Learning Hierarchical Representations of Object Categories

Sanja Fidler and Aleš Leonardis
(sanja.fidler,ales.leonardis)@fri.uni-lj.si
University of Ljubljana
Faculty of Computer and Information Science
Visual Cognitive Systems Laboratory

Outline
- Motivation
- Related work
- Our hierarchical representation
- Results
- Summary

Motivation
- Challenges in cognitive systems (ECVision Roadmap)
 - Representation
 - Representation enabling to deal with approx. 30,000 visual categories
 - Representation that would enable connection with language, manipulation, affordances
 - Learning
 - Dealing with a large number of categories, the importance of learning becomes more pronounced
 - Various representations cannot be put into the system by hand
 - Adaptation to ever changing environment
 - Detection, categorization
 - Fast categorization and detection of multiple objects on multiple scales in an image

Requirements
- Requirements for a general visual system capable of recognizing a large number of object categories:
 - Hierarchical representation [Tsotsos, Geman, Rolls]
Limitations of flat representations

Matching must be **computationally feasible**.

Hierarchical representation

Features on layers should be manifested as **models - parts**.

What features should the layers consist of? How many layers?

Requirements

- Requirements for a general visual system capable of recognizing a **large number** of object categories:
 - Hierarchical representation
 - **Computational plausibility** (compositionality [Geman], indexing & matching [Califano, Amit])

Detection: Indexing and matching

hypotheses

verification
Detection: Indexing and verification

Layer 1
Layer 2
Layer 3
Layer 4

Layer 5

hierarchical library

Requirements

• Requirements for a general visual system capable of recognizing a large number of object categories:
 – Hierarchical representation
 – Computational plausibility (compositionality, indexing & matching)
 – Statistics driven learning (unsupervised learning) [Edelman, Mel, Barlow]

Requirements

• Requirements for a general visual system capable of recognizing a large number of object categories:
 – Hierarchical representation
 – Computational plausibility (compositionality, indexing & matching)
 – Statistics driven learning (unsupervised learning) [ECVision Roadmap]
Sanja Fidler and Aleš Leonardis. Learning Hierarchical Representations of Object Categories. EU Cognition meeting, Munich 2007

Bottom-up learning

car

motorcycle

dog

person

Layer 4

Layer 3

Layer 2

Layer 1

add parts without restructuring the complete hierarchy

(possibly add only to higher layers)

Hierarchical library

Related work

- Hierarchical representation

- Compositionality, indexing & matching
 - S. Geman, Amit & Geman

- Statistics driven learning (unsupervised learning)
 - Serre & Poggio, Flouret & D. Geman, Scalzo & Piater, Lecun

- Fast, incremental (continuous) learning
 - Opelt, Lecun

⇒ Our work: **all issues in unified novel framework** in the pursuit of a general categorization system

Our hierarchical architecture

- Starts with simple, local features and **learns more and more complex compositions**
- Learns layer after layer to exploit the regularities in natural images as efficiently and compactly as possible
- Builds computationally feasible layers of parts by selecting only the most statistically significant compositions of specific granularity
- Learns lower layers in a category independent way (to obtain optimally sharable parts) and category specific higher layers which contain only a small number of highly generalizable parts for each category
- New categories can efficiently and continuously be added to the representation without the need to restructure the complete hierarchy
- Implements parts in a robust, layered interplay of indexing & matching

Learning a hierarchical representation

- Layer 1 consists of oriented filters (simple – only a very small number of features describe most of the image)
- Applied in all image pixels, not only around interest points
- Must account for multiple scales

- Layer 1
- (oriented filters)
- binary edges
Learning a hierarchical representation

- Reduce redundancy to allow for computationally feasible learning (inhibition)
- Learn combinations in local neighborhoods of each image part

Acquire statistics for:
- each image part
- each scale

Selection of parts: Complexity issues

- Hierarchical indexing and verification

Complexity of verification: parts should have a small number of components, number of indices to higher level parts should be relatively low (especially for lower level parts, which appear more frequently)
2nd Layer

Results for one part conditional to the central part (normalized to orientation 0):

- Location maps (for 7000 images)

Towards 3rd Layer

- Layer 3
- Layer 2
- Layer 1 (fixed)

Detection: Indexing and verification
Results – 15 categories (3000 images)

- Learned parts
 - Layer 1 parts
 - Layer 2 parts
 - Layer 3 parts

Results

- 3rd Layer – obtained on 2,000 clip arts

Results, Layer 3

- All
 - Layer 1 parts
 - Layer 2 parts
 - Layer 3 parts

- Mugs

3rd Layer

Results for one part conditional to the central part (normalized to orientation 0):

central part:

cond. part:

gaussian maps

Results

- Statistical confirmation to Gestalt laws (colinearity, parallelism, circularity)
Results, Layer 3

- All
- Faces

Results, Layer 4

- Layer 4 (category specific)

Bottom-up learning
Specific categories - mugs

Results - Specific categories

Results - Specific categories

Results - Specific categories
Results - Specific categories, faces

- Detection of Layer4 parts

Results - Layer 5

- Learned compositionality for cars

Results - Specific categories, cars

- Learned compositionality for cars
Results - Specific categories, cars

- Detection with Layer 5

Results - Specific categories, faces

- Learned compositionality for faces

Results - Specific categories, cars

- Detection with Layer 5

Results - Specific categories, faces

- Detection of Layer 5 parts
Results - Specific categories, faces

• Detection of Layer5 parts

Overview of the architecture

• Architecture

Distributed local representations

M. Tanifuji, Nature 2001

Summary

• Hierarchical representation of visual structure
 – Computational feasibility
 – Fast indexing and matching
 – Generalizations through spatial flexibility and grouping of similar parts throughout the hierarchy

• Unsupervised statistical learning
 – Category independent (layers 1-3)
 – Category specific (layers 4, 5)
 – Small number of sharable parts relative to varying complexity and specificity
 – Incremental learning

For details please see: