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Definition

A cognitive system is an autonomous system that can
perceive its environment, learn from experience, antic-
ipate the outcome of events, act to pursue goals, and
adapt to changing circumstances.

Background

There are several scientific perspectives on the nature
of cognition and on how it should be modeled. All
fall under the general umbrella of cognitive sci-
ence which embraces the disciplines of neuroscience,
artificial intelligence, cognitive psychology, linguis-
tics, and epistemology. Among these differing per-
spectives, however, there are two broad classes: the
cognitivist approach based on symbolic information
processing representational systems, and the emergent
systems approach, encompassing connectionist sys-
tems, dynamical systems, and enactive systems, all
based to a lesser or greater extent on principles of
self-organization [1–4]. A third class – hybrid systems
– attempts to combine something from each of the cog-
nitivist and emergent paradigms. All three approaches
have their origins in cybernetics [5] which in the
decade from 1943 to 1953 made the first efforts to
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formalize what had up to that point been purely psy-
chological and philosophical treatments of cognition.
The intention of the early cyberneticians was to cre-
ate a science of mind, based on logic. Examples of
the application of cybernetics to cognition include the
seminal paper by McCulloch and Pitts “A logical cal-
culus immanent in nervous activity” [6] and Ashby’s
“Design for a Brain” [7].

Theory

The initial attempt in cybernetics to create a science
of cognition was followed by the development of an
approach referred to as cognitivism. The birth of
the cognitivist paradigm, and its sister discipline of
Artificial Intelligence, dates from a conference held
at Dartmouth College, New Hampshire, in July and
August 1956 and attended by people such as John
McCarthy, Marvin Minsky, Allen Newell, Herbert
Simon, and Claude Shannon. Cognitivism holds that
cognition is achieved by computation performed
on internal symbolic knowledge representations in
a process whereby information about the world is
abstracted by perception, and represented using some
appropriate symbolic data-structure, reasoned about,
and then used to plan and act in the world. The
approach has also been labeled by many as the infor-
mation processing or symbol manipulation approach
to cognition [1, 8–10]. In most cognitivist approaches
concerned with the creation of artificial cognitive sys-
tems, the symbolic representations are the descrip-
tive product of a human designer. This is significant
because it means that they can be directly accessed and
interpreted by humans and that semantic knowledge
can be embedded directly into and extracted directly
from the system. In cognitivism, the goal of cognition
is to reason symbolically about these representations in
order to effect the required adaptive, anticipatory, goal-
directed behavior. Typically, this approach to cognition
will deploy machine learning and probabilistic model-
ing in an attempt to deal with the inherently uncertain,
time-varying, and incomplete nature of the sensory
data that is used to drive this representational frame-
work. Significantly, in the cognitivist paradigm, the
instantiation of the computational model of cognition
is inconsequential: any physical platform that sup-
ports the performance of the required symbolic com-
putations will suffice [8]. This principled separation

of operation from instantiation is referred to as
functionalism.

In the emergent paradigm, cognition is the pro-
cess whereby an autonomous system becomes viable
and effective in its environment. It does so through a
process of self-organization by which the system con-
tinually maintains its operational identity through the
moderation of mutual system-environment interaction.
In other words, the ultimate goal of an emergent cogni-
tive system is to maintain its own autonomy. In achiev-
ing this, the cognitive process determines what is real
and meaningful for the system: the system constructs
its reality – its world and the meaning of its percep-
tions and actions – as a result of its operation in that
world. Consequently, the system’s understanding of its
world is inherently specific to the form of the system’s
embodiment and is dependent on the system’s his-
tory of interactions, i.e., its experiences. This mutual-
specification of the system’s reality by the system and
its environment is referred to as co-determination [11]
and is related to the concept of radical constructivism
[12]. This process of making sense of its environmen-
tal interactions is one of the foundations of the enactive
approach to cognition [13]. Cognition is also the means
by which the system compensates for the immediate
nature of perception, allowing it to anticipate environ-
mental interaction that occurs over longer time scales,
i.e., cognition is intrinsically linked with the ability of
an agent to act prospectively: to deal with what might
be, not just with what is. Many emergent approaches
adhere to the principle that the primary model for cog-
nitive learning is anticipative skill construction rather
than knowledge acquisition. Thus, processes which
guide action and improve the capacity to guide action
form the root capacity of all intelligent systems [14].

As noted already, the emergent paradigm embraces
connectionist systems, dynamical systems, and enac-
tive systems. Connectionist systems rely on paral-
lel processing of non-symbolic distributed activation
patterns using statistical properties, rather than logi-
cal rules, to process information and achieve effec-
tive behavior [15]. In this sense, the neural network
instantiations of the connectionist model are dynam-
ical systems that capture the statistical regularities
in training data [16]. Dynamical systems theory has
been used to complement classical approaches in arti-
ficial intelligence [17] and it has also been deployed
to model natural and artificial cognitive systems
[10, 18, 19]. Although dynamical systems theory
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approaches often differ from connectionist systems
on several fronts, it is better perhaps to consider
them complementary ways of describing cognitive
systems, dynamical systems addressing macroscopic
behavior at an emergent level, and connectionist sys-
tems addressing microscopic behavior at a mecha-
nistic level [20]. Enactive systems take the emergent
paradigm even further. Enaction [13, 21–23] asserts
that cognition is a process whereby the issues that are
important for the continued existence of a cognitive
entity are brought out or enacted: co-determined by the
entity and the environment in which it is embedded.
Thus, enaction entails that a cognitive system operates
autonomously, that it generates its own models of how
the world works, and that the purpose of these models
is to preserve the system’s autonomy.

Considerable effort has gone into developing hybrid
approaches which combine aspects of cognitivist and
emergent systems. Typically, hybrid systems exploit
symbolic knowledge to represent the agent’s world
and logical rule-based systems to reason about this
knowledge in order to achieve goals and select actions,
while at the same time using emergent models of
perception and action to explore the world and con-
struct this knowledge. Thus, hybrid systems still use
cognitivist representations and representational invari-
ances but they are constructed by the system itself as
it interacts with and explores the world rather than
through a priori specification or programming. Conse-
quently, as with emergent systems, the agent’s ability
to understand the external world is dependent on its
ability to interact flexibly with it, and interaction is the
organizing mechanism that establishes the association
between perception and action.

Cognitivism and artificial intelligence research are
strongly related. In particular, Newell and Simon’s
“Physical Symbol System” approach to artificial intel-
ligence [8] has been extremely influential in shaping
how we think about intelligence, natural as well as
computational. In their 1976 paper, two hypotheses are
presented: the Physical Symbol System Hypothesis and
the Heuristic Search Hypothesis. The first hypothesis
is that a physical symbol system has the necessary
and sufficient means for general intelligent action. This
implies that any system that exhibits general intelli-
gence is a physical symbol system and any physical
symbol system of sufficient size can be configured
to exhibit general intelligence. The second hypothesis
states that the solutions to problems are represented as

symbol structures and that a physical-symbol system
exercises its intelligence in problem-solving by search,
i.e., by generating and progressively modifying symbol
structures in an effective and efficient manner until it
produces a solution structure. This amounts to an asser-
tion that symbol systems solve problems by heuristic
search, i.e., the successive generation of potential solu-
tion structures. The task of intelligence, then, is to avert
the ever-present threat of the exponential explosion
of search. Subsequently, Newell defined intelligence
as the degree to which a system approximates the
ideal of a knowledge-level system [24]. A knowledge-
level system is one which can bring to bear all its
knowledge onto every problem it attempts to solve
(or, equivalently, every goal it attempts to achieve).
Perfect intelligence implies complete utilization of
knowledge. It brings this knowledge to bear accord-
ing to the principle of maximum rationality which was
proposed by Newell in 1982 [25] as follows: “If an
agent has knowledge that one of its actions will lead to
one of its goals, then the agent will select that action.”
Anderson [26] later offered a slightly different princi-
ple, the principle of rationality, sometimes referred to
as rational analysis, stated as follows: “the cognitive
system optimizes the adaptation of the behavior of the
organism.” Note that Anderson’s principle considers
optimality to be necessary for rationality, something
that Newell’s principle does not.

Cognitivist and emergent approaches are normally
contrasted on the basis of the symbolic or non-
symbolic nature of their computational operation and
representational framework. Cognitivist systems typ-
ically use production systems to effect rule-based
manipulation of symbol tokens whereas emergent sys-
tems exploit dynamical processes of self-organization
in which representations are encoded in global system
states. However, the distinction between cognitivist
and emergent is not restricted to the issue of sym-
bolic representation and they can be contrasted on the
basis of several other characteristics such as semantic
grounding, temporal constraints, inter-agent episte-
mology, embodiment, perception, action, anticipation,
adaptation, motivation, autonomy, among others [27].

The differences between the cognitivist and the
emergent paradigm can be traced to their underlying
distinct philosophies [28]. Broadly speaking, cogni-
tivism is dualist, functionalist, and positivist. It is dual-
ist in the sense that there is a fundamental distinction
between the mind (the computational processes) and
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the body (the computational infrastructure and, if
required, the physical structure that instantiates any
physical interaction). It is functionalist in the sense that
the actual instantiation and computational infrastruc-
ture is inconsequential: any instantiation that supports
the symbolic processing is sufficient. It is positivist
in the sense that they assert a unique and absolute
empirically-accessible external reality that is appre-
hended by the senses and reasoned about by the cog-
nitive processes. In contrast, emergent systems are
neither dualist nor functionalist, since the system’s
embodiment is an intrinsic component of the cognitive
process, nor positivist, since the form and meaning of
the system’s world is dependent in part on the system
itself. The emergent paradigm, and especially the enac-
tive approach, can trace its roots to the philosophy of
phenomenology [28, 29].

A criticism often leveled at cognitivist systems is
that they are relatively poor at functioning effectively
outside well-defined problem domains because they
tend to depend on in-built assumptions and embed-
ded knowledge arising from design decisions. Emer-
gent systems should in theory be much less brittle
because they develop through mutual specification and
co-determination with the environment. However, the
ability to build artificial cognitive systems based on
emergent principles is very limited at present, and
cognitivist and hybrid systems currently have more
advanced capabilities within a narrower application
domain.

Any cognitive system is inevitably going to be
complex. Nonetheless, it is also the case that it will
exhibit some degree of structure. This structure is
often encapsulated in what is known as a cognitive
architecture [30]. Although used freely by proponents
of the cognitivist, emergent, and hybrid approaches
to cognitive systems, the term “cognitive architec-
ture” originated with the seminal cognitivist work
of Newell et al. [25]. Consequently, the term has a
very specific meaning in this paradigm where cog-
nitive architectures represent attempts to create uni-
fied theories of cognition [24, 31], i.e., theories that
cover a broad range of cognitive issues, such as
attention, memory, problem-solving, decision-making,
learning, from several aspects including psychology,
neuroscience, and computer science. In the cognitivist
paradigm, the focus of a cognitive architecture is on
the aspects of cognition that are constant over time
and that are independent of the task. Since cognitive

architectures represent the fixed part of cognition,
they cannot accomplish anything in their own right
and need to be provided with or acquire knowledge
to perform any given task. For emergent approaches
to cognition, which focus on development from a
primitive state to a fully cognitive state over the life-
time of the system, the architecture of the system is
equivalent to its phylogenetic configuration: the ini-
tial state from which it subsequently develops through
ontogenesis.

Open Problems

The study of cognitive systems is a maturing discipline
with contrasting approaches. Consequently, there are
several open problems. These include the role of phys-
ical embodiment, the need for development, the sys-
tem’s cognitive architecture, the degree of autonomy
required, the issue of symbol grounding, the problem
of goal specification, the ability to explain the rationale
for selection actions, the problem of generating gener-
alized concepts and transferring knowledge from one
context to another, and the interdependence of per-
ception and action. The nature of any resolution of
these problems is inextricably linked to the choice of
paradigm: cognitivist, emergent, or hybrid.

The role of physical embodiment in a cognitive sys-
tem [32–34] depends strongly on the chosen paradigm.
Due to their functionalist characteristics, cognitivist
systems do not depend on physical embodiment to
operate successfully but there is nothing to prevent
them from being embodied if that is what the task in
hand requires. Emergent systems, by definition, require
embodiment since the body plays a key role in the way
a cognitive system comes to understand – make sense
of – its environment. If a body is required, the form of
embodiment must still be specified [35]. This is signif-
icant because, in the emergent paradigm at least, the
ability of two cognitive agents to communicate effec-
tively requires them to have similar embodiments so
that they have a shared history of interaction and a
common epistemology.

The extent to which a cognitive system requires a
capacity for development and, if so, the mechanisms
by which development can take place are both open
problems. In natural systems, growth is normally asso-
ciated with development. However, growth in artificial
systems remains a distant goal, although one whose
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achievement would open up many avenues of fruitful
enquiry in cognitive systems. For current state-of-the-
art cognitive systems, one can define development as
the process by which a system discovers for itself
the models that characterize its interactions with its
environment. This contrasts with learning as the pro-
cess whereby the parameters of an existing model are
estimated or improved. Development, then, requires a
capacity for self-modification [36] and in embodied
emergent systems leads to an increased repertoire of
effective actions and a greater ability to anticipate the
need for and outcome of future actions [27].

The capacity to develop introduces another open
issue: the minimal phylogenetic configuration – the
perceptual, cognitive, and motoric capabilities with
which a system is endowed at “birth” – that is required
to facilitate subsequent ontogenesis – development
and learning through exploration and social interac-
tion [27]. This issue is related to the specification of
the system’s cognitive architecture and the necessary
and sufficient conditions that must be satisfied for cog-
nitive behavior to occur in a system. In addressing
these issues, there is a trade-off between the initial phy-
logeny and the potential for subsequent development.
This trade-off is reflected by the existence of two types
of species in nature: precocial and altricial. Precocial
species are those that are born with well-developed
behaviors, skills, and abilities which are the direct
result of their genetic make-up (i.e., their phylogenic
configuration). As a result, precocial species tend to
be quite independent at birth. Altricial species, on the
other hand, are born with poor or undeveloped behav-
iors and skills, and are highly dependent for support.
However, in contrast to precocial species, they proceed
to learn complex cognitive skills over their lifetime
(i.e., through ontogenetic development). The preco-
cial and the altricial effectively define a spectrum of
possible configurations of phylogenetic configuration
and ontogenetic potential [37]. The problem is to iden-
tify a feasible point in this spectrum that will yield a
cognitive system capable of developing the skills we
require of it.

Autonomy is a crucial issue for cognitive systems
[38] but the degree of autonomy required is unclear.
To an extent, it depends on how autonomy is defined
and which paradigm of cognition is being considered.
Definitions range from self-regulation and homeosta-
sis to the ability of a system to contribute to its own
persistence [39]. In the former case, self-regulation is

often cast as a form of self-control so that the systems
can operate without interference from some outside
agent, such as a human user. In the latter case, auton-
omy is the self-maintaining organizational feature of
living creatures that enables them to use their own
capacities to manage their interactions with the world
in order to remain viable [14]. Cognitivist systems tend
to adopt the former definition, emergent systems, the
latter.

Broadly speaking, cognitivist systems exploit sym-
bolic representations while emergent systems exploit
sub-symbolic state-based representations, with hybrid
systems using both. The manner in which cognitivist
and hybrids systems ground their symbolic represen-
tations in experience is still an open issue [40], with
some arguing for a bottom-up approach [41] and oth-
ers for a process of learned association, where meaning
is attached rather than grounded [37].

The opening definition of a cognitive system states
that it can act to achieve goals. The specification of
these goals poses a significant challenge due to the
autonomous nature of cognitive systems. It is more
easily resolved for cognitivist systems since the goals
can be hard-wired into the cognitive architecture. It is
less clear how goals can be specified in an emergent
system since the over-arching goal here is the mainte-
nance of the system’s autonomy. The goals of such a
system reflect its intrinsic motivations and its associ-
ated value system [42]. The problem is to understand
how to engineer this value system to ensure that the
system is motivated to act in a way that satisfies goals
which are external to the system and to decide how
these goals can be communicated to the system.

Ideally, in addition to the characteristics of a cogni-
tive system listed in the opening definition – autonomy,
perception, learning, anticipation, goal-directed action,
and adaptation – a cognitive computer system should
also be able to say what it is doing and why it is
doing it, i.e., it should be able to explain the rea-
sons for an action [43]. This would enable the system
to identify potential problems which might appear
when carrying out a task and it would know when
it needed new information in order to complete that
task. Consequently, a cognitive system would be able
to view a problem in several different ways and to look
at different alternative ways of tackling it. In a sense,
this is something similar to the issue discussed above
about cognition involving an ability to anticipate the
need for actions and their outcome. The difference in
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this case is that the cognitive system is considering not
just one but many possible sets of needs and outcomes.
In a sense, it is adapting before things do not go accord-
ing to plan. From this point of view, cognition also
involves a sense of self-reflection.

Cognitive systems also learn from experience and
adapt to changing circumstances. To do this, the sys-
tem must have some capacity for generalization so that
concepts can be formed from specific instances and
so that knowledge and know-how can be transferred
from one context to another. This capacity would allow
the system to adapt to new application scenarios and
to explore the hypothetical situations that arise from
the self-reflection mentioned above. It is unclear at
present how such generalized conceptual knowledge
and know-how should be generated, represented, and
incorporated into the system dynamics.

Perception and action have been demonstrated to be
co-dependent in biological systems. Perceptual devel-
opment depends on what actions an infant is capable
of and what use objects and events afford in the light
of these capabilities. This idea of the action-dependent
perceptual interpretation of an object is referred to as
its affordance [44]. In neuroscience, the tight relation-
ship between action and perception is exemplified by
the presence of mirror neurons, neurons that become
active when an action is performed and when the action
or a similar action is observed being performed by
another agent. It is significant that these neurons are
specific to the goal of the action and not the mechan-
ics of carrying it out. The related Ideomotor Theory
[45] asserts the existence of such a common or co-
joint representational framework for perception and
action. Such a framework would facilitate the infer-
ence of intention and the anticipation of an outcome of
an event due to the goal-oriented nature of the action.
The realization of and effective co-joint perception-
action framework remains an important challenge for
cognitivist and emergent approaches alike.

Although clearly there are some fundamental dif-
ferences between the cognitivist and the emergent
paradigms, the gap between the two shows some signs
of narrowing. This is mainly due to (1) a recent
movement on the part of proponents of the cogni-
tivist paradigm to assert the fundamentally important
role played by action and perception in the realiza-
tion of a cognitive system [32]; (2) the move away
from the view that internal symbolic representations
are the only valid form of representation [2]; and (3)

the weakening of the dependence on embedded a pri-
ori knowledge and the attendant-increased reliance on
machine learning and statistical frameworks both for
tuning system parameters and the acquisition of new
knowledge. This suggests that hybrid approaches may
be the way forward, especially if a principled synthe-
sis of cognitivist and emergent approaches is possible,
such as “dynamic computationalism” [2] or “compu-
tational mechanics” [46]. Hybrid approaches appear
to many to offer the best of both worlds – the adapt-
ability of emergent systems and the advanced starting
point of cognitivist systems – since the representational
invariances and representational frameworks need not
be learned but can be designed in and since the system
populates these representational frameworks through
learning and experience. However, it is uncertain that
one can successfully combine what are ultimately
highly incompatible underlying philosophies. Opinion
is divided, with arguments both for (e.g., [2, 40, 46])
and against (e.g., [47]).
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