David Vernon (Ed.)

Conputer Vision -ECCV 200

6th European Conference on Computer Vision Dublin, Ireland, June/July 2000 Proceedings, Part I

The Control (with a first president Seattle)

The property of the development of a magnetic school of respectively and the complete of the small property of a dish length. The simplifies of the masses of a school of the complete of the complete of the condition of the cond

- in its of original papers or monographs.
- technical reports of high quality and broad interest.
- Ld: anced-level Tectures.
- reports of meetings, provided they are of exceptional interest and focused on a single topic.

Experiention of Lecture Notes is intended as a service to the computer science community in that the publisher Springer-Verlag offers global distribution of accuments which would otherwise have a restricted readership. Once published and copyrighted they can be cited in the scientific literature.

Manuscripts

Lecture Notes are printed by photo-offset from the master copy delivered in camera-ready form. Manuscripts should consist of no fewer than 160 and preferably no more than 500 pages of text. Authors of monographs and editors of proceedings volumes receive 50 free copies of their book. Manuscripts should be printed with a laser or other high-resolution printer onto white paper of reasonable quality. To ensure that the final photo-reduced pages are easily readable, please use one of the following formats:

Font size	Printing area		Final size
(points)	(cm)	(inches)	%
10	12.2 x 19.3	4.8 x 7.6	100
12	15.3 x 24.2	6.0 x 9.5	80

On request the publisher will supply a leaflet with more detailed technical instructions or a $T_{\text{E}}X$ macro package for the preparation of manuscripts.

Manuscripts should be sent to one of the series editors or directly to:

Springer-Verlag, Computer Science Editorial III, Tiergartenstr.17, D-69121 Heidelberg, Germany

Leave Notes in Computer Seigner

1843

David Vernon (Ed.)

Condite Vision -ECCV 200

6th European Conference on Computer Vision Dublin, Ireland, June/July 2000 Proceedings, Part II

Springer

and the Albertain oppmer Science

The trace of material considered on the best in the relationship to the constraint of the constraint of the first of the constraint of the first of the constraint of the cons

- Irans a proginal papers or apprograma c
- reconnect report of high quality and broad interest.
- or un nacedator at lectures.
- approach if meetings, provided they are of exceptional interest and focused on a single topic.

Only coases of Leature Notes is intended to a carried to the computer science to minumity in that the publisher Springer-Verlag orfologicabilidistribution of documents which would otherwise have a restricted readership. Once published and copyrighted they can be cited in the scientific literature.

Manuscripts

Lecture Notes are printed by photo-offset from the master copy delivered in camera-ready form. Manuscripts should consist of no fewer than 100 and preferably no more than 500 pages of text. Authors of monographs and editors of proceedings volumes receive 50 free copies of their book. Manuscripts should be printed with a laser or other high-resolution printer onto white paper of reasonable quality. To ensure that the final photo-reduced pages are easily readable, please use one of the following formats:

Font size	Printing area		Final size	
(points)	(cm)	(inches)	Se.	
10	12.2 x 19.3	4.8 x 7.6	100	
12	15.3 x 24.2	6.0 x 9.5	80	

On request the publisher will supply a leaflet with more detailed technical instructions or a TEX macro package for the preparation of manuscripts.

Manuscripts should be sent to one of the series editors or directly to:

Springer-Verlag, Computer Science Editorial III, Tiergartenstr.17, D-69121 Heidelberg, Germany

Series Editors

Gerhard Goos, Karlsruhe University, Germany Juris Hartmanis, Cornell University, NY, USA Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

David Vernon 5 Edwin Court, Glenageary, Co. Dublin, Ireland E-mail: vernon@ieee.org

Cataloging-in-Publication Data

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Computer vision: proceedings / ECCV 2000, 6th European Conference on

Computer Vision, Dublin, Ireland, June 26 - July 1, 2000. David

Vernon (ed.). - Berlin; Heidelberg; New York; Barcelona; Hong Kong;

London; Milan; Paris; Singapore; Tokyo; Springer

Pt. 1 . - (2000)

(Lecture notes in computer science; Vol. 1842)

ISBN 3-540-67685-6

CR Subject Classification (1998): I.4, I.3.5, I.5, I.2.9-10

ISSN 0302-9743 ISBN 3-540-67685-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer-Verlag is a company in the BertelsmannSpringer publishing group. © Springer-Verlag Berlin Heidelberg 2000 Printed in Germany

Typesetting: Camera-ready by author

Printed on acid-free paper SPIN 10718972 06/3142 5 4 3 2 1 0

Preface

Ten years ago, the inaugural European Conference on Computer Vision was held in Antibes. France. Since then, ECCV has been held biennially under the auspices of the European Vision Society at venues around Europe. This year, the privilege of organizing ECCV 2000 falls to Ireland and it is a signal honour for us to host what has become one of the most important events in the calendar of the computer vision community.

ECCV is a single-track conference comprising the highest quality, previously unpublished, contributed papers on new and original research in computer vision. This year, 266 papers were submitted and, following a rigorous double-blind review process, with each paper being reviewed by three referees, 116 papers were selected by the Programme Committee for presentation at the conference.

The venue for ECCV 2000 is the University of Dublin, Trinity College. Founded in 1592, it is Ireland's oldest university and has a proud tradition of scholarship in the Arts, Humanities, and Sciences, alike. The Trinity campus, set in the heart of Dublin, is an oasis of tranquility and its beautiful squares, elegant buildings, and tree-lined playing-fields provide the perfect setting for any conference.

The organization of ECCV 2000 would not have been possible without the support of many people. In particular, I wish to thank the Department of Computer Science, Trinity College, and its head, J. G. Byrne, for hosting the conference secretariat. Gerry Lacey, Damian Gordon, Niall Winters, Mary Murray, and Dermot Furlong provided unstinting help and assistance whenever it was needed. Sarah Campbell and Tony Dempsey in Trinity's Accommodation Office were a continuous source of guidance and advice. I am also indebted to Michael Nowlan and his staff in Trinity's Information Systems Services for hosting the ECCV 2000 web-site. I am grateful too to the staff of Springer-Verlag for always being available to assist with the production of these proceedings. There are many others whose help – and forbearance – I would like to acknowledge: my thanks to all.

Support came in other forms too, and it is a pleasure to record here the kind generosity of the University of Freiburg, MV Technology Ltd., and Captec Ltd., who sponsored prizes for best paper awards.

Finally, a word about conferences. The technical excellence of the scientific programme is undoubtedly the most important facet of ECCV. But there are other facets to an enjoyable and productive conference, facets which should engender conviviality, discourse, and interaction; my one wish is that all delegates will leave Ireland with great memories, many new friends, and inspirational ideas for future research.

David Vernon

Contents of Volume I

Recognition & Modelling I
Non-linear Bayesian Image Modelling
Unsupervised Learning of Models for Recognition
Learning Over Multiple Temporal Scales in Image Databases
Colour Image Retrieval and Object Recognition Using the Multimodal Neighbourhood Signature
Stereoscopic Vision
Approximate N-View Stereo
A Minimal Set of Constraints for the Trifocal Tensor
Intrinsic Images for Dense Stereo Matching with Occlusions
Recognition & Modelling / Stereoscopic Vision / Texture, Shading, & Colour
Local Scale Selection for Gaussian Based Description Techniques
Anti-Faces for Detection
Combining Elastic and Statistical Models of Appearance Variation 149 T. Cootes, C. Taylor
Object Recognition Using Coloured Receptive Fields
Learning Similarity for Texture Image Retrieval

Parametric View-Synthesis
Least Committment Graph Matching by Evolutionary Optimisation 203 R. Myers. E. Hancock
Predicting Disparity Windows for Real-Time Stereo
On the Estimation of the Fundamental Matrix: A Convex Approach to Constrained Least-Squares
Velocity-Guided Tracking of Deformable Contours in Three Dimensional
Space
Model Based Pose Estimator Using Linear-Programming
Measuring the Self-Consistency of Stereo Algorithms
Log-polar Stereo for Anthropomorphic Robots
Contour-Based Correspondence for Stereo
Color and Scale: The Spatial Structure of Color Images
Constrained Dichromatic Colour Constancy
Objective Colour from Multispectral Imaging
Colour by Correlation in a Three-Dimensional Colour Space
Improvements to Gamut Mapping Colour Constancy Algorithms 390 K. Barnard
Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns
Adapting Spectral Scale for Shape from Texture

Recognition & Modelling II	
Learning to Recognize 3D Objects with SNoW	439
Region-Based Object Recognition Using Shape-from-Shading	455
Recognizing Walking People	472
A Probabilistic Sensor for the Perception and Recognition of Activities O. Chomat, J. Martin, J. Crowley	487
Structure from Motion I	-qe-
Homography Tensors: On Algebraic Entities that Represent Three Views of Static or Moving Planar Points	507
Plane + Parallax, Tensors and Factorization	522
Factorization with Uncertainty	539
Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications	554
Shapë	
Diffeomorphic Matching Problems in One Dimension: Designing and Minimizing Matching Functionals	573
Level Sets and Distance Functions	588
Divergence-Based Medial Surfaces	603
Structure from Motion / Shape / Image Features	
3D Reconstruction from Tangent-of-Sight Measurements of a Moving Object Seen from a Moving Camera	621
A Six Point Solution for Structure and Motion	632

Reconstruction from Uncalibrated Sequences with a Hierarchy of Trifocal Tensors
Characterizing Depth Distortion due to Calibration Uncertainty
On Calibration and Reconstruction from Planar Curves
How Does CONDENSATION Behave with a Finite Number of Samples? 695 O. King, D. Forsyth
On the Structure and Properties of the Quadrifocal Tensor
Geotensity Constraint for 3D Surface Reconstruction under Multiple Light Sources
Noise-Resistant Affine Skeletons of Planar Curves
Shape and Radiance Estimation from the Information-Divergence of Blurred Images
Surface Matching with Large Deformations and Arbitrary Topology: A Geodesic Distance Evolution Scheme on a 3-Manifold
Duals, Invariants, and the Recognition of Smooth Objects from their Occluding Contours
On Utilising Template and Festure-Based Correspondence in Multi-view Appearance Models
Wide Baseline Point Matching Using Affine Invariants Computed from Intensity Profiles
Determining Correspondences for Statistical Models of Appearance 829 K. Walter, T. Cootes, C. Taylor
Approximation and Processing of Intensity Images with Discontinuity-Preserving Adaptive Triangular Meshes

Scale Dependent Differential Geometry for the Measurement of Center Line and Diameter in 3D Curvilinear Structures	6
Fast Selective Detection of Rotational Symmetries Using Normalized Inhibition	1
Structure from Motion II	
Multibody Structure and Motion: 3-D Reconstruction of Independently Moving Objects	1
Integrating Local Affine into Global Projective Images in the Joint Image Space	
Ambiguous Configurations for 3-View Projective Reconstruction	!2
On the Reprojection of 3D and 2D Scenes Without Explicit Model Selection	36
Author Index95	51

Contents of Volume II

Active. Real-Time. & Robot Vision
Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking
Real-Time Tracking of Multiple Articulated Structures in Multiple Views . 20 T. Drummond, R. Cipolla
Pedestrian Detection from a Moving Vehicle
Vision-Based Guidance and Control of Robots in Projective Space 50 A. Ruf, R. Horaud
Segmentation & Grouping I
A General Method for Unsupervised Segmentation of Images Using a Multiscale Approach
Image Segmentation by Nonparametric Clustering Based on the Kolmogorov-Smirnov Distance
Euclidean Group Invariant Computation of Stochastic Completion Fields Using Shiftable-Twistable Functions
Active, Real-Time, & Robot Vision / Segmentation & Grouping / Vision Systems Engineering & Evaluation
Bootstrap Initialization of Nonparametric Texture Models for Tracking 119 K. Toyama, Y. Wu
Quasi-Random Sampling for Condensation
Tracking Discontinuous Motion Using Bayesian Inference
Direction Control for an Active Docking Behaviour Based on the Rotational Component of Log-Polar Optic Flow

The Construction of 3 Dimensional Models Using an Active Vision System 182 P. Armstrong, J. Antonis
Significantly Different Textures: A Computational Model of Pre-attentive Texture Segmentation
Calibrating Parameters of Cost Functionals
Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach
Level Lines as Global Minimizers of Energy Functionals in Image Segmentation
A Probabilistic Interpretation of the Saliency Network
Layer Extraction with a Bayesian Model of Shapes
Model-Based Initialisation for Segmentation
Statistical Foreground Modelling for Object Localisation
Nautical Scene Segmentation Using Variable Size Image Windows and Feature Space Reclustering
A Probabilistic Background Model for Tracking
On the Performance Characterisation of Image Segmentation Algorithms: A Case Study
Statistical Significance as an Aid to System Performance Evaluation 366 P. Tu, R. Hartley
Segmentation & Grouping II
New Algorithms for Controlling Active Contours Shape and Topology 381 H. Delingette, J. Montagnat

Motion Segmentation by Tracking Edge Information over Multiple Frames 396 P. Smith. T. Drummond. R. Cipolla
Data-Driven Extraction of Curved Intersection Lanemarks from Road Traffic Image Sequences
Tracking and Characterization of Highly Deformable Cloud Structures 428 C. Papin. P. Bouthemy. É. Mémin. G. Rochard
Calibration
A Unifying Theory for Central Panoramic Systems and Practical Applications
Binocular Self-Alignment and Calibration from Planar Scenes
The Role of Self-Calibration in Euclidean Reconstruction from Two Rotating and Zooming Cameras
Hand-Eye Calibration from Image Derivatives
Medical Image Understanding
Multimodal Elastic Matching of Brain Images
A Physically-Based Statistical Deformable Model for Brain Image Analysis 528 C. Nikou, F. Heitz, JP. Armspach, G. Bueno
Minimal Paths in 3D Images and Application to Virtual Endoscopy 543 T. Deschamps, L. Cohen
Calibration / Medical Image Understanding / Visual Motion
Kruppa Equation Revisited: Its Renormalization and Degeneracy
Registration with a Moving Zoom Lens Camera for Augmented Reality Applications
Calibration of a Moving Camera Using a Planar Pattern: Optimal Computation. Reliability Evaluation, and Stabilization by Model Selection 595 C. Matsunaga, K. Kanatani

Multi-view Constraints between Collineations: Application to Self-Calibration from Unknown Planar Structures
Storieo Autocalibration from One Plane
Can We Calibrate a Camera Using an Image of a Flat, Textureless Lambertian Surface?
Underwater Camera Calibration
On Weighting and Choosing Constraints for Optimally Reconstructing the Geometry of Image Triplets
Computation of the Mid-Sagittal Plane in 3D Medical Images of the Brain 685 S. Prima, S. Ourselin, N. Ayache
Stochastic Tracking of 3D Human Figures Using 2D Image Motion 702 H. Sidenbladh, M. Black, D. Flect
Monocular Perception of Biological Motion - Clutter and Partial Occlusion 719 Y. Song, L. Goncalves, P. Perona
3-D Motion and Structure from 2-D Motion Causally Integrated over Time: Implementation
Non-parametric Model for Background Subtraction
Qualitative Spatiotemporal Analysis Using an Oriented Energy Representation
Regularised Range Flow
Visual Encoding of Tilt from Optic Flow: Psychophysics and Computational Modelling
Visual Motion
IMPSAC: Synthesis of Importance Sampling and Random Sample Consensus

XVIII

Egomotion Estimation Using Quadruples of Collinear Image Points M. Lourakis	834
Geometric Driven Optical Flow Estimation and Segmentation for 3D Reconstruction L. Oisel, É. Mémin, L. Morin	849
Camera Pose Estimation and Reconstruction from Image Profiles under Circular Motion	864
Author Index	879