 degrees, for the tilt angle between −42.9 and 21.4
degrees. In this range, the camera image always captures at least a small part
of the white table shown in Fig. 3 (left) below the cameras.

The pan and tilt axes cross in close vicinity to the nodal point of the camera-
lens system. For this reason, the effect of changing the pan and tilt position
by a certain amount ∆pan/∆tilt is almost independent of the current camera
position. Accordingly, the motor input mt of the FWM just consists of ∆pan
and ∆tilt. Both values can vary between −29 and +29 degrees. For the same
reason, object displacements in the camera images during camera movements
are virtually independent from the object distance to the camera. Thus, depth
information is irrelevant for our learning task.

3.2 Retinal Mapping

As mentioned before, the input and output images of the FWM are “retinal”
images with decreasing resolution from image center to border. Camera images
are converted to such retinal images by a “retinal mapping”. The effect of this
conversion is depicted in Fig. 3 (right). The basic idea of this mapping is best
outlined in polar coordinates. The origins of the coordinate systems are located
at the image centers. They are scaled in a way that in both images the maximum
radius (along the horizontal/vertical direction) amounts to 1.0. rR is the radius



Fig. 3. Left: Setup used as basis for the visual prediction task. Right: Retinal mapping.
Upper right image: Original image. Lower right image: Retinal image (scaled up by
factor two).

of a point in the retinal image, rC is the radius of the corresponding point in
the camera image, the angle of the polar representation is kept constant. rC is
computed by rC = λrγ

R + (1− λ)rR , γ > 1 , 0 ≤ λ ≤ 1. Here we use γ = 2.5
and λ = 0.7. The resolution of the final retinal image is 69× 69 pixels. To avoid
aliasing artifacts in the heavily subsampled outer regions of the original image,
adaptive smoothing is applied.

While the input image of the FWM is an unmodified retinal image, the output
image is a center crop with a size of 53× 53 pixels. This is necessary to clip the
white corners of the retinal image without valid information (see Fig. 3, right)
which are just a technical artifact and would spoil the learning algorithm.

3.3 Grid of Cumulator Units

The input space of the MM and VM consists of four dimensions: ∆pan, ∆tilt,
xOut, and yOut. In this space, a four-dimensional grid P of points pijkl =(
∆pan(i), ∆tilt(j), x(k)

Out, y
(l)
Out,

)′ is inscribed, with i, j = 1, .., 7 and k, l = 1, .., 11.
∆pan(i) and ∆tilt(j) vary from −29 to +29 degrees with constant step size (cov-
ering the whole valid ∆pan/∆tilt range), while x

(k)
Out and y

(l)
Out form an equally

spaced rectangular grid covering the whole output image.
To each point pijkl, a so-called “cumulator unit” Cijkl is attached. Such a

unit is basically a single-band image with the same size as the input image. Each
“pixel” of this unit can hold any positive integer value including zero. They are
used to collect candidate pixels for the MM output 〈x̂In, ŷIn〉.



Fig. 4. Cumulator units for the center pixel for four different ∆pan/∆tilt positions.
All depicted cumulator units were normalized by the same scaling factor so that a pixel
value of zero corresponds to white and the overall maximum pixel value to black.

3.4 Learning Process

The goal of the learning process is to accumulate activations in the cumulator
units. At the beginning, all pixels of these units are set to zero. In each learning
trial, the pan-tilt unit is first moved into a random pan/tilt position. The input
image for the FWM is recorded and processed. Afterwards, the algorithm iterates
through all points of the grid P, the corresponding motor command is executed
(relative to the initial random position), and the output image is generated from
the camera image after the movement. For each point pijkl, the intensity of the
output image at the coordinates

〈
x

(k)
Out, y

(l)
Out

〉
is compared to the intensities of all

pixels 〈xIn, yIn〉 in the current input image. Whenever the intensity difference is
below a certain threshold α, the value of pixel 〈xIn, yIn〉 in cumulator unit Cijkl

is increased by one. The intensity difference is computed as Euclidean distance
in RGB color space. The threshold α is set to 3.5% of the overall intensity range
in a single color channel.

In the present study, 100 trials were carried out, each with 7× 7× 11× 11 =
5929 iteration steps (size of the grid P). Each trial took place in a slightly dif-
ferent visual environment because the initial camera position varied. 42 colored
wooden blocks were placed on the table to enhance the visual richness of the
environment (see Fig. 3, right).

Figure 4 illustrates four final cumulator units Cijkl in the grid P. Their posi-
tions along the ∆pan and ∆tilt dimensions are marked on the two-dimensional
grid on the left (camera movements to the lower right of increasing length,
starting at position 1 with zero movement). Their position

〈
x

(k)
Out, y

(l)
Out

〉
in output

image coordinates is the center pixel. The pixel color in the cumulator units
reflects the size of the accumulated sum from white (zero) to black (maximum
sum). Unit 1 with zero camera movement shows a clear maximum exactly in the
center. Thus, the most likely origin of the center pixel in the output image is the
center pixel in the input image. This is exactly what is expected when no camera



movement takes place. Unit 2 is associated with a small camera movement to
the lower right. The intensity maximum is no longer in the center of the unit,
but in the lower right corner: When the camera moves into a certain direction,
the new image center has its origin in the direction of the movement. Because
of the retinal mapping, the intensity maximum moves far to the border of the
cumulator unit although the corresponding camera movement is rather small.
Unit 3 with a larger camera movement shows a similar effect. Moreover, its max-
imum intensity is obviously weaker than in unit 1. This is mainly caused by the
retinal mapping with its heavy subsampling in the outer image regions (causing
fewer matches with the correct candidate pixel). Finally, unit 4 shows no visible
maximum in print at all. Actually, the corresponding camera movement is so
large that the center pixel of the output image has no valid counterpart in the
input image, therefore it is unpredictable.

3.5 Generating a Raw Version of the MM and VM

After the cumulator units have been acquired in the learning process, raw ver-
sions of the MM and VM can be created whose output is defined at the grid
positions pijkl in input space. The output 〈x̂In, ŷIn〉 of the MM at grid point pijkl

are the coordinates of the pixel with maximum intensity in the cumulator unit
Cijkl. The outputs v〈xOut,yOut〉 of the VM at point pijkl is set to 1 (signalling
valid output of the MM at this point) whenever the maximum pixel intensity in
unit Cijkl is above a certain threshold. Otherwise, v〈xOut,yOut〉 is set to 0. The
threshold is computed as the product of the maximum pixel intensity of all cu-
mulator units and a factor β = 0.45. This proved to be the value resulting in the
most correct separation.

Figure 5 shows the output of the MM and VM for nine different motor com-
mands ∆pan(i)/∆tilt(j). For each motor command, the pixel coordinate space
of the input image is shown in a single panel. The two-dimensional grid in each
panel connects points along the x

(k)
Out and y

(l)
Out directions of P. The position of

each grid point corresponds to the output 〈x̂In, ŷIn〉 of the MM at this point.
Only points with valid output are shown (determined by the VM). The cen-
tral panel with no movement shows an identity mapping between

〈
x

(k)
Out, y

(l)
Out

〉
and 〈x̂In, ŷIn〉 (as expected). The other panels reflect the relationship between
the camera movement and the pixel shift between input and output image. The
strong curvature of the grid is mainly caused by the retinal mapping.

3.6 Network Training

The output of the raw versions of the MM and the VM is only defined at the grid
points pijkl. To get the output in-between, function interpolation is necessary.
For this purpose, the raw versions of the MM and the VM were replaced by
radial basis function networks (RBFN) (for details, see [1]) in the final step of
the learning algorithm. These networks have the same input/output structure
as the MM and the VM, respectively (see Fig. 2). The training data for both



Fig. 5. Mapping from pixel coordinates
〈
x

(k)
Out, y

(l)
Out

〉
(grid points) in the output image

to pixel coordinates 〈x̂In, ŷIn〉 in the input image for 3×3 different ∆pan/∆tilt positions.

networks was generated from the output of the raw versions of the MM and the
VM at the grid points pijkl (overall, there are 7×7×11×11 = 5929 grid points).
For the MM network, training data was restricted to the 2935 grid points with
valid output (signalled by the raw version of the VM).

For both networks, the hyperbolic tangent was used as activation function
for the output units. Both the MM and the VM network were initialized with the
k-means algorithm, afterwards they were trained for 1000 epochs with gradient
descent. Input and output values were scaled to the range [−0.6; 0.6].

The MM network is a RBFN with 200 Gaussians for each output unit (xOut

and yOut). The training set consisted of the 2935 valid input-output pairs of the
raw MM. The mean squared error per pattern per output unit amounted to
2.3 · 10−4 after the last epoch.

The VM network has 250 Gaussians in the hidden layer for its single output
unit. It basically had to learn a classification task with a training set covering
all 5929 grid points. While the mean squared error per pattern per output unit
still amounted to 5.3 · 10−2 after the last epoch, only 1.3% of the grid points
were misclassified.

It is possible to use alternative methods for function interpolation, e.g., to
construct the RBFNs directly from the grid points without learning (even during
the acquisition of the cumulator units as a kind of “online” method), or to use
other non-linear regression methods.



Fig. 6. Comparison of actual and predicted output images at four different ∆pan/∆tilt
positions (the same as in Fig. 4).

4 Results

The MM and VM network are used to implement the overall visual FWM for
predicting the output image as explained in Sect. 2. Especially, non-predictable
regions of the output image are marked by the VM network. The prediction works
rather precise as shown exemplary in Fig. 6. The actual and the predicted output
image are compared for four different motor commands ∆pan/∆tilt (camera
movements to the lower right of increasing length as in Fig. 4). Moreover, the
region of each output image which is marked as non-predictable by the VM is
shown in black color in the third row of images. The input image (the same for all
four movements) is displayed as well. Movement 1 is a zero movement. The actual
and the predicted output image are very similar and show the center crop from
the input image. Movements 2 and 3 are of increasing size. The non-predictable
regions mask parts of the output images which have no correspondence in the
input image. The center of the predicted images is slightly blurred and distorted
because the mapping generated by the MM network has to enlarge a region of a
few pixels in the input image to a much larger area (especially for movement 3).
Movement 4 is so large that the center of the output image is non-predictable.
Nevertheless, the small upper left part of the output image which is predicted
corresponds closely to the actual output.

This visual inspection of a few exemplary camera movements demonstrates
the learning success. At the current stage of development, the additional applica-
tion of quantitative evaluations is not meaningful because of the lack of compet-
ing learning algorithms for visual FWMs. Furthermore, quantitative measures
like the Euclidean distance in pixel space are difficult to interprete because the
FWM has to enlarge parts of the input image while the actual output maintains
the optimum resolution in the image center.



We pointed out in Sect. 3.1 that depth information is irrelevant for our learn-
ing task because of the camera geometry. Therefore, it is possible to rearrange
objects in the field of view of the camera without any harm to the prediction
performance of the visual FWM.

5 Discussion and Conclusions

The proposed learning algorithm overcomes the problem that visual FWMs have
a high-dimensional input and output space due to the size of visual data. Fore-
casting pixel intensities is replaced by forecasting a mapping between output
and input pixel locations. The only restriction regarding image size is imposed
by the size of the computer memory because it has to hold the cumulator units
during the learning process.

The learning process relies on matching pixels between the output and in-
put image. By imposing a retinal mapping, it is demonstrated that this learning
principle even works when strong image distortions are involved (including color
changes caused by smoothing and subsampling in the outer areas of the cam-
era images). Future research will show to which extent the performance of the
learning algorithm deteriorates in response to even more ambiguous visual data
(e.g., by using monochrome images).

The distinction between cumulator units with a large and a small maximum
pixel intensity offers a natural solution for the detection of unpredictable image
regions. A small maximum signals that no correct pixel match exists, while an
existing correct match accumulates to a large maximum during the learning
process.

At the current stage of development, the application of a grid of cumulator
units spanned in the input space of the MM and VM only allows low-dimensional
motor commands mt because of the storage requirements of these units. To
overcome this problem, the next step of development is an online learning scheme
to adapt to the maximum (the modal value) of the intensity distribution in each
cumulator unit without the need to store the units. This would allow more
dimensions in motor space. Even further, the goal is to replace the fixed grid
structure in motor space by random movements (while maintaining the grid in
〈xOut, yOut〉 space with the appropriate spacing for the distortions caused by the
imaging system).

The basic ideas of the proposed learning algorithm might even offer an expla-
nation for the acquisition of visual FWMs in biological organisms: First, learning
the input-output relationship by matching low-level visual features, and second,
identifying predictable regions by detecting that a good match emerges dur-
ing the learning process. In robotics applications, visual FWMs can be used to
explore the various functions of FWMs stated in the introduction. Moreover,
they may become an important functional building block of truly autonomous
systems, both for motor control and for perceptual competences.

In our current research, which also includes motor learning, we plan to use the
visual FWM of this study (or a successor) in a saccade learning task. Through



the predictions of the FWM, it will be possible to track objects between camera
movements efficiently. This allows the computation of the sensory error which is
needed in many motor learning schemes [11].
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4. Große, S.: Visuelle Vorwärtsmodelle für einen Roboter-Kamera-Kopf (2005)
Diploma Thesis. Computer Engineering Group, Faculty of Technology, Bielefeld
University.
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