A Hierarchically~-Organised Robot Vision System.

David Vernon,
Department of Computer Science,
Trinity College,
Dublin,
Ireland.

ABSTRACT

This paper is concerned with grey-scale robot vision and the interaction and
interface between robot control languages and robot vision facilities. A grey-
level vision system is described which provides general-purpose two-dimensional
robot vision. A significant feature this system is that its organisation should
facilitate the integration of several visual cues in a coherent manner allowing
investigation of robot vision in less constrained environments.

The complete system is organised in a three-level analysis hierarchy corresponding
to peripheral, attentive, and cognitive processing. The peripheral level is the
lowest in the hierarchy and corresponds to conventional low-level visual processing
such as edge-detection and the generation of edge and grey-scale information at
several resolutions. The attentive level is concerned with guiding the peripheral
process on a local level, specifically to build the object boundaries. The top-
level, corresponding to the cognitive processing phase, is concerned with the
overall scheduling of activity within the vision system and with analysis of the
boundaries passed to it by the attentive level. The use of grey-scale images
facilitates segmentation by boundary detection using a simple edge-detector and a
dynamic boundary following algorithm. This allows the system to restrict its
processing exclusively to the section of the boundary currently being constructed;
a local processing technique which affords significant computational savings.

A brief review of robot programming techniques and languages is given and a simple
new robot programming language, RCL (Robot Control Language), is described. This
is an explicit-level or robot-level language but provides facilities for robot

control in a Cartesian reference frame and for object description using frames
(homogeneous transformations). The integration of this language with the vision
system results in a general-purpose robot programming vision facility incorporating
high-level user-trainability and user-definable language/vision interfaces. The
interface enables a robot programmer to identify an arbitrary frame which he wishes
to associate with, and embed in, the object in an interactive manner. A second
frame which defines the way in which the object will be grasped by the robot is
associated in a like manner. These frames will normally be used in the task
specification to allow appropriate object manipulation by the robot.

A REVIEW

The use of grey-scale vision systems in industrial applications is very desirable
[Wallace 1983, p.178]; grey-scale techniques facilitate more robust image
segmentation and the ability to incorporate more sophisticated visual cues, for
example, edges, texture, shading, and reflectance. Grey-scale techniques are
normally more computationally expensive -than those based on binary images since
binary images are inherently segmented, exhibiting a simple and explicit object
representation amenable to subsequent processing and analysis. This is not the

case with grey-scale images: the process of segmentation is non-trivial and the two
approaches to segmentation, boundary detection and region growing, are both

computationally expensive. ' Region-growing techniques are less suited to industrial
vision systems as they are more complex, more time consuming, and more difficult to
realise in hardware than boundary detection techniques [Gonzalez and Safabakhsh
1982, p.21; Wallace 1983, p.180]. Consequently, segmentation by boundary detection
is used almost exclusively by industrial grey-scale vision systems. For example,

see [Ayache et al. 1984; deCoulon et al. 1983; Berman et al. 1982; Sze 1982; Kelley

et al. 1981].

Process times quoted for grey-scale vision systems vary considerably: the system
described in [Berman et al. 1982] requires 15 to 20 seconds for object

identification using a VAX-11/780 minicomputer. An industrial robot vision system
called Ibot, manufactured by Object Recognition Systems Inc., is based on a 16-bit
processor (type upspecified) and takes in the order of 5 seconds for sensing

[Iversen 1982]. The system described by Kelley et al. takes approximately 8
seconds to identify the position and orientation of a suitable object for grasping
[Kelley et al. 1981, p.169]. The host computer used by Kelley et al. was not
specified. A low-cost vision sytem, based on a Motorola 6800 microprocessor using
a 1 MHz clock, requires 4.6 seconds to effect edge-detection in a 128x128 image [Li
et al. 1983]. These systems all illustrate the inherent computational complexity

of grey-scale processing and analysis. Since one wishes to reduce the sensing

cycle time as much as possible, one must find some method of increasing the
efficiency of the techniques used. Kelly has designed a program for extracting an
accurate outline of a man’s head from digital images using edge detection and
demonstrates the feasibility of significantly reducing the overall computation time
by the use of planning. A reduced resolution image is generated and edges detected
in the reduced resolution image are used to plan edge detection in the higher
resolution image [Kelly 1971]. Kelly indicates a reduction in processing time from
234 seconds without planning to 6 seconds with planning; all algorithms were
implemented on a PDP-10 microcomputer. This use of multiple resolutions, i.e.
image pyramids [Tanimoto 1980] or edge pyramids [Levine 1980], is recognised as
being helpful for increasing efficiency or, indeed, for more sophisticated image
analysis (for example, a scene analysis system VISIONS described by Hanson and
Riseman uses a processing-cone architecture, i.e, a simulation of hierarchically
organised parallel arrays of microcomputers using image information at decreasing
spatial resolution [Hanson and Riseman 1978]). Berthod proposes the use of
successive resolutions to implement an efficient search for templates of icons in

an iconic matching system [Berthod 1982].

An alternative approach to the use of reduced resolution images to effect efficient
image analysis, is the possibility of extracting object boundaries on a purely

local basis using dynamic edge tracking [Shirai 1978, p.355-356]. A robot vision
system, ANIMA-1 [Juvin and Dupreyrat 1981] and its successor ANIMA-2 [Juvin and
deCosnac 1984], effects object segmentation and subsequent shape description by
dynamic edge following, extracting local gradient information and using this to

guide the boundary building process. Thus only those parts of the image on or
close to the boundary are used, resulting is a significant computational saving.

The ANIMA-2 system, which is based on the Intel 8086 microprocessor, can segment
and identify an object in between 0.15 seconds and 0.5 seconds [Juvin and deCosnac
1984, p.165].

The importance of attentive processes to segmentation and analysis problems [Lee
and Fu 1981, p.256; Hanson and Riseman 1978, p.130] makes it desirable that these
techniques be incorporated in a processing and analysis organisation or

architecture which recognises explicitly their relevance and relationship to other
visual processes. Martin and Aggarwal in a review article on dynamic scene
analysis indicate that much research in computer vision has followed the human
perceptual divisions comprising cognitive, attentive, and peripheral processes
[Martin and Aggarwal 1978]. Attentive processes operate on stimuli which impinge

on the fovea, peripheral processes operate on the periphery of the visual field,
"watching” for interesting features such as motion, texture, and colour, and direct
the attentive processes to it the attentive processes must be able to track the
movement and attend to the detail of the objects in motion. Cognitive processes
decide which area of interest should next be attended to and relates peripheral and
attentive processes to the person, his knowlege, and expectations [Martin and
Aggarwal 1978, pp.356-357). A more recent dynamic scene analysis system VILI [Jain
and Haynes 1982] is also organised according to this three-level hierarchy and
incorporates knowledge sources at each of these levels [Jain and Haynes 1982,
p.43]. The knowledge sources at each level contain information pertinent to
analysis at that level alone, e.g. the knowledge source at the cognitive level

would contain image independent general knowledge whereas the peripheral level
would be able to access image-specific information but not general information.
Pau identifies a similar hierarchical architecture comprising cognitive, attentive,
and feature extraction processes [Pau 1984, p.138].

A GREY-SCALE VISION SYSTEM

This paper describes the use of the three key ideas outlined above, i.e. dynamic
boundary following, planning based on reduced resolution images, and an elegant
organisation based on a peripheral, attentive, and cognitive hierarchical

architecture. The last of these three is intended to facilitate a general-purpose

and flexible environment suitable, not only for the approach being described here,
but also for future research using more sophisticated visual cues. The first

two ideas facilitate efficient analysis and compensate for the additional
computational complexity of grey-scale techniques. The system is based on 256x256
pixel resolution images; the reduced resolution image is generated by local

averaging in every 2x2 non-overlapping region in the 512x512 image captured by the
framestore.

The peripheral level is the lowest in the processing hierarchy and corresponds to
conventional low-level visual processing, specifically edge detection and the
generation of edge and grey-scale information at several resolutions. Edge
detection is accomplished using the Prewitt gradient-approximation operator
[Prewitt 1970].

The attentive level is concerned with guiding the peripheral process on a local
level, specifically to build the object boundaries. There are several approaches
which may be taken to boundary building; this system uses a dynamic contour
following algorithm which follows the local maximum gradient (derived using the
edge-detector, i.e. at the peripheral level) and is capable of bridging gaps and
linking short edge-segments.

The top level, corresponding to the cognitive phase, is concerned with the overall
scheduling of activity within the vision system and with the transformation and
analysis of the boundaries passed to it by the attentive level. The boundaries
passed to the cognitive level by the attentive level are represented by a Boundary
Chain Code (BCC), as described in [Freeman 1974]. Since the image is based on a
square grid this chain code is a non-uniformly sampled representation of the
boundary and is dependent on the orientation of the object. A process at the
cognitive level resamples this BCC to generate a uniformly sampled BCC.

A shape descriptor, called the Foveal Chain Code (FCC), is used for object
recognition. This descriptor is based on local edge activity around the object
boundary, utilising image gradient information derived at two resolutions, both
lower than the original image resolution. The components of the FCC, the foveal
icons, are generated at the peripheral level; a foveal icon generation utility has

been implemented which will build the icon representation at any point in the
image. The cognitive level merely passes the boundary position, based on the
resampled BCC, to the utility and builds a chain of these icons.

This shape descriptor is used to implement a general-purpose vision facility which
allows an object, or more specifically the shape describing the object, to be
automatically learned by the system using an off-line interactive training

facility. The shape is taught by allowing the user to guide a cursor to the
approximate location of the object, the boundary is then built automatically using
the segmentation process of the attentive and peripheral levels, and the resulting
resampled BCC is used to generate the FCC. This is repeated for a number of
samples (the number is specified by the user) and the FCC giving the greatest
similarity to all others is chosen as the template FCC. The FCC icon values are
then written to a user-defined file for later use by on-line shape indentification
routines. A facility has been implemented which effects a simple image search for
an object. It checks the segmented shape against a library of trained shapes, all
represented by FCCs. The facility returns an integer value denoting the template
file number (in the directory of defined shape files) that best matches the
extracted shape.

In addition to its shape, it is necessary to describe the object in some useful
manner to facilitate manipulation using the robot control language. Homogeneous
transformations can be used to describe the position and orientation of objects in

a manner which is particularly useful for computer vision and robot manipulation
[Paul 1981, p.9). The homogeneous transformation was first introduced as a data
structure for this type of description by Roberts [Roberts 1963]. A significant
advantage is that if the relative position and orientation between two objects is
represented by homogeneous transformations, the operation of matrix multiplication
of homogeneous transformations can establish the overall relationship between any
two objects. The robot programming language RCL, described below, uses frames
(homogeneous transformations) to describe object position and orientation. The
cognitive level interfaces to RCL, using the RCL image analysis functional
primitive VISION, by returning two transformations. The first transformation
describes the position and orientation of a frame defined by the user to be
associated with, and embedded in, the object in an interactive manner. The second
frame which defines the way in which the object will be grasped by the robot is
associated in a like manner. Both these frames are defined during the off-line
training phase and stored as part of the shape description template. Using the
VISION primitive, the RCL programmer may also stipulate a local area-of-interest
within the image to restrict image analysis based on available a priori knowledge.

A REVIEW OF ROBOT PROGRAMMING METHODOLOGIES

Modern commercially-available robot manipulators make use of many programming
methodologies which exhibit a wide spectrum of sophistication; this reflects the
evolutionary nature of industrial robots and their associated programming systems.
Lozano-Perez identifies three main categories of robot programming system: guiding
systems, robot-level or explicit-level systems, and task level systems [Lozano-

Perez 1982, p.1-2]. These first two of these systems, which are listed in order of
increasing sophistication, are typified by the manual lead-through approach and the
language-based position specification approach. The task-level systems are
concerned less with the movement of the manipulator and more with the movement of
the objects comprising the task; tasks are specified typically in a goal-oriented
fashion. Bonner and Shin further categorise the robot-level systems into a
primitive motion level and a structured robot programming level [Bonner and Shin
1982]. Each of these four approaches will be discussed briefly in turn.

The guiding, or point-to-pdint, level represents the most commonly-available type

of robot programming system [Bonner and Shin 1982, p.86; Latombe n.d., p.1]. These
systems provide programmed robot control by allowing the user to save a series of
joint coordinates (specifying the manipulator position and orientation) by guiding

the robot through the required motions. T3, the programming system for the
Cincinnati Milacron T3 manipulator [Tarvin 1980], is an example of such a system.
T3 facilites programming in Cartesian, cylindrical, and joint coordinates systems

and program editing and revision are accomplished by stepping through the motions
using a Teach Pendant (a special-purpose keypad). A more sophisticated guiding
system, Funky [Grossman 1977], developed by IBM, exceeds the capabilities of T3 in
that it provides a mechanism for centering the gripper about an object using

tactile sensors in the end-effector. The principle advantages of these point-to-

point systems include the fact that they are commercially available and have a
proven track record, the task can be repeated without operator intervention, and

the resultant programs are easy to debug since testing is inherent in the teaching
process. However, this programming method has several severe disadvantages. There
exist minimal facilities for branching and for generating subroutines and,

typically, there is no software to handle emergencies, for example,
manipulator/object collisions. The systems can not be expanded to allow off-line
programming and consequently the robot is out of service during the entire
programming phase. The emphasis of the programming is on the motion of the robot
rather than on the task and its component objects. Since the system is trained to
operate in a fixed manner, interaction with the robot work-cell using sophisticated
sensors is difficult and very limited [Lozano-Perez 1982, p.1]. Additionally,

recorded programs may be difficult to edit and coordination of several robots is
impossible [Latombe n.d., p.1].

Robot programming systems which correspond to the primitive motion level
effectively implement the point-to-point motion specification (described above) in
language form. This language medium affords the possibility of including simple
branching and subroutining facilities (generally with parameter passing) and the
use of rudimentary parallel task execution. These types of system typically
exhibit more powerful sensing mechanisms and capabilities: for example, the RPL
robot language [Rosen et al. 1978], developed at the Stanford Research Institute,
incorporates a vision facility which can determine object features and perform
object recognition. Motion can usually be specified using Cartesian coordinates or
using joint angles and the use of frames may be incorporated, though in a very
limited sense; VAL [Unimation 1979], the programming language developed by
Unimation, has limited coordinate transformation capabilities. Though this
approach is superior to the guiding systems the emphasis is still on the robot
motion, rather than the actual task, and one has the additional problem that motion
specification using such languages may not be appropriate for inexperienced
factory-floor workers [Lozano-Perez 1982, p.1].

Structured robot programming languages represent a major improvement of primitive
motion level languages because they incorporate structured control constructs and
they make extensive use of coordinate transformations and frames [Bonner and Shin
1982, p.87]. Robot motion, at the structured level, is defined in terms of
transformations on a frame which is associated with the robot hand. Off-line
programming is more feasible as long as the transformations representing the
relationship between the frames describing objects in the robot environment are
accurate. The ability to use coordinate transformations and frames is a major

asset of these robot languages. One of the main problems of robot programming,
collision avoidance, is not, unfortunately, addressed by this type of programming
language and remains the responsibility of the user. The feasibility of using
sophisticated sensing techniques, for example: visual and tactile sensing, to

supply information about the changing and possibly undetermined robot environment
is much greater among structured robot programming languages. Suprisingly,

however, Bonner and Shin indicate that of the five structured-level languages that
they review, only one language offers robot vision capabilities. This language is
MCL [Baumann 1981}, a language developed by McDonnell Douglas Corp. specifically
for off-line robot programming. A structured programming robot language, AML
[Taylor et al. 1982], which was not available to Bonner and Shin for review, also
offers vision capabilites [Lavin and Lieberman 1982]. AML (A Manufacturing
Language) was developed at IBM and was designed to be a structured, semantically
powerful, interactive language for robot programming; one of the main design
objectives was that AML should exhibit functional transparency so that AML
subroutines can be written and then used exactly like built-in system commands.
This approach is well exemplified by the AML/V sub-system: an extension of AML
which provides visual sensing capabilities and is actually implemented using AML
itself [Lavin and Lieberman 1982]. Another language worthy of mention is the AL
programming system developed at the Stanford Artificial Intelligence Laboratory
[Mujtaba and Goldman 1981]. AL offers Algol-like control structures, local
coordinate systems which can be affixed to one another, and, significantly, the
ability to specify motion in terms of objects grasped in the robot hand. Several
extensions of AL have been developed; for example, Mujtaba describes an adaptation
of MTM (Motion Time Measurement) techniques to manipulator programming with the
intention of providing more succint, simpler, and more efficient programming
facilities [Mujtaba 1982]. Goldman describes a system which includes knowledge
about the environment and the manner in which it changes due to manipulation to
provide a highly interactive robot programming system [Goldman 1982]. The major
features of the structured programming robot languages are their use of frames for
object description and motion specification, the ability to interact with

sophisticated sensing devices, and the availability of structured programming
constructs. RCL, the language described briefly in the next section exhibits all

of these properties, though the structured programming constructs have not yet been
fully developed.

Task-level robot programming languages attempt to describe assembly tasks as
sequences of goal spatial relationships between objects [Latombe n.d.]. Thus, they
differ from all the other categories in that they are object-oriented, rather than
manipulator oriented. There are very few existing languages that might qualify as
a task-level language. Bonner and Shin identify just one: AUTOPASS, a language
being developed by IBM [Lieberman and Wesley 1977). Unfortunately, AUTOPASS is not
fully implemented. Indeed, such a language which completely conceals aids like
sensors and frames from the user has not yet been realised [Bonner and Shin 1982,
p.87] and is the subject of active research. Task-level languages, in general,
necessitate the use of a world-modelling system, incorporating task planning, path
planning, and collision avoidance; Latombe indicates that a current trend in the
development of task level languages is to first solve these more delimited sub-
problems [Latombe n.d., p.2].

RCL: ROBOT MANIPULATOR TASK SPECIFICATION USING FRAMES

The most common representation for the description of an objects position and
orientation in robotics and graphics is the homogeneous transformation [Lozano-
Perez 1982, p.12]. The use of homogeneous transformations, i.e. coordinate frames,
has two drawbacks however. Firstly, the frame does not, in general, specify a
robot configuration uniquely. For example, with a six degree of freedom robot,
there are usually on the order of eight robot configurations which can place the
gripper at a specified frame [Lozano-Perez 1982, p.12]. Secondly, coordinate
frames may overspecify a configuration. Despite these drawbacks, Lozano-Perez
states that frames are likely to continue to be the primary representation of
positions in robot programs and, hence, a robot programming system should support
the representation of coordinate frames and computations on frames using

transforms. Further, transforms should be broken into translations and rotations

to make them as easy to use as possible [Bonner and Shin 1982, p.95]. Since robot
manipulation is concerned with the relationship between objects and manipulators,
and since coordinate frames can conveniently represent such relationships, the
homogeneous transformation can be used not only for the description of an isolated
object but also for the description of the manipulation task itself. Paul

describes an elegant approach to structural task description in terms of

homogeneous coordinate transforms [Paul 1981, p.119-130]. This approach forms the
basis for RCL.

The actual structure of the task is described by considering the structure of the
task’s component objects and, in particular, the explicit positional relationships
between these objects. Since coordinate frames are to be used to describe object
position and orientation, and since it may be required to describe a coordinate
frame in two or more ways, a mechanism for representing and manipulating these
descriptions is required. Paul suggests the use of transform equations and
transform graphs for this purpose [Paul 1981, p. 37-39]. A simple example will
serve to illustrate these techniques. Consider the situation, depicted in diagram

1, of a manipulator grasping a key. The coordinate frames which describe this
situation are as follows.

Z is the transform which describes the position of the manipulator with
respect to the base coordinate reference frame.

zT6 describes the end of the manipulator with respect to the base of the
manipulator

T6 . . .
E describes the end-effector with respect to the end of the manipulator,
i.e., with respect to T6.

K describes the key’s position with respect to the base coordinate reference
frame.

K
G describes the manipulator end-effector with respect to the key, i.e.,
with respect to K.

The leading superscript on a frame refers to the coordinate system that the frame

is defined with respect to. A major advantage of frame representations is that

they can be combined, by homogeneous transformation matrix multiplication, so that
one can generate a frame describing the relationship of one arbitrary (but defined)
object to another arbitrary (but defined) object. Observing that in the above
example the end-effector is described in two ways, one may generate two equivalent
descriptions of the end-effector position by combining these frames.

Thus the the end-effector is described by both

Z 16" E and by K “G.
Equating these descriptions, one obtains the following transform equation:
Zz’T6"E = K'G
Solving for T6:
’Té = Z'K"G™E’
T6 is a function of the joint variables of the manipulator and if it is known, then

the appropriate joint variables may be computed (using the inverse kinematic
solution of the manipulator).

In general, the task movements Mn, say, will be represented in terms of Z zT6WE
and this transform definition can then be equated to the other transforms
(representing the tasks component objects) which describe the task structure.
Ultimately, each transform equation may then be solved in terms of T6, which is a
computable function of the joint variables, and thus T6 is used to determine the
effective manipulator action. RCL is, in essence, a robot programming language to
facilitate the direct interpretation of these transform equations using normal
structured programming constructs. Thus, a move to the key grasp position defined
above would be written in RCL as follows:

AT6 := INV(*Z) * “K * ~G * INV(*E)
MOVE("T6)

The ~ suffix on the variable name is a convention intended to explicitly

distinguish frame variables from other variables. If the position and orientation

of the block were to be ascertained by visual means then the two frames ~K and *G
would be returned by the VISION primitive. Diagram 2 shows an image of this key;
diagram 3 illustrates the frame manipulation menu used when embedding these frames
in the template shape; diagram 4 and 5 illustrate the frames K and ~G superimposed
on a boundary representation of the key.

SUMMARY

The grey-level vision system described here is organised as a three-level

hierarchy, comprising a peripheral level, an attentive level, and a cognitive

level. All shape identification and analysis is based on boundary descriptors

built dynamically by the attentive level using edge information generated at the
peripheral level. The cognitive level is responsible for overall scheduling of
activity, shape description, and shape matching. The use of an area-of-interest
operator facilitates efficient image analysis by restricting the contour following

to specific high-interest sub-areas in the image. A 2-D shape descriptor, the FCC,
is used to implement a user-friendly object training and identification facility.

The general-purpose shape identification routines interface to the robot
programming language RCL in a standard and coherent manner using the languages own
object description data-structures: this results in a general-purpose robot
programming vision facility incorporating high-level user-trainability and user-
definable language/vision interfaces. The system is restricted in that it is

confined to two-dimensional shape identification and non-overlapping objects. It
remains to be seen whether the shape descriptors discussed here can be adapted
through the use of more flexible matching strategies to allow for partially visible
objects. More sophisticated low-level image primitives will be required if 2 1/2-D
or 3-D information is required but it is likely that the software architecture
described here will facilitate the integration of these capabilities into a

coherent and efficient system.

REFERENCES

Ayache, N., Faverjon, B., Boissonnat, J.D., and Bollack, B. 1984. "Manipulation
Automatique de Pieces Industrielles en Vrac Planaire", Proceedings of the First
Image Symposium, Biarritz, pp.869-875.

Berman, S., Parikh, P., and Lee, C.S.G. 1981, "Computer Recognition of Overlapping
Parts using a Single Camera", Proc. of IEEE Computer Society Conference on
Pattern Recognition and Image Processing, Dallas, pp.650-655.

Berthod, M. 1982. "Iconic Matching", INRIA-CREST Course on Computer Vision,
Rocquencourt, France.

Bonner, S. and Shin, K.G. 1982. "A Comparative Study of Robot Languages", Computer,
Vol. 15, No. 12, pp.82-96.

Engleberger, J.F. 1980. "Robotics in Practice: Management and Applications of
Industrial Robots".

Freeman, H. 1974. "Computer Processing of Line-Drawing Images", ACM Computing
Surveys, Vol. 6, No. 1, pp.57-97.

Goldman, R. 1982. "Design of an Interactive Manipulator Programming Environment",
Department of Computer Science, Stanford University, Stanford, STAN-CS-82-955.

Gonzalez, R.C. and Safabakhsh, R. 1982. "Computer Vision Techniques for Industrial
Applications and Robot Control", Computer, Vol. 15, No. 12, pp.17-32.

Grossman, D.D. 1977. "Programming of a Computer Controlled Industrial Manipulator
by Guiding through the Motions", IBM Research Report RC6393, IBM T.J. Watson
Research Centre, Yorktown Heights, N.Y.

Hanson, A.R. and Riseman, E.M. 1978. "Segmentation of Natural Scenes”, in "Computer
Vision Systems", Hanson, A.R. and Riseman, E.M. (Eds.).

Iversen, W. 1982. "Robots Pick Parts out of a Bin", Electronics, November 30, p.50.
Jain, R. and Haynes, S. 1982. "Imprecision in Computer Vision", Computer, pp.39-48.

Juvin, D. and Dupreyrat, B. 1981. "ANIMA (Analysis of Images): A Quasi Real-Time
System", IEEE Computer Socity Conference on Pattern Recognition and Image
Processing, pp.358-361.

Juvin, D. and de Cosnac, B. 1984. "ANIMA 2: Un Systeme Generale de Vision Pour la
Robotique", Proc. Premier Colloque Image, Biarritz, pp.165-169.

Kelley, R.B., Birk,J.R., Martins,H.A.S., and Tella,R. 1982. "A Robot System which
Acquires Cylindrical Workpieces from Bins", IEEE Transactions on Sytems, Man,
and Cybernetics, Vol. SMC-12, No. 2, pp.204-213.

Kelly, M.D. 1971. "Edge Detection in Pictures by Computer using Planning", Machine
Intelligence, B. Meltzer and D. Michie (Eds.), Vol. 6, pp.397-409.

Latombe, J.C. n.d. "Automatic Synthesis of Robot Programs from CAD Specifications",
IMAG, BP 68, 38041 Saint-Martin-d’Heres, CEDEX, France.

Lavin, M.A. and Lieberman, L.I. 1982. "AML/V: An Industrial Machine Vision
Programming System”, The International Journal of Robotics Research", Vol. 1,
No. 3, pp.42-56.

Lee, H.C. and Fu, K.S. 1981. "The GLGS Image Representation and its Application to
Preliminary Segmentation and Pre-attentive Visual Search", IEEE Computer
Society Conference on Pattern Recognition and Image Processing, pp.256-261.

Levine, M.D. 1980. "Region Analysis using Pyramid Data Structures”, in "Structured
Computer Vision", Tanimoto, S. and Klinger, A. (Eds.), Academic Press, Inc.,
New York, pp.57-100.

Li, H.F., Tsang, C.M., and ‘Cheung, Y.S. 1983. "A low-Cost Real-Time Imaging and
Processing System", Software and Micorsystems, Vol. 2, No. 5, pp.121-129.

Lieberman, L.I. and Wesely, M.A., "AUTOPASS: An Automatic Programming System for
Computer Controlled Mechanical Assembly,” IBM Journal of Research and Develop-
ment, Vol. 21, No. 4, pp.321-333.

Lozano-Perez, T. 1982. "Robot Programming®, MIT AI Lab, AI Memo 698.

Martin, W.N. and Aggarwal, J.K. 1978. "Survey - Dynamic Scene Analysis", Computer
Graphics and Image Processing, Vol. 7, No. 3, pp. 356-374.

Mujtaba, M. 1982. "Motion Sequencing of Manipulators", Ph.D. Thesis, Stanford
University, Report No. STAN-CS-82-917.

Mujtaba, M. and Goldman, R. 1979. "The AL User’s Manual", STAN-CS-79-718, Stanford
University.

Pau, L.F. 1984. "Approaches to Industrial Image Processing and their Limitations",
Electronics and Power, February, pp.135-140.

Paul, R. 1981. "Robot Manipulators: Mathematics, Programming, and Control", MIT
Press, Cambridge, Massachusetts, 1981.

Prewitt, J.M.S. 1970. "Object Enhancement and Extraction" in "Picture Processing
and Psychopictorics”, B. Lipkin and A. rosenfeld (Eds.), Academic Press, pp.75-
149.

Roberts, L.G. 1965. "Machine Perception of Three-Dimensional Solids" in "Optical
and Electro-Optical Information Processing”, J.T. Tippett et al. (Eds.), MIT
Press, Cambridge, Massachusetts, pp.159-197.

Rosen, C.A. 1978. "Machine Vision and Robotics: Industrial Requirements", Technical
Note No. 174, SRI International.

Shirai, Y. 1978. "Recognition of Real-World Objects using Edge Cue” in "Computer
Vision Systems", Hanson, A. and Riseman, F. (Eds.), Academic Press, pp.353-362.

Sze, T-W. and Yang, Y-H. 1982. "Goal Directed Segmentation”, IEEE Computer Society
Conference on Pattern Recognition and Image Processing, pp.504-510.

Tanimoto, S.L. 1980. "Image Data Structures” in "Structured Computer Vision",
Tanimoto, S. and Klinger, A. (Eds.), Academic Press, Inc., New York, pp.31-55.

Tarvin, R.L. 1980. "Considerations for Off-Line Programming of a Heavy Duty
Industrial Robot", Proc. 10th. International Symposium on Industrial Robots,
Milan, pp.109-116.

Taylor, R.H., Summers, P.D., and Meyer, J.M. 1982. "AML: A Manufacturing Language",
The International Journal of Robotics Research, Vol. 1, No. 3, pp.19-41.

Unimation 1979. "User’s Guide to VAL", Version 11, 2nd. edition, Unimation Inc.

Wallace, A.M. 1983. "Grey-Scale Image Processing For Industrial Applications”,
Image and Vision Computing, Vol. 1, No. 4, pp.178-188.

Diagram 1: Robot manipulator grasping key.

Diagram 2: Image of key. Diagram 3: Menu for interactive
frame definition.

Diagram 4: Segmented key with Diagram 5. Segmented key with
object frame definition ~K. gripper frame definition *G.

