Learning Hierarchical Representations of Object Categories

Sanja Fidler and Aleš Leonardis {sanja.fidler,ales.leonardis}@fri.uni-lj.si

University of Ljubljana Faculty of Computer and Information Science Visual Cognitive Systems Laboratory

Outline

- Motivation
- · Related work
- · Our hierarchical representation
- Results
- Summary

Sanja Fidler and Ales Leonardis. Learning Hierarchical Representations of Object Categories. EU Cognition meeting, Munich 2007

Motivation

- Challenges in cognitive systems (ECVision Roadmap)
 - Representation
 - · Representation enabling to deal with approx. 30.000 visual categories
 - · Representation that would enable connection with languange, manipulation, affordances
 - Learning
 - · Dealing with a large number of categories, the importance of learning becomes more pronounced
 - · Various representations cannot be put into the system by hand
 - · Adaptation to ever changing environment
 - Detection, categorization
 - · Fast categorization and detection of multiple objects on multiple scales in an image

Sanja Fidler and Ales Leonardis. Learning Hierarchical Representations of Object Categories. EU Cognition meeting, Munich 2007

Requirements

- · Requirements for a general visual system capable of recognizing a large number of object categories:
 - Hierarchical representation [Tsotsos, Geman, Rolls]

Sanja Fidler and Ales Leonardis. Learning Hierarchical Representations of Object Categories. EU Cognition meeting, Munich 2007

Requirements

- Requirements for a general visual system capable of recognizing a large number of object categories:
 - Hierarchical representation
 - Computational plausibility (compositionality, indexing & matching)
 - Statistics driven learning (unsupervised learning [Edelman, Mel, Barlow])

Sanja Fidler and Ales Leonardis. Learning Hierarchical Representations of Object Categories. EU Cognition meeting, Munich 2007 10

Requirements

- Requirements for a general visual system capable of recognizing a large number of object categories:
 - Hierarchical representation
 - Computational plausibility (compositionality, indexing & matching)
 - Statistics driven learning (unsupervised learning)
 - Fast, incremental (continuous) learning [ECVision Roadmap]

Sanja Fidler and Aleš Leonardis. Learning Hierarchical Representations of Object Categories. EU Cognition meeting, Munich 2007 12

Related work

- Hierarchical representation
 - Riesenhuber, Serre & Poggio (HMAX), Mutch & Lowe, Lecun, Amit & D. Geman, S. Geman, Torralba, Borenstein, Epstein & Ullman, Scalzo & Piater, Bouchard & Triggs
- Compositionality, indexing & matching
 - · S. Geman, Amit & Geman
- Statistics driven learning (unsupervised learning)
 - · Serre & Poggio, Flouret & D. Geman, Scalzo & Piater, Lecun
- Fast, incremental (continuous) learning
 - · Opelt, Lecun
- ⇒ Our work: all issues in unified novel framework in the pursuit of a general categorization system

Sanja Fidler and Ales Leonardis. Learning Hierarchical Representations of Object Categories. EU Cognition meeting, Munich 2007 14

Our hierarchical architecture

- Starts with simple, local features and learns more and more complex compositions
- Learns layer after layer to exploit the regularities in natural images as efficiently and compactly as possible
- Builds computationally feasible layers of parts by selecting only the most statistically significant compositions of specific granularity
- Learns lower layers in a category independent way (to obtain optimally sharable parts) and category specific higher layers which contain only a small number of highly generalizable parts for each category
- New categories can efficiently and continuously be added to the representation without the need to restructure the complete hierarchy
- Implements parts in a robust, layered interplay of indexing & matching

Sanja Fidler and Ales Leonardis. Learning Hierarchical Representations of Object Categories. EU Cognition meeting, Munich 2007

Learning a hierarchical representation

- Layer 1 consists of oriented filters (simple only a very small number of features describe most of the image)
- · Applied in all image pixels, not only around interest points
- · Must account for multiple scales

Learning a hierarchical representation Reduce redundancy to allow for computationally feasible learning (inhibition) Learn combinations in local neighborhoods of each image part Acquire statistics for: each image part each scale Sanja Fidler and Ales Leonardis. Learning Hierarchical Representations of Object Categories. EU Cognition meeting, Munich 2007 22

