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Abstract Artificial Intelligence (AI) is the branch of computer science and engineering that 
allows us to harness the power of computing and technology to mimic and extend human 
intelligence. Together with ubiquitous communications and near-universal access to 
information, artificial intelligence is driving the Fourth Industrial Revolution, ushering in an 
era of unprecedented and rapid change in how humans live, work, and relate to one 
another through the fusion of physical, digital, and biological technologies. In this article, 
we trace the origin and evolution of the different strands of AI and consider the 
implications of its pervasive presence in society, addressing some of its many 
applications — in medicine, robotics, the world-wide web & social media, and sport — and 
their impact on society across the globe, in developed and developing countries, and the 
ethical issues it raises for humankind. 
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1.  What is AI, where did it come from, and where is it taking us? 

In 1960, J. C. R. Licklider predicted a symbiotic partnership between humans and 
computers that will perform intellectual operations much more effectively than humans 
alone can perform them (Licklider, 1960). Today, that symbiotic partnership is now being 
realized through AI, a technology that both amplifies and extends human cognitive 
abilities. While there is some concern today about the ultimate destiny of that partnership 
and whether or not AI will prevail over humans if we reach the technological singularity 
when the autonomous capabilities of AI exceed those of humans (Shanahan, 2015), 
people are also concerned about how to harness AI for economic advantage and social 
development. From this latter perspective, AI forms the foundation of the fourth industrial 
revolution, a revolution that is characterized by a fusion of physical, digital, and biological 
technologies, powered by AI and enabled by ubiquitous communication and near-
universal access to information. It is irreversibly altering how humans live, work, and relate 
to one another (Schwab, 2021). At the same time, it is important to consider how to 
harness AI within an ethical framework that achieves economic benefits and social 
development for all. 

The world of the AI-powered fourth industrial revolution may well be the destination, but 
how did AI get started? For many people, the discipline of AI has its origins in a 
conference held at Dartmouth College, New Hampshire, in July and August 1956. It was 
attended by luminaries such as John McCarthy (who coined the term artificial intelligence; 
see Fig. 1), Marvin Minsky, Allen Newell, Herbert Simon, and Claude Shannon, all of 
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whom had a very significant influence on the development of AI over the next half-century. 
The essential position of AI at this time was that intelligence — both biological and 
artificial — is achieved by computations performed on internal symbolic knowledge 
representations, an approach referred to as computationalism, grounded in cognitivist 
psychology, and normally referred to as GOFAI: good old-fashioned artificial intelligence. 
As we will see in Section 2.1, this position is captured formally in the Physical Symbol 
Systems Hypothesis. 

 

 
Fig. 1. John McCarthy, who coined the term artificial intelligence, at Stanford’s Artificial 
Intelligence Laboratory in 1974. 

 
However, AI has other roots in cybernetics, which is concerned with self-organization, 
regulation, and control (Wiener, 1948; Ashby, 1957). In 1950, Grey Walter developed two 
robotic turtles, Elmer and Elsie, that could roam around a room, find a charging station, 
and recharge themselves. In 1950, Claude Shannon demonstrated an electronic mouse, 
Theseus, that could navigate a maze. Both Walter’s and Shannon’s robots built on 
behaviorist psychology by using associative and reinforcement learning in relatively 
simple neural networks, rather than focusing on internal models and symbolic 
computation. Neural networks process information by propagating it through an 
interconnected layered network of relatively simple processing units: artificial neurons, 
very simplified versions of the neurons in biological brains. Loosely speaking, these 
artificial neurons weight and aggregate the information received and send a modified 
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version of the result to other processing units, typically in the next layer.2 This approach, 
referred to as connectionism, progressed in parallel with the computationalist approach 
over the next sixty years and more. We’ll say more about computationalist symbolic AI in 
Section 2.1 and connectionist AI in Section 2.2. 

From the outset, symbolic AI was concerned with producing intelligent artifacts that 
exhibited the versatility, flexibility, and robustness of humans in rational problem solving. 
For this reason, it became known as strong AI. Despite the early optimism, strong AI 
proved to be very difficult to achieve. Consequently, AI techniques began to be applied in 
more limited domains with stronger constraints and a narrower focus. This approach 
became known as weak AI. Despite continual progress in both symbolic AI and 
connectionist AI in the 1970s and 1980s, performance on more challenging problems was 
disappointing and the popularity of AI waned during a period known as the AI winter. As 
we will see in Section 2.2, this was the second winter for connectionism. Despite the lack 
of success in applications, research proceeded apace in statistical techniques and on 
neural networks, just as it had done in the connectionist AI winter in the 1970s. 

The AI winter came to an end in the 2000s when, building on research in the late 
1990s, artificial neural networks with deeper network topologies, i.e. networks with many 
more layers than had been used in the mid-1980s to mid-1990s, and new learning 
techniques were introduced, leveraging the recent availability of much greater computing 
power in the form of graphic processor units (GPUs) and much larger datasets to train the 
networks. The period since 2011 has seen AI based on deep learning exhibit great 
success with many difficult applications in, for example, computer vision, robotics, and 
autonomous driving, natural language processing, sentiment analysis, medical imaging, 
and several other domains. This period also saw the development of some landmark 
probabilistic approaches to AI, perhaps the most celebrated of which is the Watson 
system from IBM (named after its founder Thomas J. Watson) and which won the TV 
show Jeopardy! in 2011, beating two human champions in answering rich natural 
language questions over a very broad domain of topics. The success of Watson was the 
result of probabilistic knowledge engineering that integrated many knowledge sources and 
exploited many techniques for search, hypothesis formulation, and hypothesis evaluation 
(Ferrucci et al., 2010). 

AI had finally come of age, yielding reliable solutions to complex problems in many 
application domains. John McCarthy once remarked “As soon as it works, no one calls it 
AI anymore” (Meyer, 2011). This was no longer true. 

At this point, many techniques which had traditionally not been part of AI, e.g. data 
science, optimization, and control theory began to be included under the purview of AI, 
contributing to its success. However, as Luc Steels points out, this expansion of AI 
departs from its original focus on strong AI which is human-centred, in the sense that the 
basis for its decisions is understandable by and communicable to humans, and human-
level, in the sense that it displays the same versatility and flexibility that humans do 
(Steels, 2020). In contrast, the AI that derives from the behaviorist tradition, including 
connectionism, as well as the probabilistic data science models and statistical learning, 
are black box systems: the basis for their decision-making is not open to scrutiny by 
humans in any meaningful way, at least not at present. Consequently, much effort today is 

 
2 Artificial neural networks that propagate results to the next layer are called feed-forward networks, while networks 
that also propagate results back to previous layers are called recurrent neural networks. The simple two-layer 
networks developed in the 1960s are called perceptrons. 
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being expended to make this approach to AI more explainable and more trustworthy (XAI: 
eXplainable AI). This is not a trivial problem. While deep learning AI may achieve 
exceptional performance, by virtue of its statistical nature, it is susceptible to errors when 
faced with outliers and data that are not drawn from the distribution on which the system is 
trained. Such outliers may be very common, as is the case when systems are trained on 
data sets that exhibit implicit or explicit bias. The bias is modelled during training and the 
systems then inevitably operate in a biased manner, even if the bias in the original data 
set was not intended. We return to the issue of trustworthy AI in Section 4.3. For now, we 
take a closer look at the constituent approaches of AI: symbolic AI, connectionist AI, and 
statistical machine learning. 

2. The Nature of AI 

2.1 Symbolic AI and GOFAI  
One of the key historical, methodological and epistemological approaches to AI is that of 
“Symbolic AI’, often referred to as GOFAI (Good Old Fashion AI). This has its origins in 
the 1950s (i.e. part of the 1956 Dartmouth Workshop for the start of the AI movement) 
and constituted the primary, classical approach in the first 30 years of AI research, before 
the first AI Winter and the advent of Connectionist AI and machine learning (Boden 2014).   

The term “symbolic” refers to the fact that AI algorithms and programs are based on a 
set of symbols and symbol manipulation processes. In fact, two of the founding fathers of 
symbolic AI, Allen Newell and Herbert Simon, proposed the concept of a Physical 
Symbol System, as a “a set of entities, called symbols, which are physical patterns that 
can occur as component of another type of entity called an expression (or symbol 
structure)” (Newell and Simon 1976: 116). These symbols are purely formal and 
meaningless entities, though in practice they are normally interpreted by the programmer 
with a particular semantic content such as words, numbers, pictures, actions etc. The 
symbolic expressions are created using logic formalisms, such as propositional logic with 
Boolean connectives (e.g. “Red AND Round”) or predicate calculus (e.g. “Apple(Red, 
Round)“). They can also be arranged in IF-THEN production rules (e.g., “IF apple, THEN 
eat). In specific symbolic systems such as semantic networks, each node has a symbol 
(“Red”, “Apple”, “Fruit) with links having a label for the semantic relationship between 
node (e.g., “IS A” or “HAS”) and hierarchical relationship between nodes. A collection of 
symbolic structures for a specific domain constitutes the knowledge base used by the 
system to reason about the problem. In general, symbols systems solve problems by 
using the processes of heuristic search (Newell and Simon 1976), where the search for 
the optimal link between the problem definition and its solution must be guided by 
heuristics, i.e., rules of thumb that are helpful in guiding the program toward the solution 
in an optimal way. The AI heuristic search and planning algorithms are widely used today 
for scheduling and logistics, for data mining, for games, for searching the web, and for 
planning in robotics. 

An important aspect of the GOFAI approach is the idea that symbolic systems can 
model human intelligence. In fact, Newell and Simon (1976) proposed the Physical 
Symbol Systems Hypothesis, which states that “A Physical Symbols Systems has the 
necessary and sufficient means for general intelligent action” (1976:116). This is why 
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GOFAI systems have been applied to modelling mathematical reasoning, natural 
language processing, planning, game playing etc. A classic example of a GOFAI system 
is an expert system, i.e. a program that represents the knowledge of the human expert in 
a specific domain, using a a set of IF-THEN production rules, and which can be used to 
offer advice to non-experts or to provide solutions to experts. Beyond the historical 
examples of the first expert systems, such as Mycin to support medical doctors in the 
diagnosis and treatment of infectious diseases, nowadays expert systems have been 
developed in a wide range of domains (commercial, education, medical, and military 
applications), with some capable of highly complex planning on the order of tens of 
thousands of search steps (Franklin 2014). 

The major strengths of GOFAI are its abilities to model hierarchical and sequential 
tasks, such as language processing, problem solving and games, and to represent 
knowledge bases using propositional contents and inference processes.  

 Some limitations of GOFAI systems are that these AI programs are brittle (i.e. that 
they can produce wrong and nonsensical decisions when there is missing or contradictory 
data), they are subject to the frame problem (i.e. the problem of representing what 
remains unchanged as a result of an action or an event) and the symbol grounding 
problem (i.e. linking symbols with the environment entities) and they cannot learn new 
knowledge. This, as well as the initial strong claims about the power of symbolic systems 
to deal with general intelligence and any problem domain, led to the first AI Winter in the 
1980s, and the subsequent developments of connectionist and machine learning 
approaches (see next section). However, significant achievements of GOFAI includes the 
widespread use of commercial expert systems, their essential role in games industry (to 
control the intelligent behaviour of the virtual agents) including the historical victory of the 
IBM Deep Blue system in 1997 in beating the chess world champion Gasparov, and IBM 
Watson’s victory in 2011 over two human champions in the Jeopardy! TV game (Franklin 
2014). 

2.2 Connectionist AI: From Perceptrons to Deep Neural Networks 

Connectionist AI differs from symbolic AI in that information is processed by propagating it 
through an interconnected network of relatively simple processing elements, typically 
implemented as artificial neural networks. They use statistical properties rather than 
logical rules to analyze information.  Although the term connectionist model is usually 
attributed to Feldman and Ballard (1982), the roots of connectionism reach back well 
before the computational era, with connectionist principles clearly evident in William 
James’ nineteenth century model of associative memory (James, 1890). 

Neural networks also have strong foundations in physics, as many of the mathematics 
concepts on neuron modelling and computation come from physics principles. For 
example, the Ising model (also known as the Ising-Lenz model), a mathematical 
model of ferromagnetism in statistical mechanics, provided inspiration for an model of 
associative memory (Little 1974) that was popularized by John Hopfield’s recurrent neural 
network: the Hopfield net (Hopfield 1982). Boltzmann machines are variants of Hopfield 
nets that use stochastic rather than deterministic weight update procedures to avoid 
problems with the network becoming trapped in non-optimal local minima during training 
(Hinton and Sejnowski 1986). In the future, the principles of quantum mechanics may 
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provide the basis for efficient neural networks (Abbas et al. 2021), in particular, and for 
quantum AI (Dunjko Briegel 2018), in general. 

The seminal paper by McCulloch and Pitts (1943),“A logical calculus immanent in 
nervous activity”, is regarded as the foundation of artificial neural networks and 
connectionism (Anderson and Rosenfeld, 1988). Connectionism advanced significantly in 
the late 1950s with the introduction of the perceptron (Rosenblatt, 1958) and the 
Pandemonium model of learning (Selfridge, 1959), allowing artificial neural networks to be 
trained automatically instead of having to be tuned by hand.  Network learning advanced 
further still in 1960 with the introduction of the delta rule for supervised training (Widrow 
and Hoff, 1960). However, perceptron networks suffered from a severe problem: no 
learning algorithm existed to allow the adjustment of the weights of the connections 
between input units and hidden units in networks with more than two layers, i.e., multi-
layered perceptrons (MLPs). In 1969, Minsky and Papert (1969) showed that these 
perceptrons can only be trained to solve linearly separable problems and couldn’t be 
trained to solve more general problems. This had a very negative influence on neural 
network research for over a decade.  As a result, research on neural networks and 
connectionism suffered considerably and marked the beginning of a decade-long winter 
for connectionist AI (Pollack, 1989). 

During the period that followed this disenchantment with perceptron networks, 
alternative connectionist models were developed, such as adaptive resonance theory 
(ART), first introduced by Stephen Grossberg in 1976 and developed in the ensuing years 
(Carpenter and Grossberg, 1995), and Teuvo Kohonen’s self-organizing maps (Kohonen, 
1982). ART addresses real-time supervised and unsupervised category learning, pattern 
classification, and prediction, while Kohonen networks exploit self-organization for 
unsupervised learning, and they can be used as either an auto-associative memory or a 
pattern classifier. 

Perceptron-based neural networks underwent a strong resurgence in the mid-1980s 
with the introduction of the back-propagation algorithm (Rumelhart et al., 1986a,b), which 
had previously been derived independently by Paul Werbos (Werbos, 1974), among 
others (Medler, 1998). Backpropagation finally made it feasible to train MLPs, overcoming 
the restriction highlighted by Minsky and Papert (1969), thereby enabling MLPs to learn 
solutions to complex problems that are not linearly separable. This was a major 
breakthrough in neural network and connectionist research. 

Perceptron-based neural networks typically represent a static mapping between the 
inputs and outputs in which data flows in just one direction through the network, from input 
to output. There is an alternative, however, in which the network has connections that loop 
back to form cycles, i.e. networks in which either the output or the hidden unit activation 
signals are fed back to the network as inputs. These are called recurrent neural networks. 
The recurrent pathways in the network introduce a dynamic behavior into the network 
operation.  

By the early 2000s, the traditional neural network approach had fallen out of favor 
because effective training was limited to relatively small networks, both in terms of the 
number of layers and the number of units per layer, due to the lack of computational 
resources for training and the infeasible amount of time required to train large networks.   

However, in the late 1990s, significant breakthroughs in deep networks, such as long 
short-term memory (LSTM) by Hochreiter and Schmidhuber (1997) and convolutional 
neural networks (CNNs) by LeCun et al. (1998), heralded a new era in connectionism, 
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although it took another ten years before they were widely adopted because of the lack of 
sufficiently large data sets and sufficient computational power for training. A CNN network 
is similar in principle to the multi-layer perceptrons of the 1980s and early 1990s, but they 
have more layers, each of which performs a different function. In a CNN, convolution 
refers to the application of a filter to the data being processed by the neural network. The 
key feature of a CNN is that these filters are learned by the network during the training 
phase. This marked a significant departure from previous approaches where the filters, 
and the features they extracted, were the result of hand-crafted design. Consequently, 
CNNs are able to map directly from the input space, e.g., the image to be classified or the 
image in which you want to search for a given object, directly to the image label or the 
object location. For this reason, they are referred to as end-to-end systems. The first CNN 
was created by Yan LeCun, focussing on handwritten character recognition (LeCun et al., 
1998). In 2011, AlexNet (Krizhevsky et al., 2012), a CNN with seven hidden layers won 
the ImageNet Large Scale Visual Recognition Challenge. 

Since then, deep neural networks have been applied successfully in many challenging 
applications (Schmidhuber, 2014; Goodfellow et al., 2016). The networks have become 
deeper, with twenty-two or many more layers, and performance has improved through the 
use of more effective activation functions (e.g. the rectified linear unit ReLU), the use of 
specialized layers (e.g. pooling), more advanced learning techniques (e.g. batch 
normalization and dropout), techniques to overcome the problem of vanishing gradients 
(where the error terms become too small to effect an improvement in network 
performance as they are propagated back in a deep network), and a better understanding 
of how to adjust the system hyper-parameters during training to improve performance. 

While CNNs and regional CNNs (RCNNs) proved their mettle with very impressive 
performance in image recognition, object detection and localization, face detection, face 
recognition, and object tracking, new forms of recurrent neural networks proved very 
successful on problems that involve processing and analysing sequences of states, e.g. in 
natural language, by exploiting new recurrent elements such as long short term memory 
(LSTM) and gated recurrent units (GRU). 

Progress has continued, with modern architectures successfully combining the power of 
deep CNNs and LSTMs to address problems that involve both images and language, e.g. 
automatic image annotation and captioning, image retrieval and synthesis base on 
linguistic descriptions (Mao et al., 2015). 

The advent of generative adversarial networks, or GANs, which work as actor-critic 
systems, has provided the means for two learning networks to learn from each other and 
thereby improve the performance of both (Goodfellow et al., 2014; Goodfellow, 2017). 
This has yielded remarkable results in image synthesis, among many other applications. 

Progress using deep neural networks for language understanding and generation has 
recently been advanced even further with the series of Generative Pre-trained 
Transformer (GPT) architectures, culminating, for now, in GPT-3 (Brown et al., 2020). 
Trained on trillions of words with some 175 billion machine learning parameters, GPT-3 is 
capable of generating natural language text that is often indistinguishable from that 
generated by humans. 

2.3 Statistical and machine learning 
A parallel development in AI in the last 20 years, with partial overlap with the AI 
connectionist approach, has been that of machine learning. This is the field primarily 
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based on a variety of statistics-based inference methods that use large data sets to 
estimate, i.e. learn, the parameters of a model with classification and predictive 
capabilities. This approach developed in conjunction with AI research in computer vision 
and speech (or more generally, pattern recognition), in robotics (e.g. reinforcement 
learning) and in neural networks (MLP and deep neural networks). Some people 
nowadays use the terms AI and machine learning interchangeably, especially because of 
the big, common emphasis on deep learning. But as we will see below, machine learning 
keeps a distinctive emphasis on data-driven statistical inference methods.  

Amongst the various inferential strategies in statistics (e.g. analogical inference, 
domain-specific inference, and structural inference), the bulk of machine learning uses the 
structural inference approach. This uses domain-general algorithms which exploit the 
internal structure of the data, rather than identifying the semantic, domain-specific, 
content of the data. Structural inference is the basis of most machine learning 
frameworks, such as the well-known methods of regression, neural networks and 
Bayesian networks (Danks 2014). Given this data-centric (sometimes known as “data-
hungry”) approach, the recent, easy availability of potentially unlimited data from social 
media and the web, and wider access to cloud-based parallel computing systems such as 
GPUs (which are necessary to apply computationally-intensive statistical computations on 
large datasets) can in great part explain the recent, impressive contribution of machine 
learning to AI, and information technology in general. This is the case of the bootstrapping 
of neural network technology from the shallow MLP networks only trainable with small 
datasets in the 80s, 90s and early 2000s, to the deep CNN trained on huge datasets in 
the last 10 years. 

Machine learning comprises a set of methods typically grouped into supervised and 
unsupervised techniques, as well as reinforcement methods. Supervised learning 
algorithms need a labelled dataset, i.e. where each data point (e.g. an image of a dog) is 
associated with a supervision signal or ground-truth (e.g. the category label “dog”). The 
learning algorithm has to find the parameters of the model (e.g. weights of a neural 
network) using the error between the model’s own guess and the supervision label. 
Examples of supervised learning algorithms include MLP, CNN, and LSTM neural 
networks, decision trees, support vector machines and regression. Reinforcement 
learning can be considered part of the supervised approach, but where the supervision to 
learn a policy (e.g. actions that should be taken when certain sensory conditions prevail) 
is guided by a reward function (but see below for a view that separates supervised 
algorithms and reinforcement learning). Unsupervised learning algorithms do not require 
a labelled dataset, as they discover the regularity in the data and their organisation in 
separate categories. Example of unsupervised learning include the clustering algorithms 
such as k-means and autoencoder neural networks, 

Yan LeCun, one of the founding fathers of deep learning, uses the metaphor of a cake 
to show how these methods are organised: “If intelligence is a cake, the bulk of the cake 
is unsupervised learning, the icing on the cake is supervised learning, and the cherry on 
the cake is reinforcement learning” (LeCun 2016). He has recently extended the concept 
of unsupervised learning, using the terms self-supervised and predictive learning. This 
is to refer to the power of unsupervised methods, such as autoencoders and word 
embeddings, that can automatically extract partial information from noisy or incomplete 
input data to predict the rest of the data. 
An important set of machine learning approaches is that of Bayesian learning algorithms. 
The general Bayesian framework is based on the intuition that the beliefs after observing 
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some data is determined by the probability (prior probability distribution) of each possible 
explanation given that data. When processing a dataset, the machine learning algorithm 
uses the Bayesian rule to calculate the correct probability distribution over the hypotheses 
given that data. And given large datasets, the computations required for Bayesian 
learning become too difficult to be done analytically, thus the recent boost of Bayesian 
algorithms with easy access to parallel computational resources (Danks 2014). 

Machine learning is to a great extent responsible for the recent successful 
developments in AI. The most successful and widely used applications in speech 
recognition, computer vision, natural language processing and robotics applications are 
based on deep learning and other Bayesian approaches. This includes the design of 
DeepMind’s AlphaGo and AlphaZero systems, based on the combination of deep neural 
networks, reinforcement learning, and AI search algorithms, which, as we will see in 
Section 3.4 below, were able to outperform human champions in the Go game, even 
without human knowledge or supervision (Silver et al. 2016).   

3. Example applications 

3.1 AI applications in Medicine 
The application of AI to medicine and healthcare has its origins in the early GOFAI 
developments of expert systems, such as the MYCIN for infectious diseases and 
DENDRAL on discovery of chemical compounds. More recently, the advent of machine 
learning and its focus on learning from data, has led to a resurgence of the development 
of medicine AI systems. These range from the use of deep learning for diagnosis of 
clinical images, on electronic health records, on medical sensors data and on the latest AI 
models on genomics and molecular and protein structure understanding (Miotto et al. 
2018; Senior et al. 2020).   

 Deep learning methods, such as CNNs because of their impressive performance with 
2D image recognition, have been widely used for image-based cancer detection and 
diagnosis (Hu et al. 2018). For example, in skin cancer diagnosis, the performance of 
CNNs to classify biopsy-proven clinical images (e.g. malignant melanomas versus benign 
nevi) was on par with that of 21 board-certified dermatologists. The AI system was trained 
using a dataset of 129,450 images with 2,032 different diseases (Esteva et al. 2017).  

 A recent landmark achievement in medicine and biochemistry is the AlphaFold AI 
model for protein folding. This was developed by Google DeepMind and was the winner 
in 2020 of the biennial Critical Assessment of protein Structure Prediction (CASP) 
competition. AlphaFold achieved a performance similar to the results from experimental 
methods. AlphaFold uses attention-based deep neural networks to interpret the structure 
of the spatial graphs, used to represent the proteins (Senior et al. 2020). 

 Medical AI applications present significant technological and ethical challenges. 
One key issue is the reliance on the quality and variety of the training data, as healthcare 
datasets typically are sparse, noisy, heterogeneous, and time-dependent. Moreover, new 
methods and tools are needed to enable interactive machine learning to interface with 
healthcare information workflows, keeping the human in the loop (Miotto et al. 2018; 
Holzinger 2016). There are also important ethical considerations. One is for example the 
need for explainable systems so that clinicians (both novice and expert doctors) can 
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access causal explanations of the AI’s decision-making process (Holzinger et al. 2019).  
We return to this issue of trust and explainability in AI in Section 4.3. 

3.2 AI applications in Robotics 

Robots feature prominently in the general public’s perception of artificial intelligence. 
While there is a long way to go to achieve what they are capable of in science fiction 
movies, impressive progress in mechatronics and control has been achieved over the past 
ten years, for example in the mobility displayed by robots such as Atlas (Atlas, 2021) from 
Boston Dynamics (Boston Dynamics, 2021) and the dexterity of the Shadow Hand 
(Shadow Hand, 2021). However, despite recent advances in cognition-enabled 
manipulation in everyday activities (EASE, 2021), the same cannot be said for the 
cognitive capabilities of robots. Nevertheless, robotics remains a key element of the 
domain of AI, and AI tools and techniques play a central role in achieving the robust 
performance that are required of robots, especially when they are operating in 
environments that are not engineered to facilitate their operation. 

AI is used in robotics for many purposes, including autonomous navigation, task 
planning, task execution, object detection, object grasping and manipulation, inspection & 
surveillance, social human-robot interaction, including natural language processing, facial 
recognition, sentiment analysis, gesture understanding, and intention recognition. It is also 
used in an extensive range of robots. At the time of writing, the IEEE robots website (IEEE 
Robots, 2021) features 229 robots of many different types: wheeled, legged, tracked, 
airborne, underwater, and humanoid, targeting consumers, entertainment, education, 
research, medicine and health care, disaster response, service & industrial, aerospace, 
military & security applications, telepresence, self-driving cars, and agriculture. Perhaps 
the epitome of AI in robotics is the goal of creating a collaborative robot, i.e. one that can 
share a common goal and share the human’s intentions to achieve that goal, acting jointly 
with the human, paying attention to what the human is doing, and, crucially, anticipating 
any help the human might need to complete whatever tasks she or he is working on. 

The overlap between robotics and AI is a good illustration of the manner in which the 
scope of AI has expanded to embrace many techniques in computer science and 
engineering, e.g., control theory, machine learning, signal and image processing, as we 
noted in the introduction. In addition, AI techniques are used to support the core cognitive 
abilities of perception (i.e., the interpretation of sensed data), attention, action selection, 
memory, learning, reasoning, metacognition, and prospection (Kotseruba and Tsotsos, 
2020). 

One example of AI in robotics is robot-enhanced therapy (Cao et al., 2019) where 
robots assist a psychotherapist working with children with autism spectrum disorder, 
specifically next generation robot-enhanced therapy. Under the guidance of clinical 
practitioners, this project developed interactive capabilities for social robots that allowed 
them to engage a child in clinically derived exercises. The robot can operate 
autonomously for limited periods under the supervision of a psychotherapist. AI plays a 
major part in the success of this application, specifically in its cognitive ability to interpret 
body movement and appearance-based cues of emotion. This allows the robot to assess 
the child’s actions by learning to map them to therapist-specific classes of behavior. In 
turn, the robot also learned to map these child behaviours to appropriate robot responses, 
again as specified by the therapists. 
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One of the goals of cognitive robotics is for humans to be able to give a robot some 
task to do by stating that task in the same terms they would use if they were talking to 
another human being, conveying just the essence of the goal without have to specify 
exactly how that task is the be carried out. Fig 2. shows a PR2 robot in the process of 
pouring popcorn from a saucepan during a demonstration of cognitively-enabled robot 
manipulation using the CRAM cognitive architecture (Beetz et al. 2010).  

 
 
 

 

 
 

Fig. 2. A PR2 robot demonstrating cognition-enabled manipulation by using knowledge 
and reasoning to determine the motions required to pour popcorn from a saucepan 
(Sandini et al. 2021). 

3.3 AI applications in the Web and Social Media  
AI is having a tremendous impact in a variety of applications and functionalities for the 
web (e.g. search algorithms, music and video recommendations, automatic translation) 
and social media (e.g. news selection and recommendation, sentiment analysis, face 
recognition). Although this progress is resulting in clear benefits to people and society, it 
also carries important ethical considerations and risks. 

 AI has significantly changed the search algorithms for the web. For example, 
Google’s initial PageRank algorithm (based on standard mathematical methods) has now 
developed in a collection of search tools, such as the Hummingbird framework. This, for 
example, complements PageRank’s results with RankBrain, based on machine learning 
algorithms for entity recognition, and the recent introduction of BERT (Bidirectional 
Encoder Representations from Transformer), which uses a neural network for natural 
language processing. BERT uses word context to find more semantically-relevant 
information, allowing it to select ‘featured snippets’, i.e., short snippets of text, figures, or 
tables that appear at the top of Google’s search results and provide definitions of the 
searched-for item. In fact, Google has become a “machine learning first” company (Levy 
2016). 
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 Another example of the widespread use of AI and machine learning algorithms in the 
web is for recommender systems. This, for example, concerns recommendation for 
related purchases in e-commerce sites, suggestions of related news and friends in social 
media, and personalised recommendation in media streaming sites and apps. 80% of 
movies watched on Netflix are based on AI recommendations (Zhang et al. 2019). As in 
other domains, deep machine learning systems have become the default algorithm for the 
latest recommendation systems. This raises important issues for consideration, such as 
the need for machine reasoning and explainable recommendation with back-box deep 
neural, and the ethical implications concerning the influence of these algorithms in politics 
(e.g. introducing bias into recommendations and social media content during elections), in 
public health (e.g. undermining scientifically-grounded health advice) and in the 
generation and diffusion of fake information, generally. 

AI applications for face recognition have also become widespread in the web and in 
social media. These algorithms can be used for image matching  and people recognition 
(e.g. in social media photo tagging) as well as for authentication (e.g. to implement secure 
access in some smartphone systems). A variety of AI and machine learning algorithms 
have been developed to implement this functionality (e.g. Bayesian and support vector 
machines) with the recent design of a variety of deep learning face recognition systems 
typically based on CNN and autoencoders (Guo & Zhang 2019). However, face 
recognition algorithms based on learning from datasets have important ethical 
implications, e.g. regarding possible biases in the data used for the training. For example, 
In 2018, a seminal paper by computer scientists Buolamwini and Gebru (2018) 
demonstrated that leading facial recognition systems produced substantial disparities in 
the accuracy of gender classification, e.g. with error rates of up to 34.7% in the 
classification of darker-skinned females (whilst the maximum error rate for lighter-skinned 
males was 0.8%). This highlights the urgent need to address and remedy implicit bias in 
such systems and make sure they are based on fair, transparent, and accountable facial 
analysis algorithms. 

3.4 AI applications in Sports  
While the use of statistical analysis is well-established in sport, AI is taking it to a new 
level. Possible applications range across the entire spectrum of activities. Barlow and 
Sriskandarajah (2019) identify eleven applications across seventeen sports which are 
being or will be impacted by AI. These applications include identifying talent and 
determining optical game strategies. Together with wearable sensors, AI can also assist 
with training by providing advice on optimal nutrition, enhancement of physical skills, and 
recovery management, much like recommender systems do for online marketing and 
decision support in business. 

AI technologies such as computer vision have been used routinely to assist with 
umpiring during games, especially using automated ball tracking and line calling 
applications. For example, the Hawk-Eye system (Hawk-Eye, 2021) visually tracks the 
trajectory of the ball using six high-speed cameras, the images from which are used to 
triangulate the ball’s position over time, displaying a virtual reality trajectory of its 
statistically most likely path. While the system is widely used in many sports and is 
accurate to within 3.6 mm, there is also some debate about whether the system’s 
decisions should be accompanied by a confidence value. In this context, Collins and 
Evans (2008) note that systems such as Hawk-Eye illustrate the difference between the 
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models of the world that AI uses to make decisions and the uncertain reality of the world 
they model. Such systems are also used to provide statistical information on the 
performance of players when training and on competitors when preparing for matches. 

AI can also be used for automated generation of video highlights, while integrated 
vision and natural language technology can be used for automated generation of copy for 
publication in print and online. Chatbots are used to enhance the experience of fans and 
also support interaction with the media. Drone cameras are used to provide game footage 
and enhance security. Other examples include optimisation of policies for stadium entry 
and the use of smart ticketing. 

The All England Lawn Tennis Club hosts the annual tennis championship at Wimbledon 
and uses IBM’s Watson technology to provide a variety of services, including real time 
match reports and uncovering player insights. It also powers a voice-activated 
cognitive assistant “Fred”, named after the late champion Fred Perry, to help spectators 
find their way around the venue (Shaw, 2017). In 2017, in order to determine what 
attributes make a great champion, IBM Watson analyzed tennis champions across six 
broad categories including passion, performance under pressure, serve effectiveness, 
stamina, how well the player either adapted their normal playing style to an opponent or 
was able to force an opponent to conform to their tactics, and the ability to return serves. It 
used 22 years of unstructured data and analyzed an estimated 53,713,514 tennis data 
points, captured since 1990. Watson’s Personality Insights API helped uncover player 
traits and behaviors based on previous player interviews, information which served to 
engage and inspire discussion among experts, sports commentators, and fans. For 
example, Watson’s analysis revealed that a player’s serve had improved every year and 
was the driving force to her becoming a Wimbledon champion (Shaw, 2017). 

To identifying successful game strategies, an AI system can play against itself, as 
the DeepMind AlphaGo system did, before going on to beat Lee Sedol, the winner of 18 
world titles, in 2016, and achieve 60 straight wins in time-control games against top 
international players in 2017 (AlphaGo, 2021). The original version of AlphaGo used two 
neural networks, a policy network that produces moves and a value network that 
evaluates board positions. The policy network was trained by supervised learning based 
on human expert moves and subsequently refined by reinforcement learning by playing 
against itself. Subsequently, in AlphaGo Zero, even better performance was achieved 
based purely on reinforcement learning without any prior supervised training. Apart from 
its formidable performance, what is significant about AlphaGo is that it uncovered several 
innovative strategies that greatly surprised expert players, demonstrating the potential for 
AI to augment human abilities and exceed human performance. 

4. Future challenges    

4.1 Collaborating with machines and robots 
AI has contributed significantly to the design of intelligent control models and cognitive 
architectures for sensorimotor behaviour (e.g. perception, navigation manipulation) and 
cognitive capabilities (e.g. planning, language) in robots, as we have seen in section 3.1. 
But major challenges still remain for the realisation of above skills, specifically to allow the 
robot to handle the complexity of real-word scenarios, i.e. cluttered, dynamic, 
unpredictable environment where objects to be grasped or obstacles to be avoided are 
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difficult to see, can be occluded, or change their position over time. Beyond the 
complexity of designing skills in individual robots, a significant challenge for robots, and 
intelligent machines in general, is that of handling interaction with people for 
collaborative tasks, also known as human-robot interaction (HRI) and social robotics 
(Bartneck et al. 2020). This type of interaction includes a variety of scenarios, such as 
joint action in flexible manufacturing setup between a worker and a cobot (collaborative 
robot), assistive robot companions for older and disabled people or in hospital and care 
homes, and robot tutors for education or entertainment. Within the field of HRI and 
collaborative human-machine interaction, some of the challenges for future research on 
the combination of AI and collaborative robots concern (i) the skills required interaction, 
such as the ability to read a human’s intentions and form a theory of mind, i.e. modelling 
her or his goals and state of mind, (ii) the mode of interaction with machines with variable 
autonomy, and (iii) the quality of interaction for long-term, trustworthy interaction that 
fosters well-being. 
 

  

  
Fig. 2. This sequence of pictures depicts a situation in which the iCub humanoid robot 
(www.icub.org) is interacting with a human, reading her intention to get her phone from 
her bag, and alerting her to the fact that it is on the desk, hidden from her by the laptop.  
This sequence has been staged to illustrate the future capabilities of a cognitive robot and 
has not yet been implemented (Sandini et al. 2021). 
 

The research challenge on the use of AI for the design of the social and cognitive skills 
for interaction include for example the capability of intention reading and the 
implementation of an artificial Theory of Mind (Vinanzi et al. 2019). Intention reading is 
the capability of the robot to detect the human user’s intended goal of the joint interaction. 
For example, when a cobot is working with a person to assemble a table, it must 
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anticipate the goal and the next action that the person is expecting the robot to perform. 
Theory of Mind describes a more general view of intention reading, as this concerns the 
robot’s capability to understand and predict the belief, desires and goals of the person; 
see Fig. 3. AI methods, such as Bayesian networks and deep learning, can be used to 
build artificial Theory of Mind skills in robots (Vinanzi et al. 2019).  

The mode of interaction between people and robots and machines concerns the 
concept of variable autonomy. Rather than considering the extremes of a fully 
autonomous machine (e.g. autonomous car without a driver) or of a fully tele-controlled 
robot (e.g. remote control of a mobile robot in a nuclear site), most of tasks in which 
intelligent robots will interact with people concern a variable degree of collaboration, 
requiring a robot with a variable degree of autonomy to adapt to the user needs and to the 
environmental circumstances. This could be for example the case of intelligent assisted 
driving and the six levels of driving automation identified by the car industry. Future 
intelligent vehicles will dynamically switch from situations in which the car performs some 
lane-following, steering and acceleration tasks autonomously, when it can easily 
recognise the road and traffic condition, whilst the driver must take control when the car is 
unable to perform the driving task (level 3 of conditional driving automation). 

Another important future research direction in AI for collaborative robotics concerns the 
quality of the interaction, i.e. the design of long-term and trustworthy interaction and 
wellbeing in human-robot collaboration. Long-term interaction requires the robot to be 
able to engage in continuous, meaningful, and contextualised interaction over a series of 
interactions lasting for days, weeks, or longer. This will require the ability to recognize the 
person and their personality and preferences, to remember recent interactions, and to 
engage in empathic behaviour with the person needs (Leite et al. 2013). This is a 
significant challenge in robotics, as the great majority of current intelligent robots are only 
capable of short term (typically one-session only) interaction. Trustworthy interaction, a 
growing field of research, requires people’s acceptance and trust of the robot’s behavior 
and decision making process. This is also linked to ethical issue explainable AI (see 
section 4.4) and to the achievement of  peoples’ and robot’s reciprocal theory of mind 
(Mou et al. 2020; Vinanzi et al. 2021).   

4.2 Self-learning and self-programming machines  
The quest for the automatic generation of computer programs, also known as program 
synthesis or self-programming machines, has been one of the main challenges of AI since 
the outset. Since the first symbolic (GOFAI) approaches to AI, and systems such as the 
General Problem Solver (Newell and Simon 1976), the idea was that AI systems can use 
general-purpose knowledge to generate new text, solve mathematical and practical 
problems, and create new computer programs. In addition, with the advent of machine 
learning approaches, AI has started to put emphasis on self-learning machines, which can 
learn with no or minimal supervision from humans.  

This self-programming machine challenge has only recently received a significant 
boost through the combination of deep learning and NLP methods. For example, 
DeepCode is a code generator that uses a neural network to predict the properties of the 
program that can produce the outputs given specific the inputs (Balog et al. 2016). 
SketchAdapt, i.e. a system that learns, without direct supervision, when to rely 
dynamically on pattern recognition and when to perform symbolic search for explicit 
reasoning (Hewitt and Tenenbaum 2020). This mimics the human ability to dynamically 
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incorporate pattern recognition from examples and reasoning to solve programming 
problems from examples or natural language specification.  

Recently, the GPT-3 system (Brown et al. 2020) has been proposed for natural 
language generation, with potential application to automatic program synthesis. GPT-3 is 
a large scale deep learning model for natural language processing with an order of 
magnitude more parameters than any previous NLP model. The model can generate new 
text without the need of further training or task-specific fine tuning of its parameters. This 
has been evaluated with few-shot demonstrations, i.e. via text interaction with the model 
giving the task description and one or few examples. This model demonstrates strong 
performance on many NLP datasets on translation and question-answering. It can also 
perform several tasks that require on-the-fly reasoning, such as unscrambling words, 
using a novel word in a sentence, or performing arithmetic. GPT-3 can produce samples 
of news articles which human evaluators have difficulty distinguishing from articles written 
by humans. In addition, GPT-3 has been used for generating programs, such as for the 
code to create the Google home page (Heaven 2000).  

 Regarding the challenge of creating a  self-learning machine, the first attempts to 
design AI systems and robots that autonomously learn without supervision from humans 
have recently been realised in developmental robotics (also known as autonomous 
mental development). This area of robotics takes inspiration from child development to 
design robots that go through stages of developmental for the incremental acquisition of 
sensorimotor and cognitive skills (Cangelosi & Schlesinger 2015). Developmental robots 
use intrinsic motivation mechanisms (e.g. implemented with reinforcement learning) to 
allow them to initiate and manage self-learning via curiosity-driven mechanisms for an 
open-ended, cumulative acquisition of skills. 

 Another example of self-learning AI is the AlphaZero system mentioned above in 
which artificial agents play the game Go against each other, bootstrapping their final 
learning capabilities. This led to the acquisition of skills that far outperformed the skills of 
the best human players (Silver et al. 2017; see also section 2.3). 

 Returning to LeCun’s cake metaphor for AI and machine learning (section 2.3), his 
suggestion that the cherry on the cake is reinforcement learning has been revised and 
widened, with the cherry now being predictive, self-supervised learning. Here, the agent 
generates its own labels and teaching input, e.g. with autoencoders or Word2vec 
unsupervised learning methods, so that the system predicts the output from partial, 
incomplete, or self-generated input. This suggests that AI will increasingly be base on 
predictive, self-learning methodologies (Peng 2019).  

4.3 Social and Ethical Aspects of AI  

AI can bring significant benefits to all. However, the examples we have given so far 
focussed on applications in the developed world and, indeed most of the national 
strategies on AI have been created by governments in developed countries (OEC- DAI, 
2021). Nevertheless, the fourth industrial revolution in general, and AI in particular, are 
just as relevant for developing countries. For example, AI is having an increasingly 
positive impact in Africa, in sectors such as energy, healthcare, agriculture, public 
services, and financial services (Novitske, 2018, Alupo et al., in press). It has the potential 
to drive economic growth, development, and democratization, to reduce poverty, to 
improve education, to support health-care delivery, to increase food production, to 
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improve the capacity of existing road infrastructure by increasing traffic flow, to improve 
public services, and to improve the quality of life of people with disabilities (Pillay and 
Access Partnership, 2018). 

Paradoxically, the deployment of AI in developed countries can have a severe negative 
impact on developing countries due to the phenomenon known as premature 
deindustrialization (Rodrik, 2016; Kozul-Wright, 2016) which sees low-wage developing 
countries having fewer opportunities for industrialization before achieving income levels 
comparable to those in developed countries. Developing countries lose their competitive 
advantage in manufacturing due to the lower cost automation in developed countries and 
therefore miss out on the economic benefits that developed countries enjoyed as their 
workforces moved from low-value work to manufacturing before progressing to a post-
industrial service economy. Consequently, developing countries are increasingly likely not 
to have the opportunity for rapid economic growth by shifting workers from farms to 
factory jobs because (a) automation undermines the labor cost advantage and (b) 
developments in robotics and additive manufacturing allow companies in advanced 
economies to locate production closer to domestic markets in automated factories, 
allowing this work to be moved closer to home in the developed countries.  

AI can also be used for negative purposes, either intentionally or unintentionally, e.g., 
by fomenting religious, ethnic, social, and political divisions through fake misinformation 
created by deep networks (Besaw and Filitz, 2019). Of particular concern is the issue of 
implicit and explicit bias in the data that are used to train the AI models, thereby resulting 
in discrimination against people on the basis of gender or race. Examples of bias against 
dark-skinned people include in facial analysis (Buolamwini and Gebru, 2018), pedestrian 
detection (Wilson et al., 2019), and in predicting recidivism (Larson et al., 2016).  

There is also the issue of democratization in AI, i.e., open access to AI technology by 
developers everywhere, in both developing and developed countries, Training deep 
neural networks requires access to large expensive computational resources which may 
be out of reach of some.  Training also requires very large data sets and these may not 
be available.  For example, in efforts to use machine learning to make the web available 
in local African languages progress is being inhibited for so-called “low- resourced” 
languages, i.e. languages for which few digital or computational data resources exist 
(Nekoto et al., 2020), because of the lack of sufficient training data. This is symptomatic of 
a problem that is endemic to almost all applications of machine learning in developing 
countries: the paucity of data.  It is crucially important that the fourth industrial revolution, 
powered by AI, happens in a fair, ethical manner (EUAI, 2021). 

4.4 Intelligence, Brains, and Consciousness  

Why does intelligence matter? Indeed, what is intelligence? You should be surprised by 
the fact that we haven’t yet answered this question. We avoided it by defining AI as the 
endeavour to mimic and augment human intelligence and we avoided saying what human 
intelligence is. This has not caused us any problems because we all take human 
intelligence for granted. But let’s pause here to consider what we mean by intelligence 
and why it is so important to be intelligent. The answers will reveal why we have brains — 
the seat of intelligence — and what brains do. This will lead to other questions that are 
harder to answer, such as how consciousness fits into the picture. 
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Let’s start by answering the question: what is intelligence? There are many possible 
answers but the one that has the most appeal derives from the answer to a different 
question: why do we have brains? The neuroscientist Daniel Wolpert provides an 
unexpected but compelling answer. He argues that we have brains to allow us to control 
movement (Wolpert, 2011). This mirrors what Francisco Varela and Umberto Maturana 
say about cognition: “Cognition is effective action” (Maturana and Varela, 1987). From this 
perspective, we see intelligence as the way to be effective in our control of our 
movements and in the way we act in the world. The key to understanding why this is so 
important — and so difficult — is to see that the number of possible ways we can move 
and act, and the number of possible outcomes of these movements and actions, is 
infeasibly large if we are to consider all the possibilities and choose the best one, or even 
a good one. This is what Allen Newell and Herbert Simon pointed out in their Turing 
Award (a sort of Nobel Prize for computer scientists) lecture: “The task of intelligence, 
then, is to avert the ever-present threat of the exponential explosion of search” (Newell 
and Simon, 1976), i.e. the search for good ways to act. Newell and Simon were referring 
to the search for the solution to a problem, but it amounts to the same thing. This is a 
satisfyingly straightforward and very practical way of understanding intelligence and the 
brains that give rise to intelligence.   

However, brains are even better than that. They also predict the need to act and the 
outcome of those actions, and they do so all the time, at every instant, as we act and as 
we anticipate the future, milliseconds ahead, seconds ahead, hours, days, years. Indeed, 
it has been argued that brains are, in effect, probabilistic (meaning they can deal 
effectively with uncertainty) prediction machines (Friston, 2010; Downing, 2009; Seth, 
2015). 

But what then of consciousness? Can intelligent machines also be conscious? Can we 
take AI even further and build machines with artificial consciousness. Many people think 
this is a distinct possibility. Indeed, according to Paul Vershure, “understanding the nature 
of consciousness is one of the grand outstanding scientific challenges” and he proposes a 
scientifically-grounded approach to addressing the challenge of answering the question of 
what consciousness is and how physical systems can give rise to it (Verschure, 2016).  
He maintains that this challenge stands at the centre of knowing what it is to be human.  
In this, he reprises the original motivation for studying AI and one which comes full circle 
in the light of the great advances in AI in the past sixty-five years and the manner in 
which, as we said at the outset, AI affects the way humans live, work, and relate to one 
another. 

5. Summary and Conclusion  
Artificial intelligence impacts on all aspects of human activity: it automates tasks, it assists 
with decision-making, it augments and extends our cognitive capabilities, and it can even 
operate autonomously, if we allow it, without recourse to human oversight. 

AI began as an attempt to understand and replicate human intelligence, initially taking 
two routes to that goal, one via connectionism, and one via symbolic computationalism, 
reflecting their inspiration by behaviorist and constructivist psychology, respectively. 
These two approaches waxed and waned in their own respective ways over the decades, 
to be joined in the 1980s by machine learning and in the 1990s by statistical machine 
learning, probabilistic inference networks, and other established disciplines in computer 
science. Breakthroughs in deep neural network learning and deep neural network 
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topologies, aided by very large data sets and equally large increases in processing power, 
yielded great success in many application domains. The symbolic knowledge 
representation and reasoning approach also developed rapidly, especially in cognitive 
architectures, as knowledge bases and ontologies increased greatly in size and 
sophistication and as the hybrid paradigm, combining symbolic approaches and sub-
symbolic connectionist approaches were developed, e.g. in cognitive architectures such 
as Soar (Laird, 2012), ACT-R (Anderson et al., 2004), CLARION (Sun, 2016), among 
others. 

While the success of statistical machine learning in narrow targeted applications yielded 
great success, it did so at the expense of losing focus on AI’s original goal of 
understanding and replicating human-level intelligence. There has been a resurgence of 
interest in what is now known as Artificial General Intelligence (AGI) in cognitive science 
and cognitive systems. Still, the ultimate goal of replicating the versatility of human 
cognition remains elusive and it is unclear when it will be achieved. What is certain is that 
the AI quest will continue and AI in its many guises will continue to permeate our lives, 
change them, hopefully for the better. 

In seeking to steer the path to the future, it is likely that other strands of thinking will 
woven into the fabric of AI, especially concerning the trustworthiness of AI in autonomous 
systems, i.e. its role in serving the bigger agenda of creating self-maintaining systems that 
can operate robustly and prospectively in the face of uncertainty and that can continually 
develop through self-programming as they interact with and learn from the world and the 
people in it. While there is much important work yet to be done to promote the 
development of democratized, trustworthy, ethical AI in the developed and developing 
worlds, an equal challenge will be how to control the role of AI in autonomous systems, 
possibly conscious ones, where the relationship with humans is no longer symbiotic. We 
are far from that point at present but it is likely we will reach it, and everything will change 
quickly when we do.  

In Ernest Hemingway’s novel The Sun Also Rises there is a dialog between two 
characters which goes as follows. “How did you go bankrupt?” Bill asked. “Two ways,” 
Mike said. “Gradually and then suddenly.”  And so it will be with autonomous AI.  Our 
collective responsibility is to work together in a directed manner during the present 
gradual phase so that, when the full impact of AI is suddenly felt, it will be for the greater 
good of all humankind. 
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