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Action selection is a way of characterizing the most basic problem of intelligent systems: 
what to do next. In artificial intelligence and computational cognitive science, the action 
selection problem is typically associated with intelligent agents and animats – artificial 
systems that exhibit complex behaviour in an agent environment. The term is also sometimes 
used in ethology or animal behaviour. 

A basic problem for understanding action selection is determining the level of abstraction 
used for specifying an ‘act’. At the most basic level of abstraction, an atomic act could be 
anything from contracting a muscle cell to provoking a war. Typically for an artificial action-
selection mechanism, the set of possible actions is predefined and fixed. However, in nature 
agents are able to control action at a variety of levels of abstraction, and the acquisition of 
skills or expertise can also be viewed as the acquisition of new action selection primitives. 

Action selection could also be seen as the intelligent-agent version of the engineering 
discipline of systems integration. A good action selection mechanism allows a developer to 
decompose the problem of building intelligent systems into relatively simple components or 
modules and then reintegrate or coordinate the overall behaviour. 

Most researchers studying AI action selection place high demands on their agents: 

• The acting agent typically must select its action in dynamic and unpredictable 
environments.  

• The agents typically act in real time; therefore they must make decisions in a timely 
fashion.  

• The agents are normally created to perform several different tasks. These tasks may 
conflict for resource allocation (e.g. can the agent put out a fire and deliver a cup of 
coffee at the same time?).  

• The environment the agents operate in may include humans, who may make things 
more difficult for the agent (either intentionally or by attempting to assist).  

• The agents are often intended to model humans and/or other animals. Animal 
behaviour is quite complicated and not yet fully understood.  

For these reasons action selection is not trivial – it both requires and attracts a good deal of 
research. There are two journal special issues coming out on the topic of action selection in 
the next 12 months: in the Proceedings of the Royal Society B there will be an issue on 
Modelling Natural Action Selection, and in Adaptive Behaviour there will be an issue on 
Mechanisms of Action Selection.  

This paper briefly describes various practical approaches to action selection used in artificial 
systems. 



Action selection mechanisms  

The main problem for action selection is combinatorial complexity. Since all computation 
takes both time and space (in memory), agents cannot possibly consider every option 
available to them at every instant in time. Consequently, they must be biased, and constrain 
their search in some way. For AI, the question of action selection is: what is the best way to 
constrain this search? For biology and ethology, the question is: how do various types of 
animals constrain their search? Do all animals use the same approaches? Why do they use 
the ones they do? 

One fundamental question about action selection is whether it is really a problem at all for an 
agent, or whether it is just a description of an emergent property of an intelligent agent's 
behaviour. However, the history of intelligent systems, both artificial (Bryson, 2000) and 
biological (Prescott, 2007) indicate that building an intelligent system requires some 
mechanism for action selection. This mechanism may be highly distributed (as in the case of 
distributed organisms such as social insect colonies or slime moulds) or it may be one or more 
special-purpose modules. 

The action selection mechanism (ASM) determines not only the agent’s actions in terms of 
impact on the world, but also directs its perceptual attention, and updates its memory. These 
egocentric sorts of actions may in turn result in modifying the agent’s basic behavioural 
capacities, particularly in that updating memory implies some form of learning is possible. 
Ideally, action selection itself should also be able to learn and adapt, but there are many 
problems of combinatorial complexity and computational tractability that may require 
restricting the search space for learning. 

In AI, an ASM is also sometimes either referred to as an agent architecture or thought of as a 
substantial part of one. 

General approaches to artificial action selection 

Generally, artificial action selection mechanisms can be divided into several categories: 
symbol-based systems (sometimes known as classical planning), distributed solutions, and 
reactive or dynamic planning. Some approaches do not fall neatly into any one of these 
categories.  

Symbolic approaches 

Early in the history of artificial intelligence, it was assumed that the best way for an agent to 
choose what to do next would be to compute a provably optimal plan, and then execute that 
plan. This lead to the physical symbol system hypothesis, that a mechanism that can physically 
manipulate symbols is both necessary and sufficient for intelligence. Many software agents 
still use this approach for action selection. It normally requires describing all sensor readings, 
the world, all of one’s potential actions and all of one’s goals in some form of predicate logic. 
Critics of this approach complain that it is too slow real-time planning and that, despite the 
proofs, it is still unlikely to produce optimal plans because reducing descriptions of reality to 
logic is a process prone to errors.  

A classical “good old fashion AI” symbolic architecture is Soar (Soar project, 2006). It has 
been being developed and extended from about middle of the 1980s originally at Carnegie 
Mellon University and more recently at University of Michigan. It is based on condition–



action rules (see below). This architecture has recently become a powerful programming 
toolkit, which can be used for building both reactive/dynamic agents and classical planning 
agents, or a compromise at will between these two extremes. 

Distributed approaches 

In contrast to the symbolic approach, distributed systems of action selection actually have no 
one ‘box’ in the agent which decides the next action. At least in their idealized form, 
distributed systems have many modules running in parallel and determining the best action 
based on local expertise. In these idealized systems, overall coherence is expected to emerge 
somehow, possibly through careful design of the interacting components, or through some 
sort of reinforcement-based learning of inhibitory connections between modules. This 
approach is often inspired by neural networks research. In practice, there is almost always 
some centralised system determining which module is “the most active” or has the most 
salience. There is evidence real brains also have such executive decision systems which 
evaluate which of competing systems deserves the most attention, or more properly, has its 
desired actions disinhibited (Prescott, 2007). A classicall example of a distributed approach is 
an architecture of creatures from the computer game Creatures (Grand et al., 1997). 

Dynamic (reactive) planning 

Because purely distributed systems are difficult to construct, many researchers have turned to 
using explicit hard-coded plans to determine the priorities of their system (Bryson, 2000). 

Dynamic or reactive planning methods compute just one next action in every instant based on 
the current context and pre-scripted plans. Essentially, they compute the following function: 

S × P → A  

Here, S is the set of all possible internal states (including memory), P is the set of all possible 
actual percepts, and A is the set of all possible actions. 

A purely reactive system is one that requires no memory. The term reactive planning has 
been used since at least 1988 to mean a system that performs action selection with minimal 
(though seldom no) internal state, but rather doing simple look-up at every instant for the best 
action to perform right then. The term reactive has unfortunately now become a pejorative 
used as an antonym for proactive. Since nearly all agents using reactive planning are 
proactive (and may exploit memory as well), some researchers have begun referring to 
reactive planning as dynamic planning.  

In contrast to classical planning methods, dynamic approaches do not suffer combinatorial 
explosion, at least not for the agent while it is performing action selection. The search 
problem is moved instead to the developers or learning system that creates the agent’s 
intelligence. Reactive systems are sometimes seen as too rigid or narrow to be considered 
strong AI, since the plans are coded in advance. At the same time, natural intelligence can be 
rigid in some contexts although it is fluid and able to adapt in others (Gallistel et al., 1991). 
Sometimes the reactive approach is combined with classical planning, leading to so-called 
hybrid approach or layered architectures (Bryson, 2000). 

Dynamic planning techniques are extremely popular in real-time interactive commercial 
applications, because they cope well with dynamic and unpredictable environments and 



require limited CPU. In particular, they are used in computer games, agent-based modelling, 
home/entertainment robotics and even the movie industry.  

Dynamic planning approaches 

There are several approaches to dynamic planning, which we describe in this section. 

Deterministic condition-action rules 

One branch of techniques relies on condition–action rules, which come originally from the 
domain of expert systems. A condition-action rule (also known as an if-then rule or a 
production), is a rule in the form:  

if condition then action  
The meaning of the rule is obvious: if the condition holds, perform the action. The action can 
be either external (i.e., to operate on the environment), or internal (e.g., write a fact into the 
internal memory, or evaluate a new set of rules). The conditions are typically boolean and the 
action either performed or not.  

The rules are organised in flat structures, as in the case of simplified subsumption architecture 
(Wooldridge, 2002), or in hierarchical structures, for example decision trees, which is the case 
of most other architectures, e.g. (Brom et. al, 2006, Bryson, 2001). Flat structures allows only 
for the description of simple behaviour, or else their complexity / hierarchical structure can be 
masked by a very intricate set of conditions. 

The important part of the action-selection algorithms is a conflict resolution mechanism. This 
is a mechanism for solving a conflict among rules when more than one of their conditions 
holds in a given instant. The conflict can be solved for example by assigning fixed priorities 
to the rules in advance (as e.g. in Bryson, 2001), by assigning preferences (e.g. in Soar) or by 
exploiting a form of classical planning. Assuming a flat structure but with priorities as a 
method for conflict resolution, we can have a following simple plan for a robot that “picks up 
mushrooms”: 

 
1. if see_obstacle then change_direction 
2. if basketful_of_mushrooms and picking is true then 

picking is false 
3. if see_mushroom and picking then pick_up_the_mushroom 
4. if noon and picking is true then picking is false 
5. if home then put_down_basket and END  
6. if picking is true then move_random  
7. if picking is false then move_home 

Fig. 1: A flat basic reactive plan (see Bryson and Stein, 2000), which uses condition-action rules with 
priorities. The robot will pick up mushrooms till 12 p.m., but must start in picking state and not at 
home. The example is taken from Brom (2006). 

Such a plan can be made hierarchical through the obvious mechanism – by allowing the 
‘actions’ of the rules to themselves be such plans or sequences. 



Deterministic Finite State Machines 

The finite state machine (FSM) is another type of model for system behaviour. FSMs are used 
widely in computer science and modelling behaviour of agents is only one of their possible 
applications. A typical FSM, when used for describing behaviour of an agent, consists of a set 
of states and transitions between these states. The transitions are actually condition–action 
rules. In every instant, just one state of the FSM is active, and its transitions are evaluated. If a 
transition holds, it activates another state. That means, that transitions are the rules in the 
following form:  

if current-state and condition then activate-new-state 
There are several ways to produce behaviour by an FSM. They depend on what is associated 
with the states and transistions by a designer – they can be either acts or scripts, and they can 
be associated with either the transition or with being in the state. An act is an atomic action 
that should be performed by the agent either on transition or continuously while the FSM is in 
the given state. A script describes a sequence of actions that the agent has to perform if its 
FSM is in a given state. If a transition activates a new state, the former script is simply 
interrupted, and the new one is started. 

As can be recognized by the condition-action structure described above, an FSM is in some 
ways similar to a structured dynamic plan. However, FSMs require enumerating all possible 
states for the agent. When these are many, a hierarchical dynamic plan may provide a useful 
shorthand that is easier to maintain. On the other hand, FSMs are well understood formal 
structures. Bryson (2003) describes circumstances in which each representation might be 
preferable.  

If an FSM script is complicated, it can also be broken down into several scripts, and a 
hierarchical FSM (HFSM) can be exploited. In such an automaton, every state can contain 
substates. Only the states at the lowest, ‘atomic’ level are associated with a script (which 
should not be complicated) or an atomic action. 

Computationally, HFSMs are equivalent to FSMs. That means that each HFSM can be 
converted to a classical FSM. However, the hierarchical approach facilitates design since 
HFSMs are both easier to understand and to specify conditions for. Isla (2006) and van 
Waveren (2001) give examples of ASMs for computer game bots which use hierarchical 
FSMs. For a movie example, see Softimage/Behavior (2006). 

Less discrete approaches 

Both action-condition rules and FSMs can be combined with either stochastic preconditions 
or fuzzy logic. In this case, the conditions, states and actions are no longer boolean or 
deterministic; rather, they become probabalistic. Consequently, resulting behaviour can be 
smoother, especially in the case of transitions between two tasks. However, evaluation of the 
fuzzy conditions is much slower then evaluation of their discrete counterparts. Both the fuzzy 
and the probabilistic approaches are well described by Champandard (2003).  

Figure 2 shows an overall architecture of a typical reactive agent, whose ASM is based on 
rules or FSMs, either crisp or fuzzy. 



 

Fig. 2: An overall schema of an agent driven by reactive rules or finite state machines. The main part, 
which is denoted as “action selection”, performs action selection based on facts stored in the short-
term memory, reactive plans and the currently active behaviour. The selection can be also influenced 
by other modules, e.g. drives or emotions. 

Connectionists approach 

More or less, connectionist networks like artificial neural networks (e.g. Grand et al., 1997), 
free-flow hierarchies (e.g. Tyrrell, 1993; de Sevin and Thalmann, 2005) or spreading 
activation networks (Maes, 1991) can be also thought of as dynamic planning approaches, 
although these are more likely to incorporate adaptation as well. But at any instant, they 
produce a single action as a consequence of their current state and the state of the world they 
perceive. 

Basically, a connectionist network comprises a set of simple units which are interconnected 
somehow. Every unit has several input links that feed the unit with an abstract ‘activity’ and 
output links that propagate the activity to following units. Each unit itself works as the 
activity transducer. Typically, there is an input set of units, which receives input from 
perceptual stimulation, memory or drives, and an output set of units, which select an action to 
be performed. 

The primary advantages of connectionist networks are that they are generally adaptive, and 
can often learn to fine tune their behaviour, although in some circumstances this can be a 
problem rather than a solution. Since action selection is more naturally continuous in response 
to continuous input, resulting behaviour can be smoother than behaviour produced by naively 
implemented discrete if-then rules and FSMs, although damping in such systems is also 
possible through the use of separate mechanisms. Finally, some developers prefer being able 
to specify all possible connections between senses and actions, so that they can easily indicate 
through weights whether there senses are prescriptive or proscriptive indicators for a 
behaviour (Tyrrell, 1993; Maes, 1991). These methods also have several disadvantages. 
Describing sequential behaviour with no external context shift through a network is very 
difficult, requiring extra recurrent connections and special nodes dedicated to historic state. 



Networks are best used for problems that can be solved purely reactively, which are 
unfortunately rare in action selection. Also, the more complicated a network is, the lower the 
probability that machine learning can successfully find optimal weights for it, because of the 
combinatorial complexity of exploring the interactions of too many unrelated variables. This 
is ironic since adaptation should in theory save development time, but it is empirically true 
(Tyrrell, 1993). 

Connectionists techniques can be also combined with FSMs or if-then rules – see 
Champandard (2003) for example. Alternatively, connectionist elements can be incorporated 
within modules that provide the primitive acts the action selection arbitrates between – see 
Bryson (2001) for examples of this. 

 

Fig. 3: An overall schema of a connectionist agent. Input units, which are stimulated externally, 
generate activity, which is propagated throughout the network. Output units select the action. The 
network itself works also as a memory.  

Navigation and Steering 

Navigation is one of the most fundamental problems embodied agents face. Steering rules are 
a special reactive technique often used for some of the navigation problems, primarily that 
concerning flocks or herds of agents. It is based on superposition of attractive and repulsive 
forces that effect on the agent. Steering is based on the original work of Reynolds (1987).  

By means of steering, one can achieve a simple form of: 

• navigating towards a goal navigation 

• obstacle avoidance behaviour 

• wall or path following behaviour 



• fleeing enemies and avoiding predators 

• and coordinated behaviour (non-interference) by crowds. 

The advantage of steering is that it is computationally very efficient. In computer games, 
hundreds of soldiers can be driven by this technique. In cases of more complicated terrain 
(e.g. a closed-space in a building), however, steering must be combined with path-finding, 
which is a form of planning. 

Hybrid architectures 

Finally, as we have already mentioned, many researchers combine elements of various 
approaches. In general, this combination will be hierarchical – for example, a neural network 
may perform the ultimate action selection but its nodes might govern short dynamic-plan 
scripts, or a symbolic system may reason about top-level goals but rely on a reactive system to 
execute the associated behaviour, or an FSM might refer to states that govern their system 
through adaptive controllers containing fuzzy logic. 

Goal driven architectures 

In these architectures, an agent’s behaviour is typically described by a set of goals. Each goal 
can be achieved by a process or an activity. This in turn can be described, for example, by a 
prescripted dynamic plan (see above). The agent then just decides which process to carry out 
in order to accomplish a given goal. The plan can be expanded to include subgoals, which 
makes the process recursive and hierarchical. Generally, such plans use condition-action 
rules. These architectures can be hybrid, since in deciding which process to carry on to 
accomplish a goal a planning technique can be used. 

Classical examples of goal driven architectures are implementable refinements of Michael 
Bratman’s framework of practical reasoning (Bratman, 1987), better known now as the 
Belief-Desire-Intention (BDI) architecture (e.g. Brom et. al, 2006; Huber, 1999; JACK, 
2006). 

Layer architectures 

Towards the end of the 1990s, several publications proclaimed that three-layered hybrid 
architectures had been proven the best strategy for controlling autonomous robots. The three 
layers were a symbolic reasoning systems at the top, dynamic planning systems in the middle, 
and a lowest layer consisting of behaviour modules – small units for translating perception 
directly to action (see Bryson, 2000 for a review). On the one hand, as of 2006, the main 
three-layered systems (PRS and 3T) do not appear to have been supported or maintained for at 
least five years. Modifications to ACT-R and Soar made so that these architectures could 
operate robots are somewhat similar to the three-layered approach though (Laird and 
Rosenbloom 1996). Bespoke layered solutions also continue to appear. For example, in 
computer game F.E.A.R (Orkin, 2006), there is used a combination of a simplified planning 
with a dynamic planning system and classical pathfinding and steering techniques. 

See Wooldridge (1999) for general overview of layered architectures. 



Anytime planning 

Anytime planning is a useful extension of classical planning that interleaves computation of a 
plan with its execution (Dean and Boddy, 1988). Of course, anytime planning still suffers 
from combinatorial complexity, but the algorithms are carefully designed such that a best 
guess at a solution is always available, but if more time is given a solution that is at least as 
good, probably better, will be offered. Gat (1998) points out how this can be incorporated into 
a hybrid action-selection architecture: while the plans for the system can be continuously 
improved, the current best plan is always available to be applied dynamically. 

An example of a relatively recent anytime planning architecture is Excalibur (Nareyek, 2005), 
a research project led by Alexander Nareyek. The architecture is based on structural constraint 
satisfaction, which is an advanced artificial intelligence technique. Recently, however, the 
project has been discontinued.  

Conclusions 

Action selection is a fundamental part of intelligent behaviour, yet no consensus has so far 
emerged for the best mechanism to be used for AI systems, or even for particular classes of 
problems. Nevertheless, there is a large existing body of work which can be extended, and 
there does seem to be convergence on the technique of dynamic planning for real-time 
commercial applications with little available CPU. On the other hand, many animat 
researchers favour evolved weights for neural networks in the hope that this approach will 
eventually scale to be a useful semi-automated programming system. In this overview we 
have concentrated on practical techniques for action selection, but there is also a good deal of 
exciting work being done in neurological modelling of action selection in animal brains. 
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