
Virtual Agent Modeling in the RASCALLI Platform

(Special Session on EU-projects)

Christian Eis
Research Studios Austria

Vienna, Austria
christian.eis@

researchstudio.at

Marcin Skowron
Austrian Research Institute for

Artificial Intelligence
Vienna, Austria

marcin.skowron@ofai.at

Brigitte Krenn
Austrian Research Institute for

Artificial Intelligence,
Research Studios Austria

Vienna, Austria
brigitte.krenn@ofai.at

ABSTRACT
The RASCALLI platform is both a runtime and a develop-
ment environment for virtual systems augmented with cog-
nition. It provides a framework for the implementation and
execution of modular software agents. Due to the underly-
ing software architecture and the modularity of the agents,
it allows the parallel execution and evaluation of multiple
agents. These agents might be all of the same kind or of
vastly different kinds or they might differ only in specific
(cognitive) aspects, so that the performance of these aspects
can be effectively compared and evaluated.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents; D.2.11 [Software Architectures]: Domain-specific
architectures; K.6.3 [Software Management]: Software
development

General Terms
Design, Experimentation, Measurement

Keywords
Cognitive agents, Agent modeling, Agent evaluation, Open
source software

1. INTRODUCTION
This paper gives an overview of the architecture and func-

tionality of the RASCALLI platform, developed as part of
the RASCALLI project1. In this project, the platform is
used as the underlying software environment for the devel-
opment and execution of so called RASCALLI (Responsive
Artificial Situated Cognitive Agents that Live and Learn on
the Internet). It provides the facilities for user-agent and

1European Commission Cognitive Systems Project FP6-
IST-027596-2004 RASCALLI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PerMIS’08, August 19–21, 2008, Gaithersburg, MD, USA.
Copyright 2008 ACM 978-1-60558-293-1 ...$5.00.

agent-agent communication and serves as a testbed for the
evaluation of various incarnations of the agents that use dif-
ferent sets of action-perception tools, action selection mech-
anisms and knowledge resources. The platform supports
a modular development style, where agents are assembled
from small re-usable building blocks. Agents of different
kinds and configurations can run simultaneously within a
single platform environment. This enables the evaluation
and comparison of different agents as well as the evaluation
of whole agent communities.

The paper is organized as follows: Section 2 describes the
general objectives of the RASCALLI project to the extent
that they are relevant for the design and implementation of
the RASCALLI platform. Section 3 gives a brief overview
of related platforms and methodologies. The RASCALLI
platform itself is then described in section 4, and section 5
gives an overview of the agent components implemented in
the RASCALLI project. Finally, section 6 explains how the
RASCALLI platform can be used for agent evaluation.

2. PROJECT OBJECTIVES
The project RASCALLI aims at the development of vir-

tual agents that perform tasks related to accessing and pro-
cessing information from the Internet and domain-specific
knowledge bases. RASCALLI agents, further referred to
as Rascalli, represent a growing class of cooperative agents
that do not have a physical presence, but nevertheless are
equipped with major ingredients of cognition including sit-
uated correlates of physical embodiment to become adap-
tive, cooperative and self improving in a virtual environ-
ment, given certain tasks.

The project objectives cover the following topics: devel-
opment of a computational framework for the realization
of cognitive agents providing intelligent assistance capabil-
ities; cognitive architecture and modeling; perception and
action; reasoning; learning; communication; agent-to-agent
and agent-to-user interfaces. The Rascalli answer questions
of their users, learn the users’ preferences and interests, and
use this knowledge to present the users with new, interest-
ing information. The agents exist in an environment con-
sisting of external knowledge sources on the Internet, such
as search engines and RSS feeds, and domain-specific knowl-
edge bases. They communicate with their users as well as
with other Rascalli.

Rascalli are developed in a modular fashion, which allows
individual agents to be built from different sets of compo-
nents. This enables e.g. the creation of agents which are“ex-

perts” in different knowledge domains. During its life-time,
each agent adapts to its user’s interests and thus further spe-
cializes in a certain sub-domain and evolves in accordance
with the user’s preferences. This results in a community of
specialized agents, which can communicate with each other
to provide requested information to their users.

The modular approach enables the evaluation and com-
parison of different sets of components, including different
cognitive aspects (e.g. different learning strategies) by exe-
cuting multiple Rascalli in the same environment and eval-
uating their performance (e.g. by means of user tests).

For the realization of these objectives, system integration
turned out to be a major roadblock, due to the following
reasons:

• Even though Java was chosen as the main implemen-
tation language for the project, some project partners
have no or little experience with Java development.

• In order to avoid re-implementation, we had to in-
tegrate existing components from previous projects.
These components are based on a wide range of tech-
nologies, such as different programming languages (e.g.
Perl, Java, Lisp) and even native binaries for different
operating sytems (Linux and Windows).

• Initial attempts at providing a development environ-
ment that integrates all of these components and can
be replicated on each developer’s machine proved to
be difficult to use and keep up-to-date.

Based on the project objectives and constraints outlined
above, we arrived at the following set of requirements for
our software platform:

• Support the execution of various agents, belonging to
different users.

• Support agent-to-agent and agent-to-user communica-
tion.

• Allow developers to implement diverse agents based on
shared components (this also means that multiple ver-
sions of each component can exist at the same time).

• Integrate external and legacy components with mini-
mal effort.

• Build agents in a modular, component-based fashion.

• Build the platform itself in a component-based, exten-
sible fashion.

3. RELATED WORK
Research into related work has been conducted in mul-

tiple directions, including multi-agent platforms, as well as
platforms and development methodologies for cognitive sys-
tems. While many such platforms and methodologies exist,
none of them meets the requirements set for the RASCALLI
platform.

3.1 Multi-Agent Platforms
We have investigated FIPA2 compliant agent platforms,

such as JADE3 [1], which is a Java-based middleware for
multi-agent systems. However, these systems mostly focus
on distributed systems and communication issues. Also, the
RASCALLI platform is not a multi-agent system in the tra-
ditional sense, where agents are independent components
of a larger application, working for a common goal. In-
stead, Rascalli are complete individual entities that simply
happen to share the same environment and may communi-
cate with each other, if they wish. Furthermore, none of
the investigated agent platforms supports the development
style targeted by the RASCALLI platform, where multiple
agent architectures and agent definitions, as well as multiple
versions of agent components co-exist in a single platform
instance.

It might be interesting future work to implement or inte-
grate some of the FIPA standards (such as the Agent Com-
munication Language) with the RASCALLI platform.

3.2 Agent Development Methodologies and
Frameworks

As an example of an agent development methodology, Be-
havior Oriented Design (BOD)4 [2] supports the implemen-
tation of agents based on an iterative development process
and a modular design. However, it does not provide much
of a runtime environment. Therefore, BOD does not re-
ally compare to the RASCALLI platform, even though both
advocate a modular approach. It would, however, be inter-
esting to implement an agent architecture based on BOD
within the RASCALLI platform and thus use the platform
as a runtime environment for BOD agents.

As for development frameworks, AKIRA5 [7] aims to cre-
ate a C++ development framework to build cognitive archi-
tectures and complex artificial intelligent agents. However,
like the FIPA multi-agent platforms, it targets different re-
quirements than the RASCALLI platform. It might be in-
teresting to consider exploiting some of AKIRA’s concepts
within the RASCALLI platform.

4. RASCALLI PLATFORM
This section provides an overview of the RASCALLI plat-

form. We start with a set of features supported by the plat-
form in order to fulfill the requirements listed above. Then
we describe the software architecture of the platform and
explain how this architecture supports the various platform
features.

4.1 Platform Features

Multi-Agent: The platform supports the concurrent exe-
cution of multiple agents, including agents of the same
kind, as well as agent of different kinds, ranging from
very similar to vastly different.

Multi-User: Each agent has a single user (but one user
may have several agents).

2http://www.fipa.org/
3http://jade.tilab.com/
4http://www.cs.bath.ac.uk/ai/AmonI-sw.html
5https://sourceforge.net/projects/a-k-i-r-a/

Figure 1: Platform Layers

Communication: Agent-to-agent communication can be
implemented on the Java level, since all agents run
within a single runtime environment. Alternatively,
agents can communicate via instant messaging (this
opens the possibility to use multiple, distributed plat-
form instances). Several channels for agent-to-user
communication have been implemented (currently a
proprietary protocol for the 3D client interface, Jab-
ber instant messaging and email).

Component-Based Architecture: All the parts that are
required to set up a specific agent are developed in a
component-based fashion so that individual Rascalli
can be assembled from these components in a Lego-
like manner.

Extensibility: The platform itself is built in a component-
based fashion and can therefore be easily extended,
even at runtime.

Distributed, Concurrent Development: A single plat-
form instance is shared by all developers for imple-
menting different agents, with minimal interference be-
tween individual developers.

Multi-Version: In order to support the concurrent devel-
opment of different kinds of agents based on shared
components, the platform supports the execution of
multiple versions of the same components at the same
time.

System Integration: External (and possibly legacy) com-
ponents need to be integrated only once and are then
available to all agents running in the platform in an
easy-to-use manner. Since only one instance of the
platform is required, there is no need to duplicate the
entire software environment on multiple developer ma-
chines.

4.2 Platform Architecture
The RASCALLI platform is implemented as a layered ar-

chitecture (Fig. 1).

4.2.1 Infrastructure Layer
The Infrastructure Layer contains basic tools and compo-

nents used in the RASCALLI project. Specifically, these are
Java, Maven6 and OSGi7. In addition, this layer contains
custom-made development and administration tools for the
RASCALLI platform, such as user interfaces for agent con-
figuration and deployment tools.

The most important feature of this layer is the use of
OSGi, which implements a dynamic component model on
top of Java. This means that components can be installed,

6http://maven.apache.org/
7http://www.osgi.org/

Figure 2: Agent Layer

started, stopped and uninstalled at runtime. Furthermore,
dependencies between components are managed by OSGi in
a fashion that allows the execution of multiple versions of a
single component at the same time. Finally, OSGi provides a
framework for service-based architectures, where each com-
ponent can provide services to other components, based on
Java interface specifications.

The use of OSGi thus enables the platform features ’multi-
version’ and ’extensibility’, and supports the implementa-
tion of a ’component-based architecture’ in the upper two
platform layers.

’Distributed, concurrent development’ is enabled by Ma-
ven and some custom-made components on this layer.

4.2.2 Framework Layer
The Framework Layer comprises general platform services

and utilities employed by the Rascalli, including communi-
cation (user to agent, agent to agent), event handling, RDF
handling, technology integration (Perl, web services, etc.),
and various other platform services.

The services on this layer implement the ’multi-agent’,
’multi-user’ and ’communication’ features of the platform.
Furthermore, this is the place where ’system integration’
takes place. External components are integrated and made
available to the components of the Agent Layer as OSGi
services, which can then be accessed on the Java level.

4.2.3 Agent Layer
The Agent Layer is the application layer of the platform

and contains the implementation of the actual agents. It
is designed to support the development and execution of
multiple agents of different kinds as required by the project
objectives. This layer consists of the following sub-layers:

Agent Architecture Layer: An agent architecture is a
blueprint defining the architectural core of a partic-
ular type of Rascalli. More precisely, it sets the roles
of agent components and provides means for defining
and assembling a specific agent. The architecture can
also contain implementations of common components
shared by all agent definitions.

Agent Component Layer: Contains implementations of
the roles defined on the Agent Architecture Layer.

Agent Definition Layer: An agent definition is an assem-
bly of specific components of the Agent Component

Figure 3: MBE agent architecture

Layer of a specific agent architecture. Different agent
definitions for the same agent architecture might con-
tain different components for certain roles.

Agent Instance Layer: Contains the individual agent in-
stances. Each Rascallo is an instantiation of a specific
agent definition.

Fig. 2 gives a (simplified) example of an agent architec-
ture (the Mind-Body-Environment architecture, see section
5). The Agent Architecture Layer defines two roles, Mind
and Tool, and implements an agent component (Action Dis-
patcher) shared by all agent definitions. The Agent Compo-
nent Layer contains two implementations of the Mind role,
as well as two Tools. Based on this architecture, two agent
definitions combine each of the Mind implementations with
the available Tools and the Action Dispatcher into different
kinds of agents. Finally, a number of agent instances are
shown on the Agent Instance Layer.

5. AGENT COMPONENTS
This section gives an overview of the agent components

which have been implemented in the RASCALLI project
(for more detailed information see [10]). RASCALLI agents
are currently based on a reactive agent architecture with
a perception-action loop. This agent architecture is called
Mind-Body-Environment architecture, because each agent
has a central control unit (Mind), which perceives and acts
on the Environment via a set of sensor and effector tools
(Body), as shown in Fig. 3.

The Environment comprises the agent’s user, other agents,
Internet services and domain-specific knowledge bases. The
agent perceives its environment (via a set of perception sen-
sors, implemented as software tools) as a set of virtual en-
tities with their own characteristics and properties. These
include strings of written language originating from the user
or extracted from HTML documents, markup tags, infor-
mation about the accessibility of various Internet and local
tools and resources, user feedback, etc. Therefore, the agent
has to deal with a dynamic environment i.e. evolving con-
tent of the websites, permanent or temporary inaccessibility
of Internet services, appearance of new content or services,
changes in the user preferences and interests, as well as the
natural language input from the user and the web-pages.
Similarly, all actions of an agent in its environment are per-
formed on the above introduced set of entities.

The Body contains components called Tools, which serve
as sensors (Perception Layer) and effectors (Actuator Layer).
A specific agent definition may contain an arbitrary subset
of the available Tools, but of course, the chosen Mind com-
ponent must be able to deal with the selected Tools. Some
of the available Tools are:

• T-IP4Dual, T-IP4Simple and T-IP4Adaptive,
Input Processing Tools transform natural language and
user feedback inputs into categorized information use-
able by the respective Mind components, and serve as
a Perception Layer of an agent.

• T-MMG, for generating multi-modal output to the
user. The Multi-Modal Generation Component pro-
vides a middle-ware functionality between generated
agent output and the user interfaces. The generation
component implements a template-based approach (in
form of Velocity templates) by encoding vocabulary,
phrases, gestures etc., which can be combined with
the output of the RASCALLI Tools and context data.
The use of Velocity8, a template generation engine, al-
lows templates to be designed and refined separately
from the application code.

• T-QA, a general purpose open-domain question an-
swering system (based on the work described in [8],
[9]) is used in the RASCALLI platform to provide an-
swers to the user factoid-type questions expressed in
natural language.

• T-Nalqi, a natural language database query interface.
The Tool is used in the RASCALLI platform for query-
ing the databases accessible to the Rascalli, in a search
for instances and concepts that can provide answers to
the user questions. The component analyses natural
language questions posed by the user and retrieves an-
swers from the system’s domain-specific databases.

• T-RSS, provides a mechanism for Rascalli to retrieve
current information that might be of interest for the
user.

• T-Wikipedia, an interface and analysis Tool for Wiki-
pedia.

The Mind component performs action selection, based on
the current input from the environment and the agent in-
ternal state. It can also make use of supporting services, for
example a user/agent modeling service. The following Mind
components are being developed in the RASCALLI project:

• Simple Mind, which performs action selection with
a simple rule-based mechanism. These rules match to
specific cues in the input data arriving from sensor
channels. ’Simple Mind’ extracts relevant information
and passes this information on to the appropriate effec-
tor tool. Even though seemingly non-trivial behavior
can be accomplished through a series of interactions of
the Simple Mind and the available tools, the Simple
Mind does not contain any cognitive aspects such as
memory or learning.

8http://velocity.apache.org

• DUAL Mind, which incorporates the DUAL/AMBR
([5], [6]) cognitive architecture for action selection. It
includes a long term memory (LTM) where general
and episodic knowledge is stored, and a working mem-
ory (WM) constituted by the active part of LTM, per-
ceptual input and goals. The DUAL mind operates
only on represented knowledge and has only a me-
diated connection to the body and the environment.
Thus it contains a partial, selected representation of
the environment at an abstract conceptual level and
experiential memories related to specific episodes like
organization of the interaction of an agent with its en-
vironment.

• Adaptive Mind, a machine learning based classifi-
cation driven action selection mechanism. Based on
the available knowledge, including the perception of
an input situation, the agent finds a set of actions
that can be applied to a given input situation. The
selection of a particular action is based on the simi-
larities with other actions the agent had successfully
performed in the past, i.e. received positive feedback
from the user. The action selection classifiers are im-
plemented as Maximum Entropy models [4]. The data
used for training the classifiers represents an input sit-
uation in terms of entities from the environment per-
ceived by the agent, an action applied to this situation
and the feedback obtained from the user.

RASCALLI agents come with a variety of user interfaces
comprising a 3D client featuring an embodied conversational
character [3] (ECA-UI, see Fig. 4 and 5), a Jabber instant
messaging integration, a web-based user interface (Web-UI)
and two domain-specific, special purpose interfaces which
allow the user the explore in a playful way the domain-
specific knowledgebases accessible to the currently imple-
mented Rascalli. The Web-UI9 mainly serves for user reg-
istration, download of the 3D-client and specification of In-
ternet resources (URLs and RSS-feeds) that are considered
by the user as important to be monitored by the agent.
The agents use the Web-UI to present list-like information
to the user, and more generally all information not well
suited for presentation by means of synthesized speech. The
ECA-UI, on the contrary, specializes on virtual human-to-
human dialogue. In order to avoid the bottelneck imposed
by speech recognition, user input is restrained to utterances
typed into a small text window and to pressing buttons in
order to praise or scold the agent. The user is expected
to ask domain-specific questions but may also engage in a
chatterbot-type of conversation with the ECA. To do this
the Rascalli make use of ALICE chat bot technology.10

The knowledge sources are a music database featuring
songs and albums of more than 60,000 singers/musicians
and a database providing background information on mu-
sical artists such as their family relations, religion, track
record, band membership etc.11

Based on these components, multiple agent definitions
have been conceptualized and developed, including the ini-
tial implementation of an agent with a basic set of tools

9http://intralife.researchstudio.at/rascalli/
10http://www.alicebot.org/downloads/programs.html
11See http://rascalli.researchstudio.at/ and
http://rascalli.dfki.de/ontology/ for browsing the data.

(sandbox for testing the system components and their inte-
gration), an agent utilizing an implementation of the DUAL
cognitive architecture as central control unit, and a Smart
Music Companion. Using those various incarnations of the
agents implemented in the RASCALLI platform the perfor-
mance (in terms of user satisfaction) can be compared and
evaluated.

6. AGENT EVALUATION
In the following, we first give an overview of evaluation

scenarios supported by the RASCALLI platform in general
and the currently implemented Rascalli in particular. We
then give a more detailed account of an evaluation scenario
the goal of which is to investigate how the use of cognitive
aspects in an agent can improve the user experience.

6.1 Evaluation Scenarios
We distinguish three kinds of scenarios:

1. Automated performance measures: The high modular-
ity of the platform eases the integration of automated
performance measures with existing and future agent
architectures. For example, one could easily measure
the time an agent needs to fulfill a given task, as well
as the accuracy with which an agent performs certain
tasks.

2. Data mining from user activity logs: All user activities
are logged in the platform including user id, agent id,
timestamp and activity type. These data can then be
evaluated employing data mining techniques and other
quantitative evaluation methods, in order to identify
prevalent usage patterns of individual users and across
different users, as well as different kinds of agents.

3. User testing: We distinguish two kinds of user test-
ings. The one are studies where users interact with
an agent for a short time to fulfill a certain, narrowly
defined task. The other one are studies where users
interact with their agents more freely for a longer pe-
riod of time. While with the former the focus lies on
testing specific aspects of the system and the related
human-computer interaction, the latter address more
general questions about what makes an agent a suit-
able companion for its user, which interfaces support
which tasks and how the interaction of the user with
the agent and his/her attitude towards, his/her lik-
ing and understanding of the companion changes over
time.

As there are currently no automated performance mea-
sures built into the RASCALLI platform, and the platform
has not yet been made accessible to a broader public and
thus we still lack suffient amounts of usage data for applying
data mining techniques, we will concentrate in the following
on user testing. Due to its modularity, the platform allows
us to experiment with agents being placed in the same en-
vironment, but assembled from different internal building
blocks and therefore are equipped with different perception
and action capabilities as well as decision making strategies.

A male (Fig. 4) and a female (Fig. 5), human-like version
of the 3D character have been implemented. Both charac-
ters are built on the basis of the same body model and are
equipped with a similar set of gestures and facial expressions.

Figure 4: ECA user interface (male)

Figure 5: ECA user interface (female)

They are also comparable as regards their appearance, both
are designed to fit a pop-rock scenario. The identity of the
characters except for gender related optical features allows
us to study effects that may be attributed to different per-
ception of gender by simply switching between the male and
female character whereas all other parameters in the sys-
tem are kept the same. The RASCALLI system enables us,
without further programming, to experiment with all kinds
of settings where we let a user interact with or train his/her
agent making use of either the male or the female version of
the 3D character and then switch to the opposite sex.

The availability of two conceptually different, complemen-
tary UIs for user-agent communication, i.e., the Web-UI for
standard windows and menu-based human-computer inter-
action and the ECA-UI for interaction closely related to hu-
man multimodal dialogue, is a valuable prerequisite to in-
vestigate user preferences for different modes of interaction
and social implications of human-computer interfaces.

At the time of writing two user studies are completed: the
one (S1) concerning the liking and evaluation of individual
users engaging in a prescripted question-answer communi-
cation with the male Rascalli character, the other one (S2)
is a study concerning the usability of the interface to the
music data. Two further user studies are under prepara-
tion. The one (S3) is a replication of the question-answer

study employing the female character instead of the male
one. Whereas the previously mentioned studies are all one-
time encounters with the system, the second one (S4) of
the studies under preparation is a longer-term study where
the users interact with and train their agents over a longer
period of time, with user assessments at the beginning, at
several intermediate stages and at the end of the agent-user
collaboration period. Amongst others, we are interested in
changes over time of the users’ liking of their agents, their
expectations on the performance of their agents, their ac-
counts of trust, and their strategies to adapt to their agents
in order to achieve/satisfy their information requirements in
collaboration with their agents.

In particular, we prepare two variants (narrow and broad)
of the longer-term study. In the narrow study (S4.1), the
task is to train the agent as good as possible to monitor
RSS-feeds for a specific topic of interest. To do so, the users
are asked to identifiy and sharpen a topic of interest such
as artist, group, genre, song, album etc. by exploring the
music-related knowledge of their agent utilizing the agent’s
domain-specific interfaces. In addition, they are asked to
inform the agent about preferred Internet sources by speci-
fying respective RSS feeds through the Web-UI. The agent
will then monitor the feeds and alert the user when encoun-
tering relevant information making use of a Jabber client.

In the broad study (S4.2) the users are left much more un-
guided. Other than in S4.1 where the users are confined to
the two domain-specific interfaces and the Web-UI, in S4.2
they have access to all UIs. The users are more generally
informed that the agents have some domian-specific knowl-
edge about popular music and besides can access the Inter-
net. Depending on what information the users frequently
access, which Internet sources they specify, and which feed-
back (praise, scolding) they give to their agents, the agents
will adapt to the users’ interests and aim at providing more
related information. The more effort the users invest in
training their agents, the better the agents should become
in providing the users with new information relevant to the
users’ interests.

6.2 Evaluation Example: Use of Cognitive As-
pects in an RSS Feed Filtering Scenario

We make use of a simple scenario for RSS feed filtering to
illustrate the platform’s capability to augment the agents’
abilities by incorporating cognitive aspects into processing.
Since the different agents can exist at the same time in the
same environment and thus be subject to the same external
influences, they can be reliably compared and evaluated.

Recall: In the RSS Feed Filtering scenario, the agents’
task is to provide their users with (potentially) interesting
information gathered from music-related RSS feeds on the
Internet. The users train their agents according to their
interests, thus creating an agent profile containing relevant
keywords such as artist names, song names and genre names.
The users also provide RSS feed URLs to their agents, which
the agents then query for new information.

The research question for this simple scenario is whether
certain properties of an agent improve the overall user satis-
faction (as measured by the rate of false positives and neg-
atives). Therefore, in addition to the basic keyword-based
filtering of RSS feeds, the following elements can be added
to a particular agent:

• The ability to find similar agents (agents with a similar

agent profile) and consider those agents’ RSS feeds in
addition to the ones provided by its own user. This
essentially extends the agent’s search space.

• The ability to find items (artists, songs, etc.) similar
to the ones specified in the agent profile. These items
are then added to the filter keywords, thus extending
the agent’s search criteria.

The services required to perform these tasks (finding sim-
ilar agents, finding similar artists, etc.) are provided by the
RASCALLI framework and made available to the agents as
additional Tools in the action and perception layers.

This setup allows us to create and compare four agent def-
initions, containing neither of the two features, one of them,
or both. For the evaluation, different users are equipped
with one of the available types of agents. The users can
then identify false positives and negatives.

Obviously, this example could be implemented without a
complex system such as the RASCALLI platform. However,
even in this simple case the platform has some advantages
to offer:

• Components can be shared between agents. For exam-
ple, the service to find similar agents is an external web
service, which is made available within the platform as
a simple OSGi/Java service.

• The platform provides a single runtime environment
for all the agents (there would be multiple agents of
each kind), so that inter-agent communication (for ex-
changing RSS feed URLs) can be easily implemented.

7. CONCLUSIONS
The RASCALLI platform meets a unique set of require-

ments, that is not targeted by any of the investigated plat-
forms or methodologies. In particular, it supports the devel-
opment and execution of multiple agents of different kinds.
Furthermore, it supports the evaluation and comparison of
such different agents within a single environment.

Future work includes the completion of the development
environment (e.g. the integration with development tools
such as the Eclipse IDE), as well as the possible integration
of certain aspects of other projects, such as BOD, AKIRA
or JADE.

The RASCALLI platform and selected system compo-
nents will be made available to the research community by
the end of 2008 via the project homepage.12 In particu-
lar, the project partners Research Studios Austria (SAT)
and the Austrian Research Institute for Artificial Intelli-
gence (OFAI) will provide an open source version of the
platform and Tools, respectively. In addition, SAT will make
available their other system components and user interfaces
as managed services with limited support and data volume
free of charge for the research community. The German Re-
search Center for Artificial Intelligence (DFKI) will make
available their data sources via an open research license and
provide their system components as webservices. The com-
panies Ontotext and Radon Labs will make available their
SwiftOWLIM semantic repository and the 3D client, respec-
tively. The New Bulgarian University (NBU) will conribute
their DUAL-inspired implementation of an agent’s mind.

12http://www.ofai.at/rascalli

8. ACKNOWLEDGMENTS
This research is supported by the EC Cognitive Systems

Project FP6-IST-027596-2004 RASCALLI, by the national
FFG program ’Advanced Knowledge Technologies: Ground-
ing, Fusion, Applications’ (project SELP), and by the Fed-
eral Ministry of Economics and Labour of the Republic of
Austria. The work presented here builds on joint work
within the RASCALLI project. In particular the authors
would like to thank our collegues from the following institu-
tions: SAT, OFAI, Radon, NBU, Ontotext and DFKI. Fi-
nally, our participation in the PerMIS’08 workshop is sup-
ported by the European Network for the Advancement of
Artificial Cognitive Systems (euCognition, European Com-
mission, Unit E5 - Cognition, FP6 Project 26408).

9. REFERENCES
[1] F. Bellifemine, A. Poggi, and G. Rimassa. JADE: a

FIPA2000 compliant agent development environment.
In AGENTS ’01: Proceedings of the fifth international
conference on Autonomous agents, pages 216–217,
New York, NY, USA, 2001. ACM.

[2] J. Bryson. Intelligence by Design: Principles of
Modularity and Coordination for Engineering Complex
Adaptive Agents. PhD thesis, MIT, Department of
EECS, Cambridge, MA, 2001. AI Technical Report
2001-003.

[3] J. Cassell, J. Sullivan, S. Prevost, and E. Churchill,
editors. Embodied Conversational Agents. MIT Press,
2000.

[4] E. Jaynes. Information theory and statistical
mechanics. Physical Review, 106(4):620–630, 1957.

[5] B. Kokinov. A hybrid model of reasoning by analogy.
In K. Holyoak and J. Barnden, editors, Analogical
Connections, volume 2 of Advances in Connectionist
and Neural Computation Theory, pages 247–320.
Ablex, 1994.

[6] B. Kokinov and A. Petrov. Integration of memory and
reasoning in analogy-making: the AMBR model. In
D. Gentner, K. Holyoak, and B. Kokinov, editors,
Analogy: Perspectives from Cognitive Science. MIT
Press, in press.

[7] G. Pezzulo and G. Calvi. Designing modular
architectures in the framework AKIRA. Multiagent
Grid Syst., 3(1):65–86, 2007.

[8] M. Skowron. A Web Based Approach to Factoid and
Commonsense Knowledge Retrieval. PhD thesis,
Hokkaido University, Sapporo, Japan, 2005.

[9] M. Skowron and K. Araki. Effectiveness of combined
features for machine learning based question
classification. Special Issue of the Journal of the
Natural Language Processing Society Japan on
Question Answering and Automatic Summarization,
12(6):63–83, 2005.

[10] M. Skowron, J. Irran, and B. Krenn. Computational
framework for and the realization of cognitive agents
providing intelligent assistance capabilities. In
Proceedings of the Cognitive Robotics Workshop at the
18th European Conference on Artificial Intelligence,
2008.

