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Abstract. In this contribution we compare Anticipatory Learning Clas-
sifier Systems and Reinforcement Learning methods designed to solve
Factored Markov Decision Problems when the structure of the problem
is not known in advance. In particular, we focus on two instances, namely
macs and spiti.

1 Introduction

Learning Classifier Systems (lcss) [1] are rule-based systems where the rules
(called classifiers) are learnt from experience and benefit from a generalization
capability to build a compact representation of the problem. Standard lcss such
as xcs [2] use condition-action classifiers and combine Reinforcement Learning
(rl) methods with Genetic Algorithms (gas) to learn a compact set of classifiers.
Anticipatory Learning Classifier Systems (alcss) [3] deviate from the classical
lcs framework on one fundamental point. Instead of [Condition] → [Action]
classifiers, they manipulate [Condition] [Action] → [Effect] classifiers. The [Ef-
fect] part represents the expected effect (next state or set of next variables)
of the action in all situations that match the [Condition] part of the classifier.
Such a set of classifiers constitutes what is called in the rl literature a model
of transitions. alcss are an instance of model-based rl architecture, a category
of systems whose prototype is the Dyna architecture [4]. Indeed, alcss can be
seen as combining two crucial properties of rl systems. Like Dyna architec-
tures, they learn a model of transitions, which endows them with anticipation
and planning capabilities and speeds up the learning process. Like classical lcss,
they are endowed with a generalization property, which lets them build much
more compact models than tabular Dyna architectures [5].
In rl literature, [6] introduced the Factored Markov Decision Processes (fmdps)
framework to represent large and structured mdps compactly. In this approach,
a state is implicitly described by an assignment of values to some set of state
variables, a representation which shares strong similarities with the one used
in lcss where the variables are named “attributes”. But the structure of the
model of transitions is assumed to be known in fmdps, by contrast with the
alcs framework where this structure is learnt from experience.



Recently, [7, 8] proposed sdyna, an approach to learn from experience the struc-
ture of the model of transitions in the fmdp framework, giving rise to Factored
Reinforcement Learning (frl), a short name for rl in fmdps when the structure
of the fmdp is not known in advance.
The goal of this contribution is to compare at the level of concepts and imple-
mentation one instance of alcs named macs and one instance of sdyna named
spiti to highlight the superiority of the second framework. We briefly present the
two systems in section 2, compare them in section 3 and conclude in section 4.

2 spiti and macs

A fmdp is described by a set of state variables S = {Xi...., Xn}, where each
Xi takes value in a finite domain Dom(Xi). A state s ∈ S assigns a value
xi ∈ Dom(Xi) to each state variable Xi. The state transition model Ta of an
action a can be represented as a set of decision trees giving the probability
distribution of each xi given the values of all state variables at the previous time
step. Given this representation of the model of transitions, structured dynamic
programming algorithms such as svi, spi [9] and spudd [10] can be shown to
converge to the optimal policy. They do so very efficiently.
sdyna is a structured version of the dyna architecture where the model of
transitions and of reward are learnt from experience as a collection of decision
trees using the iti algorithm [11]. Diverse structured dynamic programming
or linear programming algorithms can then be applied to this model. spiti is
a particular instance of sdyna calling upon an incremental version of svi to
perform dynamic programming.
Among alcss, a comparison with spiti is easier with macs for two reasons:

– in macs, the [Effect] part of classifiers anticipates the value of only one
variable at a time for each action, thus one classifier is equivalent to one
decision tree in the model of transitions of spiti.

– macs is the only alcs that does not call upon a ga. Instead, to learn the
model of transitions, it relies on the combination of a generalization heuris-
tics and a specialization heuristics that collaborate to converge towards a
compact and accurate model of transitions. This can be compared more eas-
ily than a ga to iti which relies on an information metrics to grow a decision
tree incrementally.

Though macs converges faster and with a more compact model than other alcss
[12], it has major weaknesses in the action selection mechanism. In particular,
macs does not generalize the models of the reward and the value functions. In-
stead, these models are represented by a table giving a value for each encountered
state, which prevents using it for very large state space problems. By contrast,
Butz [13] proposed xacs which also generalizes the value function in acs2 [14],
by using xcs.
Thus, if a performance comparison was to be done between spiti and alcss,
one would like to perform that comparison with an ideal combination of xacs
and macs that does not exist so far.



3 Similarities and differences

Both macs and spiti call upon a model-based rl process and are endowed with a
generalization property that make them able to address large mdps without prior
knowledge of the structure. Their representations of the model of the transitions
have a similar global structure, the value of each variable being anticipated
separately for each action in function of variables defining the previous state of
the model. But macs and spiti differ in several points:

– In macs, building a compact model of the transition function relies on a com-
plex combination of heuristics whereas spiti calls upon the well established
incremental decision tree induction iti algorithm [11] and theχ2 information
metrics.

– In macs, the dynamic programming component of model-based rl is applied
to a flat representation of states, whereas spiti calls upon svi, spi or spudd
to perform this computation compactly, with guarantees of convergence to
optimality as far as the model of transition is supposed perfectly accurate
and very efficiently in practice.

– In macs, the model of transitions is represented as a set of classifiers and the
value function is tabular, whereas spiti implements the model of transitions,
the value function and the policy as decision trees which results in a much
faster algorithmic access to the information.

All these differences speak in favor of spiti against macs. As a matter of
fact, though we have never done any direct performance comparison, spiti was
shown to perform very well on problems that are out of reach of macs. In
[7, 8], we have shown that spiti could quickly find a near optimal policy on
problems with up to 106 actually reachable states while building a nearly opti-
mally compact model of the transition and reward functions. Another instance
of sdyna based on linear programming was even able to tackle problems with
more than 1012 states [15]. More recently, we have used spiti on a complex
non-Markov case study where the problem consists in learning an efficient be-
haviour to a bot playing Counter-Strike. A video of the result can be seen at
http://animatlab.lip6.fr/KodabotEn.

4 Conclusion

The goal of this contribution was to show that alcss and frl systems such
as spiti are conceptually very similar and share interesting properties, but frl
systems are mathematically better grounded and benefit from very efficient im-
plementations. An extension of this contribution would consist in performing
empirical comparisons between spiti and macs on large size benchmarks and in
comparing spiti with other alcss based on a ga such as xacs.
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