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1 Introduction

Assume that a robot continuously creates and maintains predictive models of
the dynamics of its body and immediate surroundings. Can it then make use
of internal simulations to increase its adaptive capabilities, and what would be
suitable choices of model representation schemes and optimization algorithms
for this purpose?

Anticipatory behavior can be described in general terms as behavior that
does not only depend on the past and the present, but also on predictions, ex-
pectations, and beliefs about the future. As noted in [1], anticipatory systems
can be broadly divided into implicit and explicit ones. Implicit anticipatory sys-
tems are systems in which anticipation is a result of the design or evolution of
a control system. The present work however, is concerned with explicit antici-
patory systems, where predictions about the future are explicitly represented in
some form. In such systems, there are two aspects to anticipation: (1) the model
representation itself; and (2) how the predictions are used.

Several theories for how predictions are built, represented, and utilized in
higher animals and humans have been proposed, two of which are closely related
to this work. Hesslow’s simulation hypothesis (SH) [2] suggests that thinking
consists of internal simulations of agent-environment interaction. Grush’s emu-
lation theory of representation (ETR) [3] is based on the idea that the brain,
while engaging with the body and the environment, constructs neural circuits
that act as a model of the body and the environment. It is suggested that running
these models offline can produce imagery and estimates of outcomes of potential
actions.

This work focuses on robots that can learn predictive models while behav-
ing in their environment, and then use these models for the purpose of gen-
erating goal-directed behavior. It rests on the assumption that system control
benefits, in terms of stability and robustness, from using predictions of future
action-dependent information [4]. Important first steps have been made towards
learning and using predictive models for robust robot behaviors, e.g. [5–7]. This
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work is mainly inspired by the work by Bongard et al. [5], where explicit mod-
els were optimized by a coevolutionary algorithm, and then used to generate
locomotive behavior before and after the robot had been damaged. However,
several questions remain concerning how robots could learn and use predictive
models, and from a computational modeling perspective the questions of how
predictions should be represented, generated, and used to influence, e.g., motor
control, decision making, and learning is still much out in the open.

Using a system identification (SI) [8, 9] approach to modeling, this work in-
tends to use automated, general-purpose1 methods for the generation of an ex-
plicit anticipatory system. More specifically, it aims at: (1) identifying suitable
model representation schemes and optimization algorithms for structural and
parametric learning of predictive robot models; and (2) exploiting these models
for the purpose of increased robustness in goal-directed behaviors.

2 Predictive Internal Models: A System Identification
Approach

The SI approach to modeling is, loosely speaking, the process of adapting a
mathematical model to describe the behavior of a system, represented by ex-
perimental data. This can be compared to physical modeling, which uses basic
physical laws or other known relationships to derive a system model.

With the embodied turn in artificial intelligence [10–12] came the realization
that an agent’s body, brain, and environment are really coupled dynamical sys-
tems and thus it is in the interaction of these that behavior occurs and should
hence be studied. This view has important consequences that motivates an SI
approach to the generation of predictive internal models for autonomous robots.
It first more or less rules out a physical modeling approach since the underlying
system dynamics are not completely known. Second, it implicates that experi-
mental data, from which a model could be built, should be generated while the
robot behaves in its environment.

Linear time invariant (LTI) systems share characteristics that have made
it possible to develop standard model structures and optimization techniques,
see for example [8]. Nonlinear processes however, typically do not share many
properties. Therefore a great challenge in nonlinear SI is universalness, that is
the capabilities: (1) of the model structure to describe a wide class of structurally
different systems; and (2) of the optimization algorithm to cope with structural
as well as parametrical optimization. For this reason, universal approximators
such as recurrent neural networks (RNNs) [13], and biologically inspired global
optimization techniques like evolutionary algorithms (EAs) [14] have become
popular in nonlinear system identification.

Whether linear or nonlinear, system identification techniques can roughly
be classified in two categories: offline techniques and online techniques, respec-
tively. In offline system identification, a complete data set is collected and made

1 Suitable for a variety of robot platforms.
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available for the SI process to exploit. As noted in [15], such techniques are well
suited when data is freely available but not controllable, such as stock market
data. On the other hand, online techniques use the data as it becomes available,
and is often referred to as recursive system identification. While online SI can
be the only option due to intrinsic system limitations on the collection of data,
it can also be a useful approach when modeling for adaptive control or fault
tolerance. For example, it opens up the possibility for active learning (AL) [16],
an approach where new experiments are selected for the purpose of generating
useful data. In our case the model is, broadly speaking, supposed to answer the
question of what are the best predictions of some time-steps ahead. For this pur-
pose, it is useful to have a model that can be adjusted online, while the robot
behaves in its environment.

3 Model Representations and Learning Algorithms

This work assumes that a goal is made available to the robot from a user or
designer. The modeling process can then be divided into two parts. The model
building is an information-gathering task; its goal is to reduce model uncertainty.
The model is used, however, in a goal-directed task, where the purpose is to
generate a desired robot behavior (e.g. to approach or avoid some object or
to generate a gait before and after damage). This is a case of modeling for
control, where the accuracy of the model is important only insofar as it produces
the desired behavior. Since we are interested in an automated modeling-control
process, a restriction on any learning algorithm is that it must be able to deal
with model training and model use, but also with model retraining.

We hypothesize that using an AL approach in the model building phase will
outperform passive techniques, something that is also supported by the find-
ings in [5]. Furthermore, results from evolutionary robotics experiments [17, 18]
suggest that the best performing predictors may not actually be, as one might
expect, those that minimize sensor prediction errors. However, it is also known
that evolutionary optimization methods have a tendency to exploit model weak-
nesses to achieve good fitness. For this reason, we hypothesize that comparing
evolutionary methods with more traditional methods for prediction, such as the
Kalman filter (KF) algorithm, or its extended version for nonlinear systems, will
give important insights as to whether prediction error is a good quality measure
of a predictive internal model.

Our experimental setup involves using wheeled as well as legged robots (in
simulation), and comparing the performance of a set of representation scheme-
learning algorithm pairs. The overall performance measure of each pair is how
well the robot succeeds in reaching its goals when properties of it itself or its
environment changes. However, we also consider the efficiency of the model infer-
ence phase as well as the explicit predictive capabilities of the generated models,
in terms of their prediction errors over a range of prediction horizons.
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