Going beyond vision: multisensory integration for perception and action

Heinrich H. Bülthoff
Overview

- The question of how the human brain "makes sense" of the sensory input it receives has been at the heart of cognitive and neuroscience research for the last decades.

- One of the most fundamental perceptual processes is **categorization** - the ability to compartmentalize knowledge for efficient retrieval.

- Recent advances in **computer graphics and computer vision** have made it possible to both produce highly realistic stimulus material for **controlled experiments in life-like environments** as well as to enable highly **detailed analyses of the physical properties of real-world stimuli**.
Research Philosophy

- Study perception and action with stimuli as close as possible to the real world, using
 - Computer Graphics to generate natural but well controlled stimuli of objects and scenes

- Virtual Reality
 - www.cyberneum.de
 - motion simulators
 - haptic simulators
 - walking simulators
 - immersive environments
 - panoramic projections
 - EU-projects: JAST, BACS, CyberWalk, Immersense, Wayfinding
Overview

- In this talk, we will review some of the **key challenges** in understanding categorization from a combined cognitive and computational perspective:
 - the need for spatio-temporal representations
 - perception of material properties
 - multi-modal/multi-sensory aspects of object categorization
 - coupling of perception and action
Research Paradigm

MULTISENSORY PERCEPTION

Simulate reality:
Generate complex, physically realistic stimuli, while maintaining precise control over stimulus variables.

Rigorous theory:
Apply rigorous computational principles to develop theories of human visual perception.

Develop heuristics:
Create perceptually inspired "short cuts" to increase efficiency, or achieve advanced effects.

Biological inspiration:
Imitate design principles of biological systems to solve under-constrained vision problems.

Computer Vision

Ground Truth:
Test vision algorithms on computer generated images for which all scene parameters are known precisely.

Computer Graphics

Analysis for Synthesis:
Application of segmentation, shape-from-shading, machine learning, etc. to rendering and animation.
Overview

- The talk will focus on issues that so far have only started to be addressed but that are crucial for a deeper understanding of perceptual processes:
 - the need for spatio-temporal representations
 - perception of material properties
 - multi-modal/multi-sensory aspects of object categorization
 - coupling of perception and action
Representing objects: two models

- **Image-based representation**
 - Matching
 - 2D Transformations
 - Visual Memory

- **Model-based representation**
 - 3D Part Reconstruction
 - Matching
 - 3D Transformations
 - Visual Memory
Representing objects: image-based recognition

Bülthoff and Edelman [PNAS, 1992]

- Recognition of novel objects depends on the viewing conditions (→ image-based recognition)
Representing faces: image-based recognition
Wallraven, Schwaninger, Schumacher, Bülthoff [BMCV, 2002]

- Recognition of novel and familiar objects depends on the viewing conditions (→ image-based recognition)
The role of motion in recognition

1. Familiar motion facilitates person identification

2. Motion facilitates human target detection

3. Non-rigid motion is encoded as identity cue

Pilz, Vuong, Bülthoff, Thornton [JEP: HPP, subm]

Vuong, Hof, Bülthoff, Thornton [Journal of Vision, 2006]

Chuang, Vuong, Thornton, Bülthoff [Visual Cognition, 2006]
Quick summary (Spatio-temporal representations)

- Objects and faces are represented in an image-based fashion
- The temporal properties of objects play an important role during learning and recognition
- Object representations are spatio-temporal
Overview

- In this talk, we will review some of the **key challenges** in understanding categorization from a combined cognitive and computational perspective:
 - the need for spatio-temporal representations
 - **perception of material properties**
 - multi-modal/multi-sensory aspects of object categorization
 - coupling of perception and action
Image-based material editing
Kahn, Reinhard, Fleming, Bülthoff [SIGGRAPH, 2006]

- Goals:
 - How do humans perceive materials?
 - Ill-posed problem
 - Can we exploit perceptual tricks to change materials in a photograph (without a 3D-model)?

- Methods:
 - Crude 3D shape reconstruction using bilateral filter (dark means deep - SFS)
 - Exploits generic viewpoint assumption as an image is consistent with many 3D models
 - Simple background-inpainting for transparency
 - Exploits masking
 - Weak model of refraction

- Results:
 - Re-texturing
 - Medium gloss to matte or glossy
 - Opaque to transparent or translucent
Image-based material editing
Kahn, Reinhard, Fleming, Bülthoff [SIGGRAPH, 2006]
Quick summary (Material Perception)

- The brain does not use an inverse physics approach to perception

- Rather, the brain uses (complex) heuristics to estimate
 - Material properties
 - Shape

- By exploiting these heuristics one can create simple, but effective work-arounds to control these properties
Overview

- In this talk, we will review some of the **key challenges** in understanding categorization from a combined cognitive and computational perspective:
 - the need for spatio-temporal representations
 - perception of material properties
 - **multi-modal/multi-sensory aspects of object categorization**
 - coupling of perception and action
Sensory integration

- Humans act upon objects in order to interact with the world.
- The following studies addressed the questions to what degree object representations are multi-modal.
Multi-modal similarity and categorization of novel, 3D objects
Cooke, Jäkel, Wallraven, Bülthoff [Neuropsychologia, 2007]

- **Goal:**
 - Develop framework for understanding multi-sensory (visuo-haptic) object perception

- **Methods:**
 - Controlled space of visuo-haptic stimuli printed in 3D
 - Multi-Dimensional-Scaling for finding perceptual space for haptic, visual and bimodal exploration
The tools: Parametrically-defined stimuli & 3D printer
Cooke, Jäkel, Wallraven, Bülthoff [Neuropsychologia, 2007]
The experiment: Multi-sensory similarity
Cooke, Jäkel, Wallraven, Bülthoff [Neuropsychologia, 2007]

- 10 subjects x 3 conditions: Visual (V), Haptic (H), Visuohaptic (VH)
- Task: Similarity ratings
Results: Modality Effects
Cooke, Jäkel, Wallraven, Bülthoff [Neuropsychologia, 2007]

Common representation?

Relative Weights
Multi-modal similarity and categorization of novel, 3D objects

- **Goal:**
 - Refine framework for understanding multi-sensory (visuo-haptic) object perception

- **Methods:**
 - 3D printer
 - Controlled space of visuo-haptic stimuli with physical properties that are less intuitive than global shape and local texture
 - Parametric model of shells
 - Similarity Ratings (as before)
 - MDS for finding perceptual space for haptic and visual exploration
Multi-modal similarity and categorization of novel, 3D objects

- Results:
 - The perceptual maps are again two-dimensional
 - Visual and haptic representation show the Y-shaped pattern of the stimulus space
 - This is a good indication that, indeed, object representations might be shared across modalities
Haptic face recognition
Dopjans, Wallraven, Bülthoff [2007]

- Research questions:
 - How well can people haptically distinguish, learn and recognize faces?
 - Can we generalize from haptically learned faces to the visual domain and vice versa?
 - How orientation sensitive is haptic face recognition?

- Methods:
 - MPI face database + 3D printer
 - Psychophysical recognition experiments

- Results:
 - Participants can recognize faces haptically
 - Clear cross-modal transfer: given haptic training, participants can recognize faces visually and vice versa surprisingly well
 - We found no evidence for a face inversion effect for haptic recognition
Quick summary (Sensory Integration)

- Object representations can incorporate multi-sensory information

- We found evidence for a common representation for vision and haptics
 - Shown for face recognition, object categorization
 - Cross-modal transfer between vision and haptics
 Newell, F., M. O. Ernst, B. S. Tjan and H. H. Bülthoff *Psychological Science* [2001]

- This has important applications in computer vision, where multi-sensory information can be used to improve object learning and recognition.
 - See e.g. the integration of proprioception and vision for object learning (Wallraven, C. and H.H. Bülthoff *Object Recognition, Attention, and Action* [2007])
Overview

In this talk, we will review some of the key challenges in understanding categorization from a combined cognitive and computational perspective:

- the need for spatio-temporal representations
- perception of material properties
- multi-modal/multi-sensory aspects of object categorization
- coupling of perception and action
Multisensory Integration for Control tasks

- control task pose a whole new set of problems for multisensory integration
- new research direction of our lab
- how are cues integrated during active control of orientation in space
 - 3D maze navigation (Vidal & Berthoz, 2005)
 - body sway (Cunningham et al, 2006)
 - helicopter hover control (Berger et al, 2007)
Cybernetic Approach to Perception and Action

- Develop a deeper understanding of the processing of self-motion information by considering the brain as a complex control system, which has sub-components, but which is also part of a larger system.
Helicopter Control

- Why helicopter control?
 - helicopter control is an interesting problem for multisensory integration and self motion perception

- a helicopter behaves like an inverse pendulum
- accelerates roughly in the direction it is tilted to
- different axes are dynamically coupled, so compensation for one axis effects other axes
Helicopter Control Devices

Cyclic stick

Collective stick

Pedals

Horizontal movement

Vertical movements

Yaw rotation
Experimental Question

- How are cues from multiple modalities integrated for action in a control task with the human 'in-the-loop'?
- How do we build an internal model of a physical system?
Helicopter side-step maneuver
Helicopter side-step maneuver
Results

- Pilot performance

Visual motion and body motion are identical

1:1 motion

 worse

better

no motion

ICVS 2008 Santorini, May 12 2008
Heinrich H. Bülthoff
Better perceptual models: Bayes as the basis for perception and action

Bayesian Decision Theory
Bülthoff & Yuille (1989-1993)
Ernst, Banks & Bülthoff (2000, ...)

ICVS 2008 Santorini, May 12 2008
Conclusion

- These recent results highlight the importance of investigating multisensory integration from the perspective of self-motion in large-scale controlled (VR) Natural Environments.
- Studying closed-loop behavior offers new insights into how humans interact with the environment and solve difficult control problems.
- Psychophysical experiments evaluating the impact of the different sensory cues on the perception of self-motion are valuable both to understanding the human observer and for improving the technology (e.g., motion simulators).
Some open questions

- **Computer vision**
 - Can we go beyond image fragments ("bags of words")?
 - Do the current approaches scale to 1000s of categories?
 - How do we incorporate other modalities?

- **Computer graphics**
 - What is perceptual realism?
 - How can we make better animations?
 - Can we learn graphics?

- **Perception research**
 - Can we come up with a quantitative model for object recognition?
 - Does optimal integration hold everywhere - where does it break?
 - What is the psychophysics of higher-level cognitive functions?
Challenges

- The "Chair" challenge
Challenges

- The "Art" challenge: build a computer vision system that learns to interpret art images
 - Such a system would need to deal with abstraction

Images (c) by Robert Pepperell, see Wallraven et al. [APGV, 2007]
Challenges

- The "Pawan Sinha" challenge
 - build a computer vision system that integrates the 20 results every CV researcher should know about face recognition

Eyebrows as important features

Recognition under distortions

Caricature effect for recognition

ICVS 2008 Santorini, May 12 2008

Heinrich H. Bülthoff
Challenges

- The “Personal Air Transport” challenge
 - Build a Personal Aerial Vehicle which makes flying as easy as driving
 - A pioneering research project incorporating novel ideas from
 - Automation, computer vision, human-machine interfaces, flight control
Thanks to members of the perception-action lab

Daniel Berger
Karl Beykirch
Jean Pierre Bresciani
Heinrich Bülthoff
John Butler
Jenny Campos
Franck Caniard
Astros Chatziastros
Marc Ernst
Reinhard Feiler
Cora Kürner
Michael Kerger
Betty Mohler
Hans-Günther Nusseck
Cengiz Terziastas
Tobias Meilinger
Frank Nieuwenhuizen
Paolo Pretto
Jörg Schulte-Pelkum
Harald Teufel
Michael Weyel