i o AR

PREMIER COLLGQUE IMAGE 863

Traitement, Synthése, Technologie et Applications

EIARR

ITZ

— Mai 1884 -~

" Vision Robotigque Appliquée au Sertissage Automatigue
de Fils Electriques

Robot Vision in Automated Electrical VWire Crimping

David Vernon

Department of Computer Science, University of Dublim, Trinity College, Dublin, Ireland.

RESUME

Ce rapport déerit la vision robot
s A s : ot s
appliquée au sertissage automatique de fils

flectriques. Ce . procéd

de fabrica

ique

tion

consiste & choisir wun fil d'un plateau, de

saisir un bout de fil avec
robotique, et de metire
sertisseuse automatique.

attache la fixatiom puis

un manipula
le bout dans
La gertiss
le manipula

remet le fil dans un plateaun secondaire.
suppose gqu’'on ne met qu'un ou deux fils 1'un

sur 1l'autre & la fois

dans 1le pre

teur
une
euse
teur
On

mier

plateau. L'une des techniques discutées ici
est la segmentation des image des nivesaux
gris au moyen d'operations de seuillage et ce

rapport déscrit un algor
pour choisir un seuil.

ithme automal
Cet algorithme

de

ique
est

fondé sur la théorie (de Marr et Hildreth) de
detection des contours. Ce rapport décrit un
algorithme qui amincit les images binaires en
suite, et qui produit un modéle squelettique,

un pel de largeur, des fils

. On . déerit

un

autre algorithme heuristique qui analyse ces

squelettes et gui extrait 1
1'orientation d'un point
manipulateur robetique peut
Cet algorithme-ci donne

1'orientation du bout de fi

es coordonnées
applicable o
gaisir le
7
les coordonnee
1 pour le me

et
le
fil.
s et
ttre

dans Ya sertisseuse. Toutes les coordonnees
et les orientations sont rapportées dans
rdfdrentiel du monde reel. Oun se sert
polyndmes de troisiéme ordre pour modeler
distorsion de caméra et aussi pour modeler la

correspondence entre les
1'image et les coordonnees

coordonn?es
du monde reel.

un
des
la

de

SUMMARY

The use.of robot vision in automating an
electrical wire crimping process is
described. . This process comprises selecting
a wire from a tray, grasping this wire near
one end with,a robot manipulator, and placing
the end in a crimping press. The press is
activated, attaching the ecrimp, and the wire
is +then ©placed in an auxiliary output tray.
It is assumed that the wires are layered mno

mnore than one or two deep. Techniques
involved in this application include
grey-scale image segmentation by
thresholding. An automatic threshold
selection algorithm based on the
Marr-Hildreth theory of edge detection  is
detailed. An ‘algorithm is described which

thins subsequent binary images, producing a
one-pixel wide ‘skeleton model of the wires to
be crimped. A skeleton-based heuristic
analysis algorithm is also described which
selects and identifies the coordinates and
orientation of an appropriate point at which
the robot manipulator may grasp the wire.
The =algorithm also derives the position and
orientation of the nearby wire-end to
facilitate insertion into the crimping press.
ALl sensed positions and orientations
supplied are given in a real-world reference
frame; third~-order polynomial spatial
warping functions are used to model both the
camera distortion and image to real-world
coordinate reference frame transformation.
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1.0 INTRODUCTION.

The manufacture of many electrical and
electronic sub-assemblies involves the use of
insulated electrical wiring. Such wiring
varies considerably in length and must be
properly prepared before being incorporated
in the unit being manufactured. This
preparation imcludes cutting the wire to
length, stripping ’the insulation from both
ends, and either tinning the ends with solder

or attaching crimps (see diagram 1(a)).
Presently, the first two 6f these processes
nay be effected automatically using
high-volume  automatic wire cutters and

strippers, but the third process is normally
accomplished by a human operator manually
dipping the wire ends in flux and solder, in
the first case, or crimping the wire using a
crimping press, in the second.

This paper is concerned with the use of
visual sensing to facilitate the automation
of this crimping process by a robot
manipulator.

Conventional first-generation robotic
systems, which do6 mnot incorporate visual
sensing, require that  the work-pieces (in
this case, the wire strips) are all uniformly
oriented and uniquely presented to the robot
arm [ SIM08O, p-20]. ‘Accomplishing this with
wire strips is not a trivial task as the wire

will, in general, adopt an  arbitrary
curvilinear profile. It would require
specialised Jjigs to present the wire

correctly to the end-effector, and such

machinery would have to be able %o adapt to
wire strips of different length and
thickness. The use  of visual sensing to

select and identify the wire strip offers a

legitimate alternative solution.

The approach taken in this paper
endeavours %0 constrain the work environment
s6 that the scene presented to6 the camera is
not truly random. This is  achieved by
stipulating that the wires are arranged no
more. +than one or two layers deep in the tray
and the tray constitutes a clearly ~visible,
and contrasting, visual background. In
addition, it is assumed that +the wires are
'almost flat’, that is, their spatial

variation in the third dimension is minimal.

been
constructed to simultaneously grip the wire
and push it down onto the tray (see diagranm
1(b)). This mechanism for grasping the wire,
together with the above constraints, allows
the assumption that the wire actually lies in
the plane of the tray. This obviates the
need to explicitly extract the z component of
the wire position; only the x- -and 7y-
coordinates of the grasp and end points are

A special-purpose end-effector has

required. Tsuji et al. have developed a
robot vision system which didentifies the
three-dimensional geometry of electrical
wires but their technique assumes the
presence of clearly-defined shadows and
published results have demonstrated their
technique for scenes containing only two

wires | TSUJB2].

2.0 METHOD.

The solution to this sensing problem reduces
to acquiring 'a grey-scale image, segmenting
the image into two regions (the wires and the
background) by thresholding, and explicitly
modelling these wires by skeletonising the
image. The - wire skeletons are subsequently
analysed by searching for some wire which
might be weasily grasped by the servo systenm
and then extracting all salient dinformation
which the robot requires to accomplish the
grasping and crimping action. A similar
approach has been taken in problems concerned
with the analysis of paper pulp fibres
|KASV78]| and of asbestos fibres {pIxe78].

2.1 Segmenting The Image.

?wo distinct approaches, Dboundary detection
and regionm growing, may be taken to the
segmentation problem |BALL82, p.-116]. A
commonly-used and simple region-based

technique 1is grey-level thresholding. In

cases where an object 1is rTepresented by
uniform grey-level and rests against a
background of different grey-level,
thresholding at an appropriate level will

assign a value of O %o all pixels with a
grey-level less than the threshold and =
value of 1 to all pixels with a grey-~level
greater than the threshold. This segments
the image into ~two disjoint regions, one
corresponding to the vackground, and the
cther t6 the object.

In more detail, a “threshold operation
may be viewed as a test involving a function

T of the form

T(i,3,8(5,5),8(1,3))

whers g(i,j) is the grey-level of the point
(i,3) -and N(i,j) denotes some local propsrty
0of the point (i,3), <=-.8- the avs-age
grey~level over some neighbourhood. If
2(i,3) > T(i,3,8(1,3),8(1,3)) tnen (i,35) is
labelled an object point, otherwise it is
1abelled as a background poin%t, or conversely
“WESZ78,  p.259-. This is the mos%t gsneral
form 6f the function T and three classes of
+hresholding may be distinguished, based on
res%rictions on T. These are global, local,
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T = T(g(i,j)),
that is of specific interest here.

global thresholding, where

The problem for reliable segmentation is
to select the appropriate threshold. Weszka
| WESZ78} provides a good survey of threshold

selection techniques. One approach to
threshold selection | KATZ65] evaluates the
zradient of the image to be segmented and

uses the average grey-level of those pixels
having high gradient magnitudes as an
estimate of the threshold value. Points in
an image with high gradient values normally
correspond to edges and such edges frequently
lie on the boundary Dbetween object and
background. Typically, the grey-level of

this boundary pixel will lie between that of
the object and the background and so
thresholding at this -level 1is 1likely to

gegment the image into object and background.
The problem lies in deciding what constitutes
a "high' gradient magnitude and one is
presented with a (new) threshold selection
task.

The technique described here is similar
to this approach but, instead of using pixels
having large gradient values, oznly those
pixels explicitly on the edge/boundary are
used, these being found with a reliable edge
detector which is not dependent on
thresholds. Such a detector is derived from
the Marr-Hildreth theory of edge detection
| MARRSO |.

Briefly, +the Marr-Hildreth theory of
edge detection is based on the Laplacian -of
an image that has been convolved with a 2-D
Gaussian function. The Laplacian is the sum
of the second {unmixed) partial derivatives;
the second derivative o6f a point of high
spatial frequency (i.e. a poin%t at which the
image grey-level changes very sharply)
generates high positive and negative values
on either side o6f +the intensity change.
Isolating these positive-to-negative-, or
zero-, crossings effectively identifies
points of high intensity change, i.e. edges.
The Gaussian is used t6 smooth the image and

Gaussian functions of different standard
deviation yield edges derived at different
scales within the image. By correlating
edges detected at different scales, true or
significant edges may be generated. A
property of convolution allows the
convolution with the Gaussian and the

evaluation of the Laplacian to be combined as
the convolution with +the Laplacian of the

Gaussian. This simplification affords
significant computational savings.

While Marrs theory requires the
correlation of edge segments derived using

Gaussians of different standard deviation,
empirical studies indicate that the edges
detected by one operatér alome are reliable.
The operator implemented here uses a Gausgsian

with a standard deviation of two.

The threshold selection procedure first
uses a Marr-Hildreth detector to locate edges
in the image and the mean grey-level of the
image pixels at these edge points 1is
computed. This mean represents *the global
threshold value.

again -

2.2 Generating Wire Skeletons.

The skeleton of an object may be thought of
as a generalized axis of symmetry of that
object [LEVITO, p.62). Serra |SERR82, p.375 |
attributes the first formalisations of the
concept of a skeleton to Motzkin [MOTZ35] and
Blum L BLUMG2 |; indeed, the medial axis
transform (MAT) proposed by Blum | BLUM67] is
one of the earliest and most widely studied
techniques for generating the skeleton.

The skeleton is frequently wused as a
descriptor of shape |PAVL78, p.246) and one

of the important features of the MAT is that
the shape boundary may be easily”
reconstructed from the medial axis. The
concept of thinning the binary image of an

object is related to such transformations inm
that it generates a representation of an
approximate axis of symmetry of the shape by
the successive deletion of pixels from the
boundary of the objects. In general, such a
thinned representation is not formally
related to the original object shape and 1%

is not possible to reconstruct the original
boundary from the thinned object. Numerous
thinning algorithms exist and a survey is

given in | TAMUT8].

If one treats a thinning algorithm as
one - that removes . object pixels from an image
according to some constraints then it remains
to consider what these constraints must be.

First, the pixel must be a border pixel.
This implies that it has at least one
neighbouring pixel which dis a background
pixel (an  8-~adjacency convention is assumed
throughout). Civen that the image 1is Dbeing
scanned in a raster format, seeking potential
pixels for removal, then. if those border
pixels are removed just as they are found, it
is unlikely that the resulting thinned object
will represent a skeleton of the object, i.e.
that the Tremaining pixels are equidistant
from the original Dboundary. A remedy for
this is to make successive passes of the
image, vremoving pixels with different border
orientations on successive passes. For
example, ~such a sequence might ©be XNorth,
South, East, West, North, South, etc.
[ ROSE82, p.232].

The second restriction is that deletion
of a pixel =should mnot destroy the cbjects
connectivity. The number of skeletal lines
after thinning should be the  same as the
number of objects 1in the image before
thinning. This problem is related %o the
manner in which each pixel in the object is
connected to every other pixel. Pixels are
said to be connected to, and a component of,
an object if it has a grey-scale of 0 and at
least one adjacent object pixel. Consider
now the following five-pixel object:

A E
B C D
The pixel C ‘'comnects' the two cbject

n

segnents AB and =D, that 1is, if C were
removed then it would break the object in
two this pixel is 'eritically-connected’ .
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Obviously, this property may occur in many
more cases than this and
critical-connectivity may be characterised as
follows:

Given a pixel, 1labelled 9, and its eighf
adjacent neighbours (labelled 1-8)

1 2 3

8 9 4

7 6 5
and assume that writing +the pixel number
(e.g. 8) indicates presence, i.e. it is an
object pixel, whereas writing with an
over-bar (e.g. 8) dindicates absence, i.e.
it is a background pixel. Assume, 'also,
normal  Boolean sign conventions (+ indicates
logical OR, and . indicates 1logical AND).

The pixel 9 is critically-connected if

9.1L(1+2+3).(5+6+7).4.8]
+[ (1+8+7).(3+4+5).2.6]
+|1.(3+4+5+6+7).2.8]
+[3.(5+6+7+8+1).2.7% ]
+15.(7+8+1+2+3).4.6 ]
+[7.(1+2+3+4+5).6.8]}4
is true. Hence, the  second restriction
implies that if a ©pixel satisfies +this

condition then it should not be deleted.

A thinning algorithm shéuld preserve . an
6bjects length (approximately, at least). To
facilitate this, a third restriction must be
imposed such that the arc ends, i.e. object
pixels which are adjacent %0 just omne other
object pixel, are not deleted.

The final thinning algorithm, <then, is
to scan the image in a raster Tfashion,
removing all object pixels according to these

three restrictions, varying border
orientation from pass t6 pass. The image 1is
thinned until four successive passes
(corresponding to the four border
orientations), producing né changes to the
image, are made. At this stage, thinning

ceases.

2.3 Analysing The Image.

There are essentially two features that need
to be extracted from the image:
o Identification of a go66d poéint at which

the robot end-effector should grasp the
wire and the oOrientation (tangent) of
this point on the wire.

o The position and orientation of the wire
end in relation to the point at which
the wire is to be grasped.

The orientations are required because unless
the wire 1s gripped at right angles to the
tangent at the grasp point the wire will
rotate in compliance with the finger grasping
force. The orientation o6f the endpoint is
important vwhen inserting +the wire in the
crimping-press a3 the wire 3is introduced

path coincident with the tangent 5
the wire at the end point.

along a

segment is defined as a
subsection of a wire bounded at each end by
either wire-crossing or an arc-end (wire
segment end). Thus, a wire segment with two
valid end points, at least one of which is an
arc~end, and with a length greater than some
predefined system tolerance, contains a
feasible grasp point. This is a point some
suitable fixed distance (15 mm) from the wire
end. Additional constraints have been
incorporated to avoid selecting wires in
situations where the wires occlude each other
near their ends.

A wire

Once +the positions (i and j inage
coordinates) of both the grasp point and the
end point are known, the oriemtation or the
tangential angles of these two points must be
estimated. The tangent to the wire at the
grasp point is assumed to be parallel to ‘the
line joining two skeletal points displaced by
two pixels on either side of the grasp point.
The tangent to the wire end is assumed to be
parallel to a line joining the end point and
a skeletal point three pixels from the end.
Both these tangential angles are estimated
using the world coordinates corresponding to
these pixel positions.

The complete analysis algorithn
comprises two subsections: a raster scan
mechanism and a wire tracking mechanism.  The
image i1s scanned in.a raster fashion until an

object pixel is encountered. ~If this pixel
has not been previously visited its
coordinates are ©passed to the tracking

it has been encountered then
it must lie on a path already rejected for
grasping purposes and the scan  simply
proceeds. Scanning continues until 4l1l image
pixels have  been  visited or until a valid
grasping point is found by the +tracking
mechanism. A spacing of twenty Dbetween
successive scan lines has been chosen since
this affords a more efficient way of
searching the image. This necessitates that
twenty passes of the image may be required by
the scanning algorithm, each pass starting at
an origin displaced from the previous one by
one pixel spacing.

algorithm. If

The wire tracking mechanism involves
following the wire  path in all directions
from the point passed to it by the scanning

algorithm. It tracks until either a wire
crossing or a wire end is encountered. If a
wire segment with two valid endpoints
(arc-ends or valid crossings), at 1least one
of which 1is an arc-end, and with a length
greater than a pre-defined system tolerance

is encountered, then the point at a fixed
short distance from the arc-end of this
segment qualifies as a valid grasp point and
is identified as such. The coordinates of

the endpoint are then extracted by following
the wire to the end; tangential = angles are
determined in accordance with %the techniques
discussed above.
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2.4 The Camera Model: Between

Interfacing
Images And The Real-world.

using robot vision to identify the
position (and orientation) of objects to be
manipulated by a robot, the relationship
between the image coordinate reference frame
and the real-world reference frame must be
established.

When

Simple approaches to this problem,
| BALL82, pp.-481-484 ], assume that
image/robot reference frame
linear. However, there 1is a
non-linear component in the
camera/robot configuration. This is due to
geometric  distortion introduced by the
imaging system and inaccuracies in the actual
robot calibration. Consequently, this
approach to gemerating a camera modél was
unsuccessful. So, in addition +to defining
the relatlionship between image and
real-world, a useful solution must also model
the spatial or geometric distortion in the
camera and the non-linearity of a supposedly
cartesian robot reference frame. To
facilitate such a solution the requisite
transformation is confined to a
plane-to-plane non-linear mapping, normally
referred %o as a spatial warping function.
This implies that for any given plane in the
real-world one may generate a transformation
between image coordinates (i,j) and robot
coordinates (x,y), assuming z is constant and
kxnown. This relationship may be expressed by
the following equation:

Y-
the

significant
present TCD

(W, (1,3), W, (i,3))

point (1,3) the
x and y coordinates may
functions ¥,

(x,Y)

Thus, . given -any image
corresponding robot
be generated using the warping
and L respectively. Since analytic
expressions for W, ~ and W, - will rarely be
krown, _a common approach is t0 model each
spatial warping function by an nth order
polynomial |PRATT8, p.430-432}. Third-order
polynémials (in the two variadles .1 and j)
have been used for this application and the
probled is now  to derive the sixteen
coefficients of each polynomial. The
solution is facilitated by solving two sets
of sixteen simultaneous equations, of the
form of +the ©polynomials din W, and W,
respectively, derived by associating sixteen
control points in the real-world with .their
corresponding sixteen image points. The
values of the coordinates of these image and
real-world points are determined empirically.
In this implementation, the system has. been
over-determined by wusing thirty six points
(since exact solutiomns %6 this problem were
found to be ill-conditioned) and a
least-square-error estimate of the polynomial
coefficlents computed.

To model the <robot non-linearity the
robot has Ybeen programmed to identify the
thirty six points itself; the manipulator
maps out thirty six points as a six by six

square grid. An image is generated of the
resulting (almost square) grid and displayed
on an in-house Vicom image processor monitor.
The corresponding image point coordinates are
then determined .interactively by wusing a
curscr. Once the ©polynomial coefficients
have been computed they are saved on file for

relationship is¥

“11/780

subsequent use by the robot vision suite of
progranms.

3.0 IMPLEMENTATION.

The present implementation is configured as a
development systen and not as a final
industrial prototype. A Vicom image

processing unit is used for image acquisition
and the images are passed to a multi-user Vax
via a DMA link for processing and
The robot used 1is a Smart Arm
6R/600 DC servo-controlled manipulator with
five degrees of freedom, supervised. by an
Acorn Atom; the appropriate control signals
are sent by the Vax to the Atom via an RS232C
serial link. No special lighting is used,
the only 1light source is overhead room
strip-lighting. A1l algorithms have Dbeen
developed for use with images of a spatial
resolution of 128x128; since the Vicom
digitises images at a resolution of 512x512
pixels, the acquired image is transformed to
a 128x128 image by local averaging.

analysis.

4.0  RESULTS

shown in diagram 2(a)

shows the corresponding
128x128 resolution grey-scale image. The
segmented binary image obtained using an
automatically determined threshold is shown
in ‘diagram 3(a) and the +thinned image is
shown in diagram 3(b). The - selected grasp
point is also illustrated in diagram 3(v).

A typical scene is
while diagram 2(b)

(v)
(v)

(a)

Diagram 2. (a) Typical scene. 128x128

grey-scale image.

(a)

Diagram 3. f{(a) Thresholded

Thinned image.
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The average time taken +to determine a DIXQT78 Dixon, R.N. and Taylor, C.J.,
feasible grasp point is 6.5 seconds; the "Automated Asbestos Fibre Courdting",
average sensing process times are summarised in "Machine-aided Image Analysis”,
in Table 1. Note: When calculating the Gardener, W. (Ed.), 1978, pp178-185,
average time taken to determine a grasp point
the preliminary automatic threshold detection KASVT8 Kasvand, T., "Experiments on
time is excluded. In - addition, the Automatic Extraction of Paper Pulp
Vicom-to-Vax ~transfer +time and 512-to-128 Fibres"”, Proceedings of the Fourth
resolution conversion time would not be International Joint Conference on
applicable in a target system and, as such, Pattern Recognition, Nov. 7-10,
these times are not included either. 1978, pp-958-960.

KATZ65 Katz, Y.H., "Pattern Recognition of
Meteorological Satellite Cloud
Process Average Time Photography", Proc. Third Symposium
(sec.) on Remote Sensing of the Environment
pp.173-214, Institute of Science and
Image acquisition 0.10 Technology, University of Michigan,”
Transfer to Vax 3.87 . February 1965.
Generate 128x128 image 4.95
Threshold selection 45.80 LEVITO Levi, G. ad Montanari, U., "A Grey-
Thresholding 0.23 Weighted Skeleton”, Information and
Thinning 5.86 Control, 17, 1970, pp.62-91.
Image analysis 0.28 '
MARRS8O Marr, D., and Hildreth, E. "Theory
of Edge Detection”, Proc. Royal Soc.
TABLE 1 ~ Average Sensing Process Times. London, B207, 1980, pp.187-217.
MOTZ 35 Motzkin, Th., "Sur quelques
Proprietes caracteristiques des
5.0 CONCLUSIONS. ensembles bornes non convexes"”,
Atti. Acad. Naz. Lincei, 21, 1935,
The average sensing c¢ycle +time, with the pp.7T73-7T79.
current implementation, is lengthy. It
remains -to be seen what =speeds will e PAVLT8 Pavlidis, T., "A Review of
obtained with a dedicated target system; Algorithms for Shape Analysis",
consideration may have to be given to Computer Graphics and Image
implementing low-level front-end processing Processing, Vol. 7, 1978,
in hardware. Pp.243-258.

Given the assumptions about scene PRAT78 Pratt, W.K.. "Digital Image
complexity (small, well-scattered, Processing"”, Wiley-Interscience,
well-illuminated wires no more than one of New York, 1978.
two layers deep, and a clearly visible )
contrasting background), the binary image ROSES82 Rosenfeld,; A. and Kak, A., "Digital
techniques detailed here are entirely Picture Processing”, Vol. 2.,
appropriate. However, once the organisation Academic Press, 1982.

1 of the wires becomes more complex, with many

- layers of wires occluding both themselves and SERR82 Serra, J., "Image Analysis and

%, the background, the required information may Mathematical Morphology", Academic

Ei -no longer be extracted with these technigues. Press, 1982.

%i Efficient techniques for grey-scale . image

-y analysis are currently being researched to SIM080 Simons, G.L., "Robots in Industry"”,

= cater for such situations. NCC Publications, Manchester,

%‘ England, 1980.
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