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Synonyms

– Cognitive Agent

Related Concepts

– Artificial Intelligence
– Cognitive Architecture
– Cognitive Vision

Definition

A cognitive system is an autonomous system that can perceive its environ-
ment, learn from experience, anticipate the outcome of events, act to pursue
goals, and adapt to changing circumstances.

Background

There are several scientific perspectives on the nature of cognition and on how
it should be modelled. All fall under the general umbrella of cognitive science
which embraces the disciplines of neuroscience, artificial intelligence, cognitive
psychology, linguistics, and epistemology. Among these differing perspectives,
however, there are two broad classes: the cognitivist approach based on symbolic
information processing representational systems, and the emergent systems ap-
proach, encompassing connectionist systems, dynamical systems, and enactive
systems, all based to a lesser or greater extent on principles of self-organization
[1,2,3,4]. A third class — hybrid systems — attempts to combine something from
each of the cognitivist and emergent paradigms. All three approaches have their
origins in cybernetics [5] which in the decade from 1943 to 1953 made the first
efforts to formalize what had up to that point been purely psychological and
philosophical treatments of cognition. The intention of the early cyberneticians
was to create a science of mind, based on logic. Examples of the application
of cybernetics to cognition include the seminal paper by McCulloch and Pitts
‘A logical calculus immanent in nervous activity’ [6] and Ashby’s ‘Design for a
Brain’ [7].

Theory

The initial attempt in cybernetics to create a science of cognition was fol-
lowed by the development of an approach referred to as cognitivism. The birth
of the cognitivist paradigm, and its sister discipline of Artificial Intelligence,



dates from a conference held at Dartmouth College, New Hampshire, in July
and August 1956 and attended by people such as John McCarthy, Marvin Min-
sky, Allen Newell, Herbert Simon, and Claude Shannon. Cognitivism holds that
cognition is achieved by computation performed on internal symbolic knowledge
representations in a process whereby information about the world is abstracted
by perception, and represented using some appropriate symbolic data-structure,
reasoned about, and then used to plan and act in the world. The approach has
also been labelled by many as the information processing or symbol manipula-
tion approach to cognition [1,8,9,10]. In most cognitivist approaches concerned
with the creation of artificial cognitive systems, the symbolic representations
are the descriptive product of a human designer. This is significant because
it means that they can be directly accessed and interpreted by humans and
that semantic knowledge can be embedded directly into and extracted directly
from the system. In cognitivism, the goal of cognition is to reason symbolically
about these representations in order to effect the required adaptive, anticipa-
tory, goal-directed behaviour. Typically, this approach to cognition will deploy
machine learning and probabilistic modelling in an attempt to deal with the in-
herently uncertain, time-varying, and incomplete nature of the sensory data that
is used to drive this representational framework. Significantly, in the cognitivist
paradigm, the instantiation of the computational model of cognition is inconse-
quential: any physical platform that supports the performance of the required
symbolic computations will suffice [8]. This principled separation of operation
from instantiation is referred to as functionalism.

In the emergent paradigm, cognition is the process whereby an autonomous
system becomes viable and effective in its environment. It does so through a
process of self-organization by which the system continually maintains its op-
erational identity through the moderation of mutual system-environment inter-
action. In other words, the ultimate goal of an emergent cognitive system is
to maintain its own autonomy. In achieving this, the cognitive process deter-
mines what is real and meaningful for the system: the system constructs its
reality — its world and the meaning of its perceptions and actions — as a re-
sult of its operation in that world. Consequently, the system’s understanding
of its world is inherently specific to the form of the system’s embodiment and
is dependent on the system’s history of interactions, i.e., its experiences. This
mutual-specification of the system’s reality by the system and its environment is
referred to as co-determination [11] and is related to the concept of radical con-
structivism [12]. This process of making sense of its environmental interactions
is one of the foundations of the enactive approach to cognition [13]. Cognition
is also the means by which the system compensates for the immediate nature of
perception, allowing it to anticipate environmental interaction that occurs over
longer timescales. That is, cognition is intrinsically linked with the ability of an
agent to act prospectively: to deal with what might be, not just with what is.
Many emergent approaches adhere to the principle that the primary model for
cognitive learning is anticipative skill construction rather than knowledge acqui-



sition. Thus, processes which guide action and improve the capacity to guide
action form the root capacity of all intelligent systems [14].

As noted already, the emergent paradigm embraces connectionist systems,
dynamical systems, and enactive systems. Connectionist systems rely on paral-
lel processing of non-symbolic distributed activation patterns using statistical
properties, rather than logical rules, to process information and achieve effective
behaviour [15]. In this sense, the neural network instantiations of the connec-
tionist model are dynamical systems that capture the statistical regularities in
training data [16]. Dynamical systems theory has been used to complement clas-
sical approaches in artificial intelligence [17] and it has also been deployed to
model natural and artificial cognitive systems [10,18,19]. Although dynamical
systems theory approaches often differ from connectionist systems on several
fronts, it is better perhaps to consider them complementary ways of describ-
ing cognitive systems, dynamical systems addressing macroscopic behaviour at
an emergent level and connectionist systems addressing microscopic behaviour
at a mechanistic level [20]. Enactive systems take the emergent paradigm even
further. Enaction [13,21,22,23] asserts that cognition is a process whereby the
issues that are important for the continued existence of a cognitive entity are
brought out or enacted: co-determined by the entity and the environment in
which it is embedded. Thus, enaction entails that a cognitive system operates
autonomously, that it generates its own models of how the world works, and that
the purpose of these models is to preserve the system’s autonomy.

Considerable effort has gone into developing hybrid approaches which com-
bine aspects of cognitivist and emergent systems. Typically, hybrid systems ex-
ploit symbolic knowledge to represent the agent’s world and logical rule-based
systems to reason about this knowledge in order to achieve goals and select ac-
tions, while at the same time using emergent models of perception and action to
explore the world and construct this knowledge. Thus, hybrid systems still use
cognitivist representations and representational invariances but they are con-
structed by the system itself as it interacts with and explores the world rather
than through a priori specification or programming. Consequently, as with emer-
gent systems, the agent’s ability to understand the external world is dependent
on its ability to interact flexibly with it and interaction is the organizing mech-
anism that establishes the association between perception and action.

Cognitivism and artificial intelligence research are strongly related. In par-
ticular, Newell’s and Simon’s ‘Physical Symbol System’ approach to artificial
intelligence [8] has been extremely influential in shaping how we think about in-
telligence, natural as well as computational. In their 1976 paper, two hypotheses
are presented: the Physical Symbol System Hypothesis and the Heuristic Search
Hypothesis. The first hypothesis is that a physical symbol system has the nec-
essary and sufficient means for general intelligent action. This implies that any
system that exhibits general intelligence is a physical symbol system and any
physical symbol system of sufficient size can be configured to exhibit general
intelligence. The second hypothesis states that the solutions to problems are
represented as symbol structures and that a physical-symbol system exercises



its intelligence in problem-solving by search, that is, by generating and progres-
sively modifying symbol structures in an effective and efficient manner until it
produces a solution structure. This amounts to an assertion that symbol systems
solve problems by heuristic search, i.e. the successive generation of potential so-
lution structures. The task of intelligence, then, is is to avert the ever-present
threat of the exponential explosion of search. Subsequently, Newell defined intel-
ligence as the degree to which a system approximates the ideal of a knowledge-
level system [24]. A knowledge-level system is one which can bring to bear all its
knowledge onto every problem it attempts to solve (or, equivalently, every goal it
attempts to achieve). Perfect intelligence implies complete utilization of knowl-
edge. It brings this knowledge to bear according to the principle of maximum
rationality which was proposed by Newell in 1982 [25] as follows: ‘If an agent
has knowledge that one of its actions will lead to one of its goals, then the agent
will select that action’. Anderson [26] later offered a slightly different principle,
the principle of rationality, sometimes referred to as rational analysis, stated as
follows: ‘the cognitive system optimizes the adaptation of the behaviour of the
organism’. Note that Anderson’s principle considers optimality to be necessary
for rationality, something that Newell’s principle doesn’t.

Cognitivist and emergent approaches are normally contrasted on the basis of
the symbolic or non-symbolic nature of their computational operation and rep-
resentational framework. Cognitivist systems typically use production systems
to effect rule-based manipulation of symbol tokens whereas emergent systems
exploit dynamical processes of self-organization in which representations are
encoded in global system states. However, the distinction between cognitivist
and emergent is not restricted to the issue of symbolic representation and they
can be contrasted on the basis of several other characteristics such as semantic
grounding, temporal constraints, inter-agent epistemology, embodiment, percep-
tion, action, anticipation, adaptation, motivation, autonomy, among others [27].

The differences between the cognitivist and the emergent paradigm can be
traced to their underlying distinct philosophies [28]. Broadly speaking, cogni-
tivism is dualist, functionalist, and positivist. It is dualist in the sense that there
is a fundamental distinction between the mind (the computational processes)
and the body (the computational infrastructure and, if required, the physical
structure that instantiates any physical interaction). It is functionalist in the
sense that the actual instantiation and computational infrastructure is inconse-
quential: any instantiation that supports the symbolic processing is sufficient.
It is positivist in the sense that they assert a unique and absolute empirically-
accessible external reality that is apprended by the senses and reasoned about
by the cognitive processes. In contrast, emergent systems are neither dualist nor
functionalist, since the system’s embodiment is an intrinsic component of the
cognitive process, nor positivist, since the form and meaning of the system’s
world is dependent in part on the system itself. The emergent paradigm, and
especially the enactive approach, can trace its roots to the philosophy of phe-
nomenology [28,29].



A criticism often levelled at cognitivist systems is that they are relatively
poor at functioning effectively outside well-defined problem domains because
they tend to depend on in-built assumptions and embedded knowledge arising
from design decisions. Emergent systems should in theory be much less brittle
because they develop through mutual specification and co-determination with
the environment. However, the ability to build artificial cognitive systems based
on emergent principles is very limited at present and cognitivist and hybrid
systems currently have more advanced capabilities within a narrower application
domain.

Any cognitive system is inevitably going to be complex. Nonetheless, it is
also the case that it will exhibit some degree of structure. This structure is
often encapsulated in what is known as a cognitive architecture [30]. Although
used freely by proponents of the cognitivist, emergent, and hybrid approaches to
cognitive systems, the term cognitive architecture originated with the seminal
cognitivist work of Newell et al. [25]. Consequently, the term has a very specific
meaning in this paradigm where cognitive architectures represent attempts to
create unified theories of cognition [24,31], i.e. theories that cover a broad range
of cognitive issues, such as attention, memory, problem solving, decision making,
learning, from several aspects including psychology, neuroscience, and computer
science. In the cognitivist paradigm, the focus of a cognitive architecture is on
the aspects of cognition that are constant over time and that are independent of
the task. Since cognitive architectures represent the fixed part of cognition, they
cannot accomplish anything in their own right and need to be provided with
or acquire knowledge to perform any given task. For emergent approaches to
cognition, which focus on development from a primitive state to a fully cognitive
state over the life-time of the system, the architecture of the system is equivalent
to its phylogenetic configuration: the initial state from which it subsequently
develops through ontogenesis.

Open Problems

The study of cognitive systems is a maturing discipline with contrasting ap-
proaches. Consequently, there are several open problems. These include the role
of physical embodiment, the need for development, the system’s cognitive ar-
chitecture, the degree of autonomy required, the issue of symbol grounding, the
problem of goal specification, the ability to explain the rationale for selection
actions, the problem of generating generalized concepts and transferring knowl-
edge from on context to another, and the interdependence of perception and
action. The nature of any resolution of these problems is inextricably linked to
the choice of paradigm: cognitivist, emergent, or hybrid.

The role of physical embodiment in a cognitive system [32,33,34] depends
strongly on the chosen paradigm. Due to their functionalist characteristics, cog-
nitivist systems do not depend on physical embodiment to operate successfully
but there is nothing to prevent them from being embodied if that is what the
task in hand requires. Emergent systems, by definition, require embodiment since
the body plays a key role in the way a cognitive system comes to understand
— make sense of — its environment. If a body is required, the form of embod-



iment must still be specified [35]. This is significant because, in the emergent
paradigm at least, the ability of two cognitive agents to communicate effectively
requires them to have similar embodiments so that they have a shared history
of interaction and a common epistemology.

The extent to which a cognitive system requires a capacity for development
and, if so, the mechanisms by which development can take place are both open
problems. In natural systems, growth is normally associated with development.
However, growth in artificial systems remains a distant goal, although one whose
achievement would open up many avenues of fruitful enquiry in cognitive sys-
tems. For current state-of-the-art cognitive systems, one can define development
as the process by which a system discovers for itself the models that characterize
its interactions with its environment. This contrasts with learning as the pro-
cess whereby the parameters of an existing model are estimated or improved.
Development, then, requires a capacity for self-modification [36] and in embod-
ied emergent systems leads to an increased repertoire of effective actions and a
greater ability to anticipate the need for and outcome of future actions [27].

The capacity to develop introduces another open issue: the minimal phylo-
genetic configuration — i.e., the perceptual, cognitive, and motoric capabilities
with which a system is endowed at ‘birth’ — that is required to facilitate sub-
sequent ontogenesis — i.e., development and learning through exploration and
social interaction [27]. This issue is related to the specification of the system’s
cognitive architecture and the necessary and sufficient conditions that must be
satisfied for cognitive behaviour to occur in a system. In addressing these issues,
there is a trade-off between the initial phylogeny and the potential for subse-
quent development. This tradeoff is reflected by the existince of two types of
species in nature: precocial and altricial. Precocial species are those that are
born with well-developed behaviours, skills, and abilities which are the direct
result of their genetic make-up (i.e. their phylogenic configuration). As a re-
sult, precocial species tend to be quite independent at birth. Altricial species, on
the other hand, are born with poor or undeveloped behaviours and skills, and
are highly-dependent for support. However, in contrast to precocial species, they
proceed to learn complex cognitive skills over their life-time (i.e. through ontoge-
netic development). The precocial and the altricial effectively define a spectrum
of possible configurations of phylogenetic configuration and ontogenetic poten-
tial [37]. The problem is to identify a feasible point in this spectrum that will
yield a cognitive system capable of developing the skills we require of it.

Autonomy is a crucial issue for cognitive systems [38] but the degree of
autonomy required is unclear. To an extent, it depends on how autonomy is
defined and which paradigm of cognition is being considered. Definitions range
from self-regulation and homeostasis to the ability of a system to contribute to
its own persistence [39]. In the former case, self-regulation is often cast as a
form of self-control so that the systems can operate without interference from
some outside agent, such as a human user. In the latter case, autonomy is the
self-maintaining organizational feature of living creatures that enables them to
use their own capacities to manage their interactions with the world in order



to remain viable [14]. Cognitivist systems tend to adopt the former definition,
emergent systems, the latter.

Broadly speaking, cognitivist systems exploit symbolic representations while
emergent systems exploit sub-symbolic state-based representations, with hybrid
systems using both. The manner in which cognitivist and hybrids systems ground
their symbolic representations in experience is still an open issue [40], with some
arguing for a bottom-up approach [41] and others for a process of learned asso-
ciation, where meaning is attached rather than grounded [37].

The opening definition of a cognitive system states that it can act to achieve
goals. The specification of these goals poses a significant challenge due to the
autonomous nature of cognitive systems. It is more easily resolved for cognitivist
systems since the goals can be hard-wired into the cognitive architecture. It is less
clear how goals can be specified in an emergent system since the over-arching
goal here is the maintenance of the system’s autonomy. The goals of such a
system reflect its intrinsic motivations and its associated value system [42]. The
problem is to understand how to engineer this value system to ensure that the
system is motivated to act in a way that satisfies goals which are external to the
system and to decide how these goals can be communicated to the system.

Ideally, in addition to the characteristics of a cognitive system listed in the
opening definition — autonomy, perception, learning, anticipation, goal-directed
action, and adaptation — a cognitive computer system should also be able to say
what it is doing and why it is doing it, i.e., it should be able to explain the reasons
for an action [43]. This would enable the system to identify potential problems
which might appear when carrying out a task and it would know when it needed
new information in order to complete that task. Consequently, a cognitive system
would be able to view a problem in several different ways and to look at different
alternative ways of tackling it. In a sense, this is something similar to the issue
discussed above about cognition involving an ability to anticipate the need for
actions and their outcome. The difference in this case is that the cognitive system
is considering not just one but many possible sets of needs and outcomes. In a
sense, it is adapting before things don’t go according to plan. From this point of
view, cognition also involves a sense of self-reflection.

Cognitive systems also learn from experience and adapt to changing circum-
stances. To do this, the system must have some capacity for generalization so
that concepts can be formed from specific instances and so that knowledge and
know-how can be transferred from one context to another. This capacity would
allow the system to adapt to new application scenarios and to explore the hy-
pothetical situations that arise from the self-reflection mentioned above. It is
unclear at present how such generalized conceptual knowledge and know-how
should be generated, represented, and incorporated into the system dynamics.

Perception and action have been demonstrated to be co-dependent in bio-
logical systems. Perceptual development depends on what actions an infant is
capable of and what use objects and events afford in the light of these capabili-
ties. This idea of the action-dependent perceptual interpretation of an object is
referred to as its affordance [44]. In neuroscience, the tight relationship between



action and perception is exemplified by the presence of mirror neurons, neurons
that become active when an action is performed and when the action or a similar
action is observed being performed by another agent. It is significant that these
neurons are specific to the goal of the action and not the mechanics of carrying
it out. The related Ideomotor Theory [45] asserts the existence of such a com-
mon or co-joint representational framework for perception and action. Such a
framework would facilitate the inference of intention and the anticipation of an
outcome of an event due to the goal-oriented nature of the action. The realiza-
tion of and effective co-joint perception-action framework remains an important
challenge for cognitivist and emergent approaches alike.

Although clearly there are some fundamental differences between the cogni-
tivist and the emergent paradigms, the gap between the two shows some signs
of narrowing. This is mainly due to (i) a recent movement on the part of pro-
ponents of the cognitivist paradigm to assert the fundamentally-important role
played by action and perception in the realization of a cognitive system [32]; (ii)
the move away from the view that internal symbolic representations are the only
valid form of representation [2]; and (iii) the weakening of the dependence on
embedded a priori knowledge and the attendant increased reliance on machine
learning and statistical frameworks both for tuning system parameters and the
acquisition of new knowledge. This suggests that hybrid approaches may be the
way forward, especially if a principled synthesis of cognitivist and emergent ap-
proaches is possible, such as ‘dynamic computationalism’ [2] or ‘computational
mechanics’ [46]. Hybrid approaches appear to many to offer the best of both
worlds — the adaptability of emergent systems and the advanced starting point
of cognitivist systems — since the representational invariances and representa-
tional frameworks don’t have to be learned but can be designed in and since
the system populates these representational frameworks through learning and
experience. However, it is uncertain that one can successfully combine what are
ultimately highly incompatible underlying philosophies. Opinion is divided, with
arguments both for (e.g. [2,46,40]) and against (e.g. [47]).

Recommended Readings

[1] Varela, F.J. (1992). Whence perceptual meaning? A cartography of current
ideas. In Varela, F.J., Dupuy, J.P., eds.: Understanding Origins – Contem-
porary Views on the Origin of Life, Mind and Society. Boston Studies in the
Philosophy of Science, Dordrecht, Kluwer Academic Publishers 235–263

[2] Clark, A. (2001). Mindware – An Introduction to the Philosophy of Cog-
nitive Science. Oxford University Press, New York
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