SOFTWARE-—PRACTICE AND EXPERIENCE, VOL. 18(5), 395-414 (MAY 1988)

VIS: A Virtual Image System for Image-
Understanding Research

DAVID VERNON
Department of Computer Science, Trinity College, Dublin. 2, Ireland

AND

GIULIO SANDINI
Department of Communication, Computer, and Systems Science, University of Genoa,
Genoa, Italy

SUMMARY

Image understanding is concerned with the elucidation of a computational base inberent in
perceiving a three-dimensional world using vision. This paper describes a low-level (or early)
vision software system, developed in the context of current collaborative research activities in
image understanding, which goes some way toward fulfilling the goals of portability, ease of
use, and general-purpose extensibility. Since visual perception uses several types of disparate,
but interrelated, information in some explicit cognitive organization, a central objective of the
work is to represent this information in a coherent integrated manner which allows one interac-
tively to investigate the properties of the interdependency between information types.
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INTRODUCTION

Image understanding is concerned with the elucidation of a computational base inherent
in perceiving a three-dimensional world using vision. As such, it necessitates the
development of tools which will facilitate the integration and interaction of perceptual
information, i.e. visual sensory data, and, in addition, the presentation of this infor-
mation to, and its interaction with, cognitive capabilities. Since computational theories
of perception are not well developed, a software research environment should not
prejudice the research philosophy nor any investigation of such computational theories.
Unfortunately, this is a difficult goal to achieve, and the approach that has been
adopted in this instance takes cognizance of this and restricts itself to one particular
(and popular) philsophy.'® However, every attempt has been made to extract the most
out of the approach by avoiding a priori assumptions regarding the intrinsic value of
information in both the design and implementation of its representational framework.

This research activity is a collaborative effort and involves five research centres: two
based in Ireland, two in Italy, and one in the Netherlands.} As each centre must be
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able to use the vision system, a major design criterion was to make the software as
portable as possible. In particular, the system was written in the C programming
language and currently runs on a VAX 11/780 under VMS, a VAX 11/750 under Unix,
and an IBM PC under MS-DQOS, and an IBM PC-AT under Xenix. These systems
use a variety of image acquisition subsystems including a VICOM image processor, a
Digithurst Micro-Eye frame-grabber, imagmg Technology PC-VISION and FG-100
frame-grabbers, and a VDS 7001 Eidobrain image processor.

Since the system described here is itself part of an ongoing research effort, it is
mandatory that it provide simple tools for adding new analysis and processing facilities
and modifying existing ones. Further, the system should be easy to use and, indeed,
it should encourage use. A menu- ‘based user/system dialogue has been adopted and a
mechanism provided to allow a user to record a sequence of menu selections which
may be saved on file and subsequently replayed. Several such files may be generated,
and a directory of these ‘command’ files is available upon request. All menu-options
are supported by on-line help texts. In addition, any processing and analysis session
may be suspended and resumed at a later date. A data-flow paradigm was adopted to
allow the user to manipulate images merely by specifying source and destination images;
the types of these source and destination images define an implicit transformation which
is effected upon image transfer. Additionally, the system allows extensive windowing in
both source and destination images so that, in addition to being transformed, the
destination image may be a scaled and translated version of the source image.

It was decided at the outset of the research project that this imaging system should
place particular emphasis on the investigation of low-level, or ‘early’, visual processes.
In particular, the system was to incorporate features to enable integration of distinct
low-level visual cues and to allow interactive investigation of the characteristics of such
integration. As the approach to low-level vision taken in this project is much in
sympathy with that of David Marr and his associates at M.1.T.," many of these cues
are based on object boundaries, stereopsis, and motion, all of whlch are derived from
the zero-crossings of the Laplacian of an image which has been convolved with a
Guassian mask.” ® For example, see Figure 1. Thus, the system was developed with
reference to the subject matter of low-level vision while allowing more global design
criteria to be finalized, as the project proceeded. This initial restriction in design does
not appear to have had any detrimental effects on its general applicability.

This tool for integration of perceptual (initially, visual) information was dubbed a
virtual 1mage system (V15), as it allows a user interactively to build image system
structures from scratch, beginning with a null system in which no images exist, and
adding 1mages of an appropriate type as required. Images are organized hierarchically
into pyramids,® ' with image resolution varying from 1024x 1024 pixels to 64x64
pixels; images may be one of several types, for example frame stores, intensity,
convolution (convolved with a Laplacian of a Gaussian mask) or zero-crossing images.
Other 1mage types are also available (for example, images which make explicit the
zero-crossing slope and orientation, boundary motion, stereo disparity and regional
relationships). The system can be configured so that it comprises as many pyramids
as necessary and images may be added or deleted, and their attributes (for example,
an associated mask and window) can be modified dynamically, i.e. at run-time.

The dynamic configuration of the hierarchically organized image structures, which
may differ in both content (information type) and representation, is achieved by
associating with each image an image descriptor which defines the extent, type, depth
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and other image characteristics. Hierarchical organization is achieved by the use of
pyramid descriptors, which consist of a pyramid label, a description and a linked list
of pointers to image descriptors. Significantly, the representation of an image can be
of several types, for example arrays or augmented BCCs:(boundary chain codes).!! 2
The type of image is dependent on the type of information to be made explicit. The
effectiveness and usefulness of this representational structure is enhanced by the ability
to associate logical relationships between different types of data, pertaining to the same
visual scene. This is the mechanism by which the low-level visual cues are integrated
and investigated.

The remainder of this text deals, in a little more detail, with the menu system and
user dialogue, the virtual image system data-structures, system processing functions,
and intended extensions which address cognitive reasoning and cursive script analysis,
respectively.

A SUMMARY OF THE MENU-BASED USER-INTERFACE

Dialogue between a user and the virtual image system (VIS) is effected, wherever
possible, by the use of self-explanatory menus. This ensures that the system is easy to
use and that fast and efficient interaction is possible. When menu-based interaction is
not appropriate, the system will invoke a question-and-answer session with the user,
requesting some alphanumeric reply. In general, the user will have the option of
aborting this dialogue.

There are two types of menu option: those invoked by numeric key and those
invoked by depressing a (mnemonic) alphabetic key. The latter type is intended for
frequently used menu options (e.g. Transfer an image, Window modification, display
system Status, display Help text, revert to Previous menu and Quit are invoked by
hitting T, W, S, H, P and Q, respectively). The mnemonic options are available on
every menu. All screen-handling primitives assume that the terminal device is VT'100
compatible; this affords a relatively efficient mechanism for cursor manipulation in a
standard, and portable, manner.

Some general-purpose utilities, intended to increase the efficiency of usage of the
system, are provided. These include the following.

A learn menu option provides the facility to generate a file containing several
sequential menu selections, which can then be later reinvoked using the replay menu
option. Several such command files may be generated and stored on the system: the
directory menu option enables the user to display a directory of the command files
which were generated using the learn facility.

Since an integral feature of VIS is the dynamic configuration of image structures
during any interactive session, a synopsis of the current status is available upon request
using the system status option; the status report will step through each level and
pyramid sequentially and at all stages the user is afforded the opportunity to skip to
the next pyramid, to a specified pyramid, or to terminate the summary altogether.

As VIS is an interactive system for investigating the form and integration of various
perceptual cues, it 1s mandatory that the researcher be able to suspend his/her investi-
gations and experiments and to resume them at a later date. This facility is provided
through two menu options, save and restore, which allow the user to save the current
status of the system on a named file and subsequently restore it (or any other saved
status).
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Finally, on-line assistance is available for each menu option in the form of Aelp texts.
This information may be obtained by typing ‘H’ followed by the menu option number.
‘HH’ will invoke the display of a general help text detailing this procedure for obtaining
option-specific assistance.

STRUCTURE AND ORGANIZATION OF THE VIRTUAL IMAGE SYSTEM
(VIS)

As mentioned in the introduction, VIS is designed to allow dynamic, i.e. run-time,
configuration of the image structures used in any one processing session. Thus, a user
can build a system from scratch, beginning with a system in which no images exist,
and subsequently adding images (of an appropriate type) as desired and as the situation
demands. Since images are organized hierarchically into pyramids, and a system may
typically be configured to comprise more than one pyramid, the system may be thought
of as a list of ‘pyramid descriptors’; each pyramid descriptor detailing the exact nature
and structure of its constituent images (refer to Figure 2). In particular, a pyramid
descriptor points to several ‘image descriptors’, each of which details the exact make-
up of the image at that level; for example, image size, level number, the number of
bits, and an associated bit mask. In addition, each image descriptor points to a structure
Wthh is appropnate to the type of that image, for example, an image descrlptor of a
grey-level image is linked to a two-dimensional array of bytes representing that image.
Alternatively, an image descriptor of a frame store is linked to a frame-store descriptor
which, in turn, indicates the global structure detailing the operational characteristics
of a particular frame-store type.

In general, an image may be one of several types, for example, frame stores, intensity
(grey-level), convolution (convolved with a Laplacian of a Gaussian mask),” ® or zero-
crossing types.” ® Other types include pseudo-images which make explicit the zero-
crossing slope and orientation, boundary motion,'* * stereo disparity,'> '® and regional
relationships (based, again, on the Laplacian of a Gaussian filtered image)."” Note that
the image representation is of a form which is most appropridte to the information it
makes explicit; thus grey-level images, convolution images and zero-crossing 1mages
are represented by two-dimensional arrays, whereas contour-based pseudo images
(contour direction, slope and orientation, stereo disparity, motion) are represented by
series of boundary chain codes (BCCs), where each node of the BCC represents the
information appropriate to that image type at a point on the contour. Regional pseudo-
images, on the other hand, are represented by a tree structure which makes explicit
the inherent nested structure of image regions. The term pseudo-image is used to
differentiate these explicit information representations from the iconic two-dimensional
organization more commonly associated with the term image.

The effectiveness and usefulness of these varied representations is enhanced by an
1mphclt facility to associate logical relationships between different types of data pertain-
ing to the same visual scene. For example, each contour in an image of one distinct
type is explicitly linked to the corresponding contour in all other distinct types. Further,
each contour in a contour-based image effectively determines a region, and each region
is explicitly linked to (pointed to by) the corresponding regional descriptor in the region
image (which would be just a tree-structured organization of regional descriptors).

The integrated organization and the component data structures are depicted, for a
typical system configuration, in Figure 2. There follows a brief description of each of
the main data structures in the system.
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Pyramid descriptor

A pyramid descriptor, depicted in Figure 3, comprises a header node, containing
the pyramid identification number and an alphanumeric description, a link to the next
pyramid in the system, and a linked list of pointers to image descriptors. This linked
list is organized so that the image descriptors are in sorted order, with the first image
corresponding to the image at the bottom of the pyramid, i.e. the lowest level or
highest resolution. No duplication of images at the same level is allowed. The pyramids
themselves are also ordered (i.e. the linked list of pyramid descriptors is ordered),
beginning with the pyramid having the lowest identification number.

Pyramid Number Pyramid
Descriptor
Pointer
id Description
(Alpha-numeric) ——t—————% To Next Pyramid
Image Link
A4
i ‘i V i l
to to to to

Tmage Descriptor  Image Descriptor  Image Descriptor  Image Descriptor

Figure 3. Pyramid descriptor

It may be argued that the use of a linked list of image descriptor pointers is
redundant and ineffective. Not to adopt this strategy, however, would force either (a)
the organization of the image descriptors themselves in a linear linked list, or (b) the
specification, a priori, of the maximum number of image descriptors that can be handled
by a pyramid descrlptor Significantly, provision would then have to be made for this
maximum number in the definition of the descriptor structure (as in the case of a B-
tree structure).'® Since a tree structure was deemed desirable, it was decided not to
opt for alternative (a). In the case of alternative (b), it was felt that the provision of
sixteen link fields would be inefficient. The solution described above then provides
tree-structuring without the space constraints in return for a slightly increased overhead
in data-structure handling.

Image descriptor

An image descriptor, depicted in Figure 4, comprises several fields which describe
the exact type of the image referred to by the descriptor. The fields include an internal
data-type label, an alphanumeric description, the image size, the pyramid level number,
a window specification, a bit-plane mask, the number of bits in the image, a pointer
to the actual image, and a pointer to the parent pyramid descriptor.
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Image Type: Internal Data-Type Label

Image Description (Alpha-numeric)

Size: Row x Column
(Note: assume Row = Column = Integer dividend of 1024)

Level Number Note: Level 1 = 1024
. 2=1024/2
3=1024/3

16 = 1024/16

Window x1, y1... coordinates of top left-hand
. corner

%2, y2 ... coordinates of bottom nght -hand
corner

Mask Number of Bits

Pointer to Framestore Descriptor
(possibly nil)

Image Pointer Pyramid Descriptor
(function of internal data-type) Pointer

/ AN

Figure 4. Image descriptor

The internal data-type is simply an integer value which identifies the type of image
referred to by the descriptor. There are twelve distinct types at present. These are the
frame store,. grey-level (mtensrc}) convolution, zerc-crossing, contour, slope, orien-
tation, dlsparlty, velocity, region, depth and range image types, respectwely. These
image types are described in detail later. It is worthy of note that the implementation
and integration of newly conceived 1mage types (and data structures, in general) has
proved to be a relatively simple task which can be accomplished with the minimum of
effort.

The image size 1s given by the number of rows (or columns) in the image; it is
assumed that the number of rows is equal to the number of columns and, further, that
this number 1s an integer dividend of 1024. The level number is, in fact, the correspond-
ing integer divisor: thus, an image of size 512X512 pixels would be a level-2 image,
since 512 = 1024/2.

The window specification is determined by the co-ordinates of the top left-hand
corner and the bottom right-hand corner of a rectangle; only that section of an image
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enclosed by this rectangular window is the subject of system processing and analysis
functions.

Any image may be configured, locally, to comprise a distinct number of bits, and
any one of these bits may be masked (write-protected) by turning on a particular bit
(i.e. setting it to logical 1). At present, this write-protect feature has been implemented
for frame-store image types only.

There are two pointer fields in the image descriptor: these are the pyramid descriptor
pointer and the image pointer, which provide links to the parent pyramid descriptor
and to the actual 1mage representation, respectively.

Frame-store image

A frame store is, inherently, device-dependent, and in order to achieve the required
virtual nature of VIS, the dependency must be catered for. This is accomplished by
the use of a frame-store descriptor (which takes the place of a physical image within
the context of VIS) and by the use of several distinct frame-store-specific structures
which describe the operational characteristics, i.e. the appropriate addresses and data
for all registers required to handle the frame-store device. The frame-store descriptor
comprises five fields in total, detailing the frame-store identification type (an internal
integer code), the access type (whether it is configured as a memory-mapped device,
an input/output device, or a combination of the two), the current mask value, the
number of bits, and the pointer to the (global) frame-store-specific structure containing
the device’s operational characteristics. Note that the mask and number-of-bits fields
are, actually, redundant in that they merely replicate the same information resident in
the image descriptor. Figure 5 details the structure of the frame-store descriptor. To
facilitate the exchange of iconic image information between VIS and other imaging
systems, the concept of a frame-store has been extended somewhat to incorporate a
new frame-store type (a virtual frame-store) which is, in effect, no more than a raw
binary file. Thus, image data can be channelled to and from a file rather than a physical
device. The file name currently associated with a virtual frame-store can be modified
upon selection of the frame-store initialization menu option.

Framestore Identification-Type Number

Access Type: Memory-Map
Vo

Combination

Current Mask Value

Number of Bits

Pointer to a (global) framestore-specific
structure containing addresses and data for all
registers required to handle the framestore
device.

Figure 5. Frame-store descitptor
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Grey-level (intensity) image

A grey-level image represents the intensity, or reflectance, of an imaged scene. This
is normally represented by a two-dimensional array of byte values or pixel values. In
the virtual image system, which is implemented in the C programming language, the
representation differs slightly from the norm. An array image, of which the grey-level
image is a specific example, is defined as a set of one-dimensional vectors or bytes;
each vector (one-dimensional array) is addressed by an explicit pointer which is itself
stored in a one-dimensional array of pointers. Thus, an array image (of bytes) is just
an array of pointers to arrays of bytes and any variable of this type is just a pointer to
a ‘char’ pointer. Note, however, that one may still reference an element in the image
using the familiar double subscript, e.g. image[7][7]. In this case, the image value is
accessed by indirection, not by using the normal subscription evaluation, and is, hence,
more efficient. It also allows VIS to overcome the problems associated with the
segmented memory architecture of some microcomputers.

Convolution image

A convolution image, in the context of this system, is an image which has been
convolved with a Laplacian of a Gaussian mask (the first step in extracting the intensity
discontinuities in an image) and is represented by an array image of the type described
above.

Zero-crossing image

The zero-crossing image, again represented by an array image-type, details explicitly
all the points in a convolution-type image where the image function changes sign,
1.e. traverses (or crosses) zero. The zero-crossings represent points of intensity
discontinuity in the original image and, normally, correspond to perceptual edges or
boundaries. A property of the convolution with the Laplacian of a Gaussian mask
ensures that, in general, such zero-crossings form connected closed contours.

Contour pseudo-image

A contour image is a redundant image representation, in that it contains exactly the
same information as the zero-crossing image, but it represents the information in a
different manner. Specifically, the contours are represented, not by a two-dimensional
array image, but by a series of lists. Each list element contains the Freeman chain code
direction required to generate the next peint on the contour; each list represents a
single contour in the image. The lists themselves, which are represented by a linear
array of bytes, are organized as a linked list (of contours).

Each list has a header comprising the link fields to the next contour, to the previous
contour, and to the associated contour descriptor. In addition, the header contains the
co-ordinates of the contour origin and its length. Note that this information is redundant
as it is also contained in the contour descriptor (yet to be described) but it is convenient
for some processing to have it available locally within the ‘logical’ contour image. Please
refer to Figure 6 for a schematic representation of the contour image structure.
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Figure 6. Contour image

Slope, orientation, disparity, velocity and depth pseudo-images

These images are all based on zero-crossing contours and they make explicit some
intrinsic property based on analysis of (a series of) these contours. For example, the
slope image details the slope, or steepness, of the positive-to-negative transition (a
measure of edge strength) at each point of each contour in the image. Similarly, the
orientation image details the local orientation, or direction, of the contour at every
point on each contour in the image. The disparity image makes explicit the stereo
disparity of each point on every contour in an image on the basis of a stereo pair of
images of a scene.’

The velecity image makes explicit the optical flow or visual motion of each point of
every contour in an image on the basis of several images of a particular scene.'® '*
The optical flow, comprising vector magnitude and phase angle, i1s derived from the
time derivative of a (sequence of) convolution images. This time derivative is, in effect,
the orthogonal component of the true flow vectors, which are subsequently computed
on the basis of a priori assumptions of either object or camera motion and on the basis
of vector trajectories constructed by tracking optical flow from contour to contour over
an extended series of velocity pseudo-images. To facilitate this tracking, each point of
a velocity contour also includes the identification of the corresponding contour in the
next frame of the sequence: the corresponding pyramid, image level, contour number,
and contour offset.

The depth image represents the distance from a viewer to a point on a zero-crossing
contour. It is presently computed from the optical flow using assumptions of either
camera or object motion. In the near future, it will also be possible to compute depth
from the stereo disparity of a pair of images.
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Generic Property

Link to
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Descriptor

Generic Property
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Figure 7. Slope, orientation, velocity and disparity images

Note that these pseudo-images are again represented, not by two-dimensional arrays,
but by a representation similar to that of the contour image, i.e. a series of lists. Each
element of the list contains the information appropriate to the image type, and each
list represents a single contour in the image. Refer to Figure 7 for a schematic
representation of these pseudo-images.

Range image

The range image is an array image type, which is derived by interpolation from the
depth pseudo-image. It makes explicit the distance from the viewer to all visible points
on an object’s surface.

Contour descriptor

Since all of the contour-based images above are identical in representation and are
based on the same image information, i.e. zero-crossing contours, it is reasonable to
attempt to integrate the information in a coherent manner by formlng logical links
between the constituent lists corresponding to the contours in each image. This is
accomplished with the contour descriptor which comprises two sets of fields. The first
set of fields contains explicit links to the corresponding contour in each contour-based
pseudo-image, whereas the second set contains information regarding gross contour
statistics, for example, co-ordinates of the contour origin, contour length, enclosed
area, mean slope, standard deviation of slope, mean orientation and standard deviation
of local orientation, and a measure of the variation in local orientation. Thus one single
contour descriptor links the corresponding contour in each of the contour, slope,
orientation, disparity and velocity pseudo-images. Further, there are two additional
fields which provide links to the previous contour descriptor and the next contour
descriptor. Thus, the descriptors themselves are organized as a linear list and it is
possible to run through these lists of descriptors searching for, say, all contours whose
gross statistics satisfy some criterion and then refer to them explicitly in the appropriate
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Figure 8. Contour descriptor

image. Figure 8 details the structure of these contour descriptors and one can refer,
again, to Figure 2 to see how the overall linking structure 1s organized.

Region pseudo-image

The region pseudo-image is quite a complex image, comprising two distinct com-
ponents: a region-crossing pseudo-image and a tree of region descriptors. When discuss-
ing the zero-crossing image, it was noted that the extracted zero-crossings formed
closed contours.!” Although these contours enclose a distinct region, there are at least
two drawbacks with the representation. First, a zero-crossing is actually an inter-pixel
transformation, and when one assigns the label of zero-crossing to a particular pixel,
one does so in a nominal sense only. Secondly, the enclosed region is only represented
in an implicit manner by the contour definition. A more accurate, and possibly a more
flexible, representation involves the explicit identification of all pixels of negative sign
and all pixels of positive sign. This is exactly what is meant by the region-crossing
image. The representation is enhanced, however, in that each pixel of the region-
crossing image is also an (8-bit) pointer or link to a one-dimensional array of true
pointers which in turn form links to the corresponding regional descriptor in the so-
called region tree, defined below. The local organization of this region-crossing image
is shown in Figure 2.

Before describing the region tree, it is necessary first to define its components, 1.e.
the region descriptor. This descriptor, shown schematically in Figure 9, contains gross
regional statistics regarding a single region in the region-crossing image (e.g. centroid,
area, moment of inertia) and augments it with information pertinent to the correspond-
ing contour representation of that same region. This contour information is exactly the
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Figure 9. Region descriptor

information contained in the contour descriptors. In addition, the region descriptors
have a set of link fields which point to or link to the corresponding contour in the
contour, slope, orientation, velocity and disparity images. Finally, the region descriptor
includes a further set of link fields to facilitate their organization in a tree-structured
(hierarchical) manner; in particular there is a single link to the parent node (i.e. region
descriptor) and several links to children nodes. Because a region may have an arbitrary
number of regions nested within it, these offspring links are organized in a manner
which i1s identical to that of the pyramid descriptors.

All regions in the region-crossing image are nested within some enclosing region,
and they themselves possibly enclose some other regions, again by virtue of the property
of convolution with a Laplacian of a Gaussian mask which ensures that zero-crossings
form closed contours. Thus, each region is part of a nested structure which may be
represented naturally in a hierarchical manner. This hierarchic organization is made
explicit in the region tree which represents the region-crossing image a multi-branched
tree of region descriptors.

In addition to the region and contour information contained in the node (region
descriptor), each node is linked to the corresponding contour in the contour, slope,
orientation, velocity and disparity images, and, further, each node is pointed to by the
link resident in the region-crossing representation (via the one-dimensional array of
region pointers). Figure 10 details the organization of this region image.
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A SUMMARY OF IMAGE PROCESSING PRIMITIVES AND SYSTEM
FUNCTIONS

The mechanism by which image processing transformations and analysis functions are
effected by a user is based on a data-flow paradigm; the user manipulates images merely
by specifying source and destination images and an implicit transformation, defined
by the types of these source and destinations images; is invoked upon transfer. Since
VIS facilitates extensive windowing in both source and destination images, the desti-
nation image, in addition to being transformed, may be a scaled and translated version
of the source window.
The following sections detail the current functional capabilities of VIS, i.e. the
processing and analysis functions which are available to the user as menu options.
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Frame-store manipulation

There are, at present, three main frame-store manipulation options. These are:
frame-store initialization, which causes all frame stores in the system to be (re-)initia-
lized, real-time acquisition and display and video frame-grab. The real-time acquisition
and display option provides the user with the ability to cause an incoming video signal
(from a camera) to be continuously digitized and displayed, in real-time on a video
monitor. When selected, a question and answer dialogue with the user is initiated to
ascertain the frame-store which is to be used to accomplish the video capture. The
frame-store is identified by its appropriate pyramid number and level number. In
general, the user may abort the operation at any point by replying to a prompt with a
null entry, i.e. by simply pressing {(return). In a manner similar to the real-time
acquisition and display option, the video frame-grab option provides the user with the
ability to grab (digitize) a single frame of an incoming video signal in a frame-store.
Again, a question and answer dialogue, similar to the acquisition option, is initiated.
In the case of a virtual frame-store, initialization merely facilitates the modification of
the associated file name; real-time acquisition and video frame-grab options are not
valid for virtual frame-stores.

Image transfer

This option implements an interactive request to transfer the contents of one level
of a pyramid to a (possibly different) level of a (possibly different) pyramid. The
source and destination images cannot both be at the same level of the same pyramid.
If the image types associated with these levels are different then the implicit transform-
ation will be effected. Not all combinations of source/destination types are allowed;
refer to Table I for a summary of the combinations that are currently implemented.
The spatial organization of the destination image will depend significantly on the
relationship between the window associated with the source image and the window
associated with the destination image and also on the hierarchical/pyramidal relationship
between the two images. Thus, the destination subimage will be an enlarged or reduced
version of the source (in either the x or y directions) and is dependent on the spatial
mapping dictated by the window 1 to window 2 spatial mappings and the pyramid
level to level mapping. A pixel-filling algorithm is used in all cases and the appropriate
co-ordinates in the source image are determined by a two-stage process comprising
spatial mapping and bilinear interpolation.'® The situation where both windows are
identical and where both pyramid levels (i.e. the image resolution) are the same is
treated explicitly as a special case to increase efficiency.

Note that, as before, the user may abort the request at any point of the interactive
dialogue by replying to a prompt with a null entry.

Contour selection

All contours in the contour-based images (e.g. slope, orientation, disparity and
velocity) are effectively linked by their associated contour descriptor, which makes
explicit several useful statistics about the contour. New contour-type or zero-crossing
images can be generated, interactively, on the basis of these global contour properties,
and also, on the basis of local properties of the contour. In particular, entire contours
can be selected for inclusion in the new image by providing threshold ranges for some
subset of gross contour features (i.e. information stored in the contour descriptor). All
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Table 1. Currently valid image transfers

Output image
F.S. I Conv Z-C Cont. S O D AY Dp R

Frame-store

(F.S.) yes yes yes no no no no no no no no
Intensity

0 yes yes ves yes no no no no no no no
Convolution

(Conv.) yes yes no yes no no no no no no no
Zero-crossing

(Z-C) yes yes no no yes no no no no no no
Contour

(Cont) yes no no yes yes no no no yes no no
Slope

(8) yes no no yes no yes no no no no no
Orientation

0) yes no no yes no no yes no no no no
Disparity

(D) no no no no no no no no no no no
Velocity

V) no no no no no no no no no yes no
Depth

(Dp) no no no yes no no no no no no yes
Range

(R) yes yes no no no no no no no no no

contours are selected which satisfy the Boolean condition:
(L <=f1<=H)AND (L; < =f;<=H,)...AND (L, <=f, <=H)

where 7 is the feature number and L;, H}, f; are the low and high limits on the threshold
and the contour feature, respectively.

All contours which satisfy the selection condition are effectively added to the current
list of selected contours (in the fashion of a logical OR operation) and, in this way, it
is possible to construct arbitrarily complex selection criteria. Further, selection criteria
of partial contours based on local contour analysis are also provided. When transferring
from a contour pseudo-image to a zero-crossing image, only those contours (and partial
contours) which are currently selected are actually referenced. In transferring to
contour pseudo images, only contours selected by global features (contour descriptor
information) are transferred, although the partial selection information is retained. This
mechanism provides a powerful tool for interactively investigating the interrelationship
between intrinsic image types based on both global and local properties.

Modify window

This menu option allows the user to modify the window co-ordinates associated with
a particular image either by specifying the co-ordinates of two corners of the windows,
by propagating a window from another image (with or without scaling), or by translation
of an existing window in the image. Window specification using graphic devices (e.g.
mouse, digitizing tablet) are at present being implemented.
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ANTICIPATED EXTENSIONS

A significant amount of the current research in the area of cognitive modelling is
concerned with reasoning about perceptual and physical data. To some extent, it is
organized along a hypothesis forming/checking paradigm using structural information
theory.?® 2! Tt is envisaged that VIS will form the kernel of an on-line perceptual
database which is queried by the cognitive processes. Further, the cognitive processes
will control the database in terms of its operational characteristics, initiating image
transters and supplying transfer parameters. It is acknowledged, however, that it will
be necessary to introduce an extra interface subsystem to facilitate communication
between these two modules. This-is currently being implemented in the form of a
command language interpreter. It is anticipated that VIS and the cognitive modelling
system will communicate over an Ethernet, the latter generating command language
programs and the former interpreting them and transmitting the requisite information
over the network.

The system, as it stands now, is a unified autonomous tool which executes on a
single machine. There are three considerations which motivate an extension beyond
this organization. First, all of the processes performed in the research of vision are
computationally expensive and some processes may be suited to a particular machine
architecture more than others. It is evident that a facility to distribute this processing
load in a simple manner would be very beneficial. Secondly, as more and more tasks
are added to the system the overhead on integration and maintenance becomes quite
significant; some method of using VIS without necessitating continuous growth is
desirable. The final motivitation for an extension in organization is pragmatic: most
researchers have invested many years in developing their own modus operandi and are
ill-disposed to breaking completely with their well-established development environ-
ment. It is not realistic, then, to suppose that all parties would, or even should,
integrate all their work into VIS, but rather that they should have the facility to use
the tools that the system provides from within their own environment. It proposed to
extend VIS in a manner which addresses all of these issues by exploiting the internal
structure of the data structures, i.e. the system status. In particular, it is intended to
save the system status, not in a single external file, but in several external files on
several physically distributed, but networked, computers. Data of a particular type,
and of interest to a particular research group, would be confined to a single subdirectory
on a single machine. In this way the virtual image status is mapped onto a distributed
processing network as a hierarchical system of subdirectories and files.- Those wishing
to use the data, then, can either invoke their local version of VIS, a subsystem
constructed partially from VIS data-structure primitive functions, or by software which
1s capable of reading and interpreting the file format.

SUMMARY AND CONCLUSIONS

The system described in this paper endeavours to accomplish four things: the provision
of a user-friendly and flexible software development environment, the support of several
hardware systems, the ability dynamically to configure hierarchically organized image
structures of several intrinsic types, and, most importantly, the facility to integrate and
form logical links between these intrinsic images in a coherent manner.

The first of these objectives has been achieved by the use of a menu-based user-
interface. These menus can be specified by the user/developer in a very simple and
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methodical manner. Additionally, two features have been incorporated into the system
which significantly increase the efficiency of usage. These are, first, a facility to record
and replay a sequence of menu selections (and, in general, responses to system prompts)
and, secondly, a facility to save and restore complete system status, allowing temporary
suspension of any analysis and processing session.

A data-flow paradigm has been adopted in providing a mechanism by which image
transformations (and analysis functions) are effected by the user. Thus, all that is
required to process an image is the specification of the source image and the destination
image, both of which will have image types associated with them. The transformation
implicit in the transfer between images of differing types is effected automatically.
Further, the system supports full windowing capabilities so that only specific areas, or
windows, within both source and destination images are processed. This also provides
an implicit ability to translate and scale subimages. Images are hierarchically organized,
forming image pyramids of decreasing resolution. The ability to configure these pyra-
mids dynamically at run-time has proved to be a very useful feature, not in the least
because it is difficult to define, a priori, the requirements of a typical session spent
mvestigating the repercussions of many transformations and the associated integration
of the resultant low-level cues. '

The judicious use of duplication (and hence, redundancy) of data within the system
was seen to be particularly advantageous. The problems with the generation of this
information and of maintaining its integrity were avoided by ensuring that just one or
two general routines handle the data structures associated -with any one information
type. Information could then be retrieved from the structure most appropriate to the
processing task at hand.

Since this tool 1s being used in a collaborative effort, software portability is extremely
important. As the system is implemented in the C programming language, this has
been achieved by the exclusive use of standard portable library function throughout
the implementation and by adhering to standard (V'T100) terminal-handling conven-
tions. At present, VIS operates on a VAX 11/780 under VMS, a VAX 11/750 under
Unix, and an IBM PC under DOS, and an IBM PC AT under Xenix, using a wide
variety of frame-store devices. Finally, it is worthy of note that the increased develop-
ment time and marginal decrease in run-time efficiency attendant on this commitment
to portability has been more than compensated by the ease with which software and
algorithms can be exchanged and integrated into the system.
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