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Abstract. In order to establish autonomous behavior for technical sys-
tems, the well known trade-off between reactive control and deliberative
planning has to be considered. Within this paper, a two level hierarchi-
cal reinforcement learning scheme is proposed to orchestrate behaviors
represented by hybrid dynamic systems, which combine continuous and
discrete behavior. Reinforcement learning (RL) with model-based value
function is used on the higher level based on a MDP abstracted from the
hybrid system. On the lower level, policy gradient-based RL considers
the hybrid dynamics.

1 Introduction

Several approaches for anticipatory behavior of learning systems have been de-
veloped in recent years and are described e.g. in [3, 4]. Reinforcement learning
(RL) is one of the main approaches to establish anticipatory behavior in adap-
tive learning systems. RL uses an estimate on the future outcome of the systems
actions, to guide its behavior. Depending on the model on which RL is used, it
might result in reactive control or deliberative planning. Reactive control is often
referred as bottom-up approach, which quickly reacts to changing environment,
in contrast, deliberative planning, the top-down approach, plans sequences of
actions on an slowly changing structured environment. Inspired by animal or
human behavior, which surely uses both approaches, the coupling between these
two approaches to behavior control for autonomous systems has to be found.
In [2] and [7] hybrid automata are proposed as trade-off solution, bridging the
gap between reactive and deliberative control. Hybrid systems consist of col-
lections of continuous dynamics combined with discrete events. This allows to
switch among basic behaviors, modelled by continuous dynamics, through dis-
crete controls and thus to build complex behavior in order to achieve a certain
goal autonomously.

Based on HA, a two level hierarchical RL (HRL [6]) scheme is proposed in
this paper to calculate the controls. The scheme uses model-based value iteration
to obtain state anticipations on the higher level, i.e. the model is used to learn
the value function and the reward is adapted from experiences. Policy gradient
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based RL (PGRL) as payoff anticipations on the lower level is used such that
the problem of discretization of the continuous spaces of HA can be avoided [1].
Using this combination, the benefit of continuous PGRL, as it was demonstrated
in several impressive examples [8], is here extended to hybrid systems.

2 Hybrid Automaton and its Abstraction

As introduced earlier, the use of hybrid dynamic models is appropriate to model
qualitatively different behaviors. The system is modeled by a hybrid automaton
HA = (X, U, Z, inv, Θ, g, r, f) according to [9]:

– X ⊆ R
nx specifies the continuous state space, on which the state vector x is

defined;
– U ⊆ R

nu is the continuous input space of dimension nu;
– the finite set of discrete states is denoted by Z = {z1, · · · , znz

};
– a mapping inv: Z → 2X assigns an invariant for x to each location zj ∈ Z;
– the set of transitions is given by Θ ⊆ Z × Z;
– a mapping g: Θ → 2X associates a transition guard g((z1, z2)) ⊆ X with

each transition (z1, z2) ∈ Θ;
– a reset function j : Θ × X → X assigns an updated state x′ ∈ X to each

(z1, z2) ∈ Θ, x ∈ g((z1, z2));
– fz : Z × X × U → R

nx defines a flow function of the form: ẋ = fz(x, u) for
each location z ∈ Z, x and u denote the state and input respectively.

Such a dynamic allows, e.g., to model the continuous motion of a robot in dif-
ferent modes (transport of objects, gripping of objects, etc.) characterized by
different discrete states z.

Abstraction: The HA can be abstracted into a Markov Decision Process
(MDP) with the form: M = (S, A, P, r), where S is a finite set of states corre-
sponding to the set of discrete locations of the hybrid automaton. Two states
s0 ∈ S and sg ∈ S specify an initial and goal state respectively. For every tran-
sition in Θ, an action a ∈ A is defined, which triggers the transition from state
s to s′ – it thus represents the set of all trajectories x(t) within the location z

(represented by s), which end up in the guard set g that lead to the location z′

(corresponding to s′) by the transition (z, z′) ∈ Θ. The transition function of M

is given by P : S×A×S → {0, 1} and r : S ×A×S → R is the reward function
associated to a transition of M . A MDP is capable to model uncertainties in the
outcome of the actions, but here only deterministic transitions are regarded and
transition probabilities will be subject of future work.

3 Hierarchical Reinforcement Learning

RL is learning from interaction, i.e. the system learns a strategy (as a state-to-
action mapping) based on the reward obtained for a past execution. At time
t, the system observes the state s ∈ S, and for a policy a = π(s), an action
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a ∈ A is chosen. The system moves from state s to s′ according to the transition
function, and it receives the reward r. The goal is to learn a policy π, which

maximizes the expected cumulative future reward R = E
[

∑N−1

i=0
r(si, a, si+1)

]

(N: number of steps to reach the goal state). The anticipation is based on the
current immediate reward and the value function from previous experience – this
principle is underlying a large number of RL approaches in different variations.

The proposed method within this work uses a hierarchical approach to solve
the problem on two different levels. On the higher level, the abstracted MDP
M from the hybrid automata is used to apply a value iteration where the value
function for each state is updated according to:

V (s) = max
a∈A

∑

s′

P (s′|s, a) [r(s, a, s′) + V (s′)]

after each iteration, where the reward is:

r(s, a, s′) =

{

1 if s′ = sg

0 otherwise.

After the convergence of the algorithm for computing V (s), the goal leading
abstract sequence of discrete states is determined by following a greedy policy.
For each discrete transition (z, z′) within this sequence, a continuous parame-
terized value function Vz(x(t), z′, w) is learned, which guides the system from an
arbitrary continuous state x0 ∈ inv(z) to the corresponding guard set g((z, z′))
of the consecutive discrete state. To learn the parameters w of the continuous
value function, the RL algorithm from [5] is applied for a maximum number
of N trials. The number n of reaching the desired guard set is used to inform
the higher level about the performance of the RL on the continuous level. The
reward r(s, a, s′) is reduced after the completion of the N trials by

r(s, a, s′) = r(s, a, s′) −
c

n + 1
,

and thus the model of the environment is updated. The parameter c > 0 is used
tune the information propagation from the lower level to the higher. By using
this reward update method an exploratory behavior is realized, which favors
’easy-to-learn’ locations within the HA. A location where the desired guard set
is reached many times during learning, is considered as ’easy-to-learn’ here. The
pseudo code of the describe scheme is listed in Algorithm 1.

4 Discussion

This approach focuses on the importance of an appropriate model within the dif-
ferent anticipatory behaviors. Even in model-free anticipatory behavior a sound
model of the system to be controlled (agent) is essential. In [8], off-line learning,
based on system models is used in order to initialize the value functions for the
real systems. HA are proposed as a general and adequate model for describing
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Algorithm 1 Hierarchical Reinforcement Learning (HRL) Algorithm.

initialize V (s) = 0 and Vz(x, s′, w)
while 1 do

do value iteration

while s 6∈ sg do

s′ ← arg maxa∈A [r(s, a, s′) + γP (s′|s, a)V (s′)]
for N trials do

do continuous RL within location z = s

end for

r(s, a, s′)← r(s, a, s′)− c
n+1

s← s′

end while

end while

complex systems. A two level hierarchical RL algorithm is introduced, which
guides the system by an exploratory behavior through the state space. Omitting
the continuous dynamics, a MDP is abstracted from the HA, in order to facil-
itate a long-term anticipation of the future reward. The computed sequence of
abstracted states from this long-term anticipation is used to guide the system
on the lower level. Due to space limitations the introduction of the simulation of
a simple manufacturing system, consisting of an conveyor-belt and a scara robot
is omitted here and will be presented along with performance measures in the
post-proceedings.
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