Extracting requirements on a cognitive architecture from research in human cognitive development

euCognition Workshop Felix Warneken Colin Bannard Giorgio Metta Yiannis Demiris Patrick Courtney Peter Dominey

Minutes from the Workshop

■ 9:30 – 9:45 Admin

- □ Sign release forms
- □ Transfer powerpoints
- 9:45 10:00 Outline strategy, then test on two case studies
- 10-11:30 Case study 1
 - □ Cooperative Behavior
- 11:30 12:30 Case study 2
 - □ Language construction acquisition
 - Development of verb island
- 12:45 Lunch near the hotel
- 13:30 Terminus

9:45 – 10:00 Outline strategy

Identify the behavior in question

- Place it in a scenario
 - □ Time scale may vary (lang devo vs. Cooperative behavior)
- Analyze scenario
 - □ Identify processes (learning, transformation, perception, etc.)
- Extract and specify functional requirements
 - □ Specify what the system should do, as specific as possible
- Identify additional constraints
 - □ E.g. neuroanatomy, neurophysiology
- Regarding implementation
 - □ requirements do not necessarily specify the *implementation*
 - □ But they can suggest (e.g. Bayesian, HMM, recurrent network, etc.)

10-11:30 Case study 1 Cooperative Behavior

- Identify the behavior in question: Door opening / helping
- Place it in a scenario
 - Prior experience
 - Walk, open door, go get magazines, put magazines, close door
 - □ Test:
 - Get magazines, fail because door is closed
 - □ Helping behavior
 - Kid opens door
 - Control task:
 - Bump into door but clearly indicating that trying to put the things up. (stimulus enhancement control)
- Analyze scenario
 - □ Identify processes (learning, transformation, perception, etc.)
 - Keep focused, and away from what is not involved?
- Possible « robotization » of task
 - E.g. fixed robot in its workspace
- Extract and specify functional requirements
 - Specify what the system should do, as specific as possible

Identify the behavior in question: Door opening / helping

- Identify additional constraints
 - □ E.g. neuroanatomy, neurophysiology
 - Generalization:
 - Within the task to different objects
- Regarding implementation
 - □ requirements do not necessarily specify the *implementation*
 - □ But they can suggest (e.g. Bayesian, HMM, recurrent network, etc.)
 - We hypothesize that these tasks can be represented in a Bayesian network formalism. If inference necessary for « helping » can be characterized in terms of well understood operations on Bayesian networks, then generalization of « helping « comes for « free ».

11:30 – 12:30 Case study 2 Language construction acquisition Development of verb island

- Identify the behavior in question
- Place it in a scenario
 - □ Time scale may vary (Lang deco vs. Cooperative behavior)
- Analyze scenario
 - □ Identify processes (learning, transformation, perception, etc.)
- Extract and specify functional requirements
 - □ Specify what the system should do, as specific as possible
- Identify additional constraints
 - □ E.g. neuroanatomy, neurophysiology
- Regarding implementation
 - □ requirements do not necessarily specify the *implementation*
 - □ But they can suggest (e.g. Bayesian, HMM, recurrent network, etc.)

11:30 – 12:30 Case study 2 Novel object

- Identify the behavior in question: Novel object 'oh look' Ahktar
- Analyze scenario
 - □ Child parent and experimenter play with three novel objects
 - Parent leaves, 4th object brought out, child and experimenter, mother's absence is noted.
 - □ Mother comes back « Oh look, a mogi »!
 - □ Child is then able to select the named « mogi » from an array that avoids any possible gaze following.
- Extract and specify functional requirements
 - □ Similar object manipulation plus,
 - visually distinguish between and identify 3 (known) objects and learn one new one.
 - Associate the name modi with the novel object
 - attribute to someone a lack of knowledge (knowledge ignorance –; vs false belief where you attribute to them "false" knowledge) –
 - Use that knowledge to link the name to the novel object
 - Or, simply associate the name to the most salient (novel) object –
 - related to mutual exclusivity
 - Object differentiated because it has no name (mutual exclusivity)
 - Current task: Object differentiated because Because it is new
- Regarding implementation
 - Model other's knowledge state (C Brazeal Sally Anne task)
 - □ Follow the exchange with L Smith can robots help?
 - □ Tomasello and Haber "Oh cool" for new object,
 - □ Moll devo progression; manipulate, see, …

- Whats next?
- Wizard of Oz walkthrough
- Next level of detail.