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Abstract—A technigue is described for determining a depth map of
arts in bins using optical fow derived from camera motion. Simple
rogrammed camera motions are generated by mounting the camera on
1e robot end effector and directing the effector along a known path,
‘he results achieved using two simple irajectories, where one is along
1¢ optical axis and the other is in rotation about a fixation point, are
etailed. Optical How is estimated by computing the time derivative of a
squence of images, i.e., by forming differences between two successive
nages and, in particular, matching between contours in images that
ave been generated from the zero crossings of Laplacian of Gaussian-
Itered images. Once the flow field has been determined, a depth map is
omputed utilizing the parameters of the known camera trajectory.
mpirical resuits are presented for a calibration object and two bins of
arts; these are compared with the theoretical precision of the tech-
ique, and it is demonstrated that a ranging accuracy on the order of
~0 parts in 100 is achievable.

1. INTRODUCTION

S ROBOT VISION matures, it is becoming increasingly

. Adesirable to extend its capabilities to include 3-D sens-
1g. A significant goal of this capability is to solve the
in-picking problem in which a robot manipulator is required
» identify and grasp an object jumbled in a bin of many such
bjects. Although active sensing (and active triangulation in
1e form of light striping, in particular) has been popular in
roviding range information, it has not yet been successfully
mployed in bin picking. Furthermore, future robot vision
pplications will require increasing robustness such as is
romised by image understanding systems. A central tenet of
nage understanding research is the necessity of inferring the
-D structure of the imaged scene through the use of several
wtually redundant visual cues (such as stereopsis and visual
totion [1]-[{3]). One particularly useful paradigm for the
sneration of these disparate cues is based on analysis of
:ro-crossing contours in Laplacian of Gaussian-filtered im-
zes [4]-[6]: These contours represent the position and orien-
tion of intensity discontinuities in the image [7], [8]. Al-
ough the coherent integration of information derived from
ich filtered images, along with other visual cues such as
1ading, texture, and occlusion, is still in its infancy, progress
being made, and it seems sensible to begin to deploy
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limited versions of this technology to industrial applications
now, especially as hardware becomes available to implement
the computationally expensive filtering stage. The research
described in this paper endeavors to do just that while at the
same time providing a pathway for future developments.

In particular, this paper describes the use of a single
camera mounted on a robot end effector (describing a simple
camera motion) to infer the depth of objects jumbled together
in bins. Two types of camera motion are employed. The first
describes a trajectory along the optical axis of the camera,
whereas in the second, the camera is rotated about a fixation
point. The optic flow field resulting from the first type of
egocentric motion is very easy to bompute because all flow
vectors are directed radially outward from the focus of
expansion (FOE), i.e., the center of the image [9]. For
camera motion in rotation about a fixation point, the rota-
tional component of optical flow can be determined directly
from the known camera trajectory, and the direction of the
translational component is also constrained by the camera
motion. Knowing the direction of the flow vector, the magni-
tude of the visual motion is directly derived from a time-de-
rivative of a sequence of images acquired at successive points
along the camera trajectory. ,

Such use of a constrained camera motion is ideally suited
to industrial environments because manipulator arm trajecto-
ries can be specified at will. Furthermore, the technique
facilitates the future incorporation of more general camera
motion and, eventually, the mutual integration of information
derived from other passive visual sensing.

II. THE BIN-OF-PARTS PROBLEM AND RANGE
EsTIMATION

The bin-of-parts, or bin-picking, problem is widely recog-
nized as being one of the most difficult tasks in robotics.
Although a considerable amount of effort has been expended
by the robotics and computer vision community in an attempt
to solve this problem, no general solution has yet been
reported in the literature. Indeed, it is worth noting that, so
far, only two broad approaches have been documented, which
appear to provide any realistic bin-picking capabilities. De-
tails of these approaches may be found in, for example, [10]
and in [11]. The central requirement in the bin-of-parts
problem is to be able to direct a robot manipulator to select,
grasp, and remove an arbitrarily oriented part (or object)
from a bin of many such objects. These objects will, in
general, be jumbled together and will occlude one another
significantly. Thus, in order for the robot manipulator to be
able to grasp the object, it must be able to identify the
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position and the crientation of the object, in spite of the fact
that it would probably be partially hidden by one or more
other objects in the bin. Such an identification of position and
orientation, which is often referred to as the object pose, is
an extremely daunting task, and it has been suggested that
although the probiem is not intractable, it is extremely dif-
ficult [13]. This very difficulty has given rise to two distinct
schools of thought: one hoiding that it is not absolutely
necessary to determine the pose of an object in the bin and
that the part can be removed using more realistic techniques
and the other adhering to the pursuit of the general pose
estimation problem. The former approach owes much of its
success to Kelley and his co-workers at the University of
Rhode Island {11}, [13]-{20], whereas the latter owes much
to the research of Horn and Ikeuchi [10], [21], [22]. In either
case, it is usually necessary to identify the range of the
objects before attempting to grasp them and remove them
from the bin. This paper is concerned with the extraction of
such range data. One can characterise 3-D image acquisition
systems on the basis of two criteria [26]-[28]: 1) whether
they are active or passive devices and 2) whether they are
triangulation or nentriangulation devices.

Active image acquisition systems explicitly utilize con-
trived illumination to accomplish the range estimation. Pas-
sive image acquisition systems use ambient illumination.
Current trends in the acquisition of range data indicate a
predeliction for active systems |23]-[25]. Active systems
are, in general, more precise since they can be designed to
suit a particular application and since they inherently allow
(and require) much more control over the sensors and the
data being sensed. Conversely, the motivation for research-
ing entirely passive techniques for 3-D imaging is their
adaptability. This arises from the exploitation and integration
of numerous mutually redundant visual cues, e.g., shading,
occlusion, motion due to both observer and camera, stereop-
sis, texture gradients, and focusing. These cues are capable
of providing useful and reliable range information as well as
measures of local surface orientation of objects to facilitate
grasping by manipulators when integrated in coherent manner
and especially when used with other passive range estimation
techniques (e.g., sec [10]). Paradoxically, the use of several
redundant visual cues to provide the 3-D information is both
the source of difficulty in building such a system and the
basis for its robust nature. The motivation underlying the
work described in this paper is to begin, in a small way,
development of a purely passive system by using one limited
version of one of the essential cues of this type of 3-D
computer vision.

II1. INFERRING DEPTH FROM CAMERA MOTION

In the controlled environment of a robot workcell with a
camera mounted on the end effector *“looking™ into the bin,
simple motion strategies can be adopted to determine the
depth of the objects. Since general camera motion requires
knowledge of six parameters

W= (W'f’ Wv’ Wz)

@ = (w.\" w_v’ uz)
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(b
(a) Translational motion along the optic axis; (b) rotational motion
about a fixation point.

Fig. 1.

i.e., the translational and rotational components of camera
velocity, constraining the camera motion greatly simplifies
the computation of optical flow. In particular, two simple
cases are empirically studied in this paper, and a general
analysis of accuracy is given in Section V. In the first motion
strategy, the camera is moved along the direction of the
optical axis, which is the Z axis of the camera-centered
coordinate system. In the second case, the camera is rotated
about some fixation point on the optical axis but is some
distance from the camera (see Fig. 1). Thus, the camera
motion is now parameterized simply by W, in the first case,
and by W, W, and w, in the second. As we shall see in the
remainder of this section, this greatly simplifies the computa-
tion of the optical flow. The rotational motion was chosen
since this allows us to extend the baseline of camera move-
ment while maintaining an approximately fixed field of view.
A pure lateral translation of the camera is a viable alternative
{e.g., see [37] and [38]), but in this case, the effective area in
which the optical flow, and hence the range, can be computed
is reduced to approximately the intersection of the fields of
view of the camera in its initial and final position. Note,
however, that in the case of the work cited in [37], this
resulted in only a 6% reduction in the width of the effective
field of view.

The magnitude of the optical flow that results from either
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camera motion is unknown, but it is computable by differen-
tiating the image sequence with respect to time. If the lumi-
nance intensity dces not change with time (i.e., there are no
moving light scurces in the snvironment), the component of
the orthogonal velocity vector for each image point along the
direction of the lccal intensity gradient is given by [29]

vt= —(81/3t)/|VI|

(1)

where 3 indicates the partial derivative operator, and | V/ |
is the local intensity gradient.

The algorithm for computing depth can be summarized as
follows:

a) Convolve the images with a Laplacian of Gaussian
operator {3].

b) Extract the zero crossings, computing the local slope
and orientation of each contour point.

¢) Compute the difference between the convolution of
successive frames of the sequence.

d) Compute the velocity component in the direction per-
pendicular to the orientation of the contour.

e) Compute the velocity along the contour using the
known motion parameters (see below).

f) Search for the zero crossings of the second frame
projected from the first frame in the direction of the
velocity vector.

g) Compute the depth map from this optic flow.

These steps form the body of an iterative scheme that allows
one to compute the optical flow of a sequence of images. The
approach of Matthies et al. [37] utilizes Kalman filtering to
temporally integrate and refine successive estimates of depth
derived from image pairs, whereas the technique described in
this paper exploits spatial tracking of features across a se-
quence of images to increase the baseline and, hence, in-
crease the accuracy of the triangulation procedure when
computing depth.

Since all flow computations are done at image contours
only (having been extracted using the Laplacian of Gaussian
operator), the amount of data to be processed is limited, and
furthermore, the effects of noise are less pronounced.

The computation of v* (the orthogonal component of
velocity) is based on a computation of the time derivative
using a five-point approximation formula [30] according to
the relationship described in (1).

The computation of the true velocity vector depends on the
prior knowledge of the parameters of the camera motion: The
distance of the camera at time T and T + At from the
fixation point; 8, which is the rotational angle of the camera
around the Y axis; W, and W, which are the components of
the translational velocity of the camera along the X axis and
the Z axis, respectively. W, and W, are defined with respect
to the coordinate system of the camera at time T (see Fig. 2).
Using basic trigonometric relations, we find

D, sin8

We=—— (2)

At
W, =0 (3)
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w D, - D,cos?

= " 4
: = )
where D, and D, are the distances of the camera from the
fixation point at time A7 and T + A¢, respectively.

These computed egomotion parameters are used to deter-
mine the true image velocity vector v. Note that v comprises
two components v, and v,, where one is due to camera
translation W = (W,, W,, W,), and the other is due to
camera rotation w = (w,, w,, w,):

(5)

>

(sz - FW, yW,- FWy)
v, =

VA Z
) (xywx— (x* + Fa, + yo,
, 7 ,
(y2+F2)wx—xywy—xwz
. | ©
v=u,+ v, 7

where F is the focal length of the lens, x and y are the
coordinates of the point in the image plane at time 7', and Z
is the distance from the camera to the world point corre-
sponding to image point (X, ).

For the constrained camera motion shown in Fig. 2, the
camera translational velocity is given by (2)-(4), whereas the
rotational velocity w is (0,8/At¢,0). The image velocity
components can then be written as

’

x(D, - D,cosf) — FD,sin6
b= ZAt

y(D, — D, cos 8) ) ®)

ZAt
—(x2+ F*)8 -—xy0
Y i Gt L. ©)
FAt FAt

In these two equations for v, and v,, the only unknown is Z
(which is what we wish to determine). Thus, to determine v,
and v,, and hence Z, we exploit the value of v+, which is
the orthogonal component of velocity, computed at an earlier
stage. This can be accomplished directly by solving the
attendant system of equations [30], [36] or by a geometrical
construction [31]. The system of nonlinear equations to re-
cover the direction of the image velocity v can be formulated

in the following manner:
vx = utx + vrx
—(x*+ F*)0
Ure = FAt

v, = Uy, + v,

—-xy6

Uy = TFAt
x(D; — D,cos8) — FD, sinf

Z At




512

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 6. NO. 5, OCTOBER 1990

Y
2z
X
(a)
Fixation point Fixation paint
8
D2 02
D1 \Z
D1 2
< Position of camera @
X at time T+At
X
V4 Pasition of camera
4Z at time T+t
Position of camera -
- . y Pasition of camera
X at time T X at time T
(b}
Fig. 2. (a) Camera coordinate system; (b) parameters associated with
camera motion.
y(D, — D, cos 6) In the solution by geometrical construction, v is determined
Uey = 7 At from the intersection of three straight lines derived from v,
v (for which all terms are known), v* (which was computed
v = —=—— previously), and the position of the FOE.
cos(f ~ a) First, v, defines the first line of the construction (refer to
vt Fig. 3). Second, the position of the FOE defines the direction
lv| = of v,, since v, is parallel to the line joining the FOE and the
cos «

b tan(f — «)
v

X

where the unknown terms are
v=(v,,v),a, Z

and the known terms are F, D,, D,,# (measured from the
camera); v+, 3 (measured from the images); the image point
coordinates (x, y) and the time span Af. « is the angle
subtended by the vectors v and v*, 8 is the angle v*
makes with the X axis, and v,, and v, yarethe X and Y
components of the vector v,, which represents the component
of the flow field due to the rotation of the camera.

The system can be solved, in closed form, for the direction
of the velocity vector v:

(D) = D, cos 0)(v* —cos B( yv,, — xv,,)) — FD,(cos Bv,, sin 6)

point (x, y) in question. Thus, the second line is parallel to
v, and passes though the point given by v, (see Fig. 3). The
coordinates of the FOE are given by

FW_ FW.
(XFOE’yFOE) = ( W:’ W:) (11)

where W,, W,, and W, are the known velocities of the
camera in the x, y, and z directions, respectively [32].
Finally, we note that v is also given by the sum of the
orthogonal component and the tangential component of veloc-
ity
v=v* 4o’
Since these two vectors are orthogonal to one another and

since v* is known, this relationship defines a third line
through the point given by v* and normal to the direction of

tan (8 - @) =

(D, = Dycos §)(v* +sin B(yv,, — xv,,)) — FD,(v* sin6 — sin Bv,,sing)

(10)
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FOE

%ig. 3. Computation of true velocity v from v*, v,, and v, at a point P
On a Zero-crossing contour.

v* . Hence, v is given by the intersection of the second and
the third lines (see Fig. 3).

Computing v in this manner and, in particular, computing
v' using the five-point approximation, errors can still
recorded in the final flow. A significant improvement can be
achieved by performing a contour-to-contour matching be-
tween successive frames, along the direction of the flow
vectors, tuning the length of the flow vectors to the correct
size. The tracking procedure searches in the direction of the
flow vector until the next contour is found: then, it searches
in the direction of the new flow vector, and so forth, until the
whole image sequence is processed. Although a small differ-
:nce between successive frames is required to guarantee the
accuracy in the computation of the orthogonal component
s+, a long baseline is required for the range measurement.
For this reason, many images are considered, and the flow
field obtained for a sequence of, say, five images is used for
‘ange computation; the flow vector from the first image to the
ast image is employed in the computation of range. We shall
return to this point again when discussing the precision of the
echnique.

The depth, for each contour point, is computed by

z_ D

A (12)

W,

z

vhere Z is the distance of the environmental point from the
samera, D; is the distance of the image point from the FOE,
V, is the translational component of the flow, and W, is the
;amera velocity along the optic axis.

It is worth noting that (10) holds only for the contour
»oints with a non-zero velocity; the camera velocity v is
wctively controlled to be different from zero.

IV. EXPERIMENTAL PROCEDURE AND RESULTS

In order to evaluate this approach to inferring the depth of
sbjects, motion sequences of three different scenes were
senerated. These scenes contained a bin of disposable razors,
t basket of fruit, and a white 45° cone with black stripes at
-egular intervals (see Figs. 4-6). To generate the linear
:go-motion sequences, a Panasonic CCD camera was
nounted on the end effector of a low-cost revolute manipula-

Fig. 4.

Fig. 5.
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(b)
(a) First image of bin of razors; (b) last image of bin of razors.

(@)

®)

(a) First image of basket of fruit; (b) last image of basket of fruit.
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ib)
Fig. 6. (a) First image of cone: (b) last image of cone.

tor (a SmartArms 6R/660). The robot was programmed to
position the end effector over the work surface, with the
camera pointing directly down, and to move downwards
along a vertical trajectory. An image of the scene was
acquired at 20-mm intervals on this trajectory; a total of nine
images were acquired in each motion sequence. To generate
the motion sequence of the camera in rotation about a fixation
point, a simple jig was constructed, and nine images were
generated at 5° increments equally distributed about the
vertical. (For the purposes of illustration, Figs. 4 through 20
depict the results of the rotational motion only. Complete
quantitative summary of the results of both the translational
and the rotational experiments are given in Figs. 22-27, and
in Table 1)

Each of the constituent images in these image sequences
were then convolved with a Laplacian of Gaussian mask
(standard deviation of the Gaussian function = 4.0—see Figs.
7-9). and the zero-crossing contours were extracted. Since
the Laplacian of Gaussian operator isolates intensity disconti-
nuities over a wide range of edge contrasts, many of the
resultant zero crossings are noisy. An adaptive threshold
technique [33] was employed to identify these contours and
to exclude them from further processing (Figs. 10-12 depict
the super-imposed zero crossings of the first and last images).

The zero-crossings contour images and their associated
convolution images were then used to generate six time
derivatives: since the time derivative utilizes a five-point
operator, the time derivative can only be estimated for im-
ages 3-7. The associated orthogonal component of velocity is
then computed, followed by the true optical flow vectors. An
extended flow field was then estimated by tracking the flow
vectors from image 3 through images 4 and 3 to image 6 on a
contour-to-contour basis, i.e., tracking a total of three images
(see Figs. 13-15). For the sake of comparison, two depth
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(b)

Convolution of (a) first and (b} last image of bin of razors with a
V3G mask (¢ = 4.

Fig. 7.

(b)

Fig. 8. Convolution of (a) first and (b) last image of basket of fruit with a
V2G mask (o = 4). '
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(b)
Fig. 9. Convolution of () first and (b) last image of cone with 2 V2G mask
(o =4).
Fig. 10.
Fig. 11.  Superimposed zero crossings of the first and last images.

T3 EETIMATE RANGE
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Fig. 12. Superimposed zero crossings of the first and last images.
images (representing the distance from the camera to each
point on the zero-crossing contour) were generated for both
scenes: one from the instantaneous flow vectors of image 3
(Figs. 16(a), 17(a), and 18(a)) and one from the tracked
velocity vectors (Figs. 16(b), 17(b), and 18(b)). To better
illustrate the depth value along each contour, the contour
images are shown in side elevation. Thus, the relative depth
of the contours is a function of the distance along the
horizontal axis. Finally, a range image representing the range
of all visible points on the surface was generated by interpo-
lation (Figs. 19-21).

V. ANALYSIS

It has been shown [30], [36] in an extension of an analysis
of the precision of range estimation by motion [34] that the
theoretical accuracy of computing depth from motion is given
by'

(13)

where D is the distance of the image point from the FOE or
focus of contraction (FOC) on the image plane, W, is the Z
component of camera translational velocity, v, is the image
velocity due to camera translation, and | v, | is the magni-
tude of the accuracy in measuring the displacement of the
image point.

Assuming W, and v, to be constant throughout the consid-
ered time span of, for instance, NV frames, and letting v, be
the translational velocity between two successive frames and
W, be the corresponding camera velocity along the direc-

Z0 X R
tion of the Z axis, then substituting in (13). we obtain

| DfNW:() |

_ 1D Wl év,]
- N I v I 2 : ([4)

0

Thus, the precision in the computed depth is directly propor-
tional to the considered number of frames N.

'"In the case of a pure lateral translation of the camera in a direction
normal to the focal axis, the distance to the FOE Df is infinite, and the
translational velocity H_ in the Z direction is zero. Equation (8) is, thus,
singular. Recalling (5) and noting that W_ is now zero, we have v, =
(—FW,/Z, - FW /Z). Thus, |v,| = F/Z|W | Rearranging Z =
FYW /v, and hence |87Z] = |8v, | FIW |/ |v, |2
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Fig. 13.  Optic flow: Three images tracked.

Fig. 14. Optic flow: Three images tracked.

The distance of the image point from the FOE is given by

D, = \/(x - xFOE)z + (v - yFOE)Z .

Using the equations for Xroe and Yepop given in (11), we
have

2
+

D, = - —~
S Y Wz

w.

z

FWw, FW,\?
x —

and using the equations for W. W,, and W, given in

2)-@)
FD, sin§

D, - D,cosb’

Df=x—

Assuming incremental time periods between images (Af =
1), we have, from “)

W=D, —D,cosf.

In addition, from ®

Fig. 16. (a) Depth contours

(one image tracked); (b) depth contours (three
images tracked).

D, - D,cosf)\?

x(D, - D,cos §) ~ FD, sin0)2+ (y(

v | = ( >

zZ

Finally, it is assumed that /5u, / = 1, that is, the error in measuring the translational component of the flow vector is one pixel.

Hence, (14) can be rewritten

FD,sin 9
X D, - D,cos 8

) (D, -~ D, cos 8)

16z} =

(15)

M -

x(Dy - Dycos 6) ~FDzsin6)2+ (y(D, - D, cose)‘)2 '

VA
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(a) Depth contours (one image tracked); {b) depth contours (three

Fig. 17.
images tracked).
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{b)
Fig. 18. (a) Depth contours (one image tracked): (b) depth contours (three

images tracked).

Thus, for a given focal length £ which is a given initial
distance to the fixation point D, the accuracy in the compu-
tation of range |67 is a function of the position in the
image (x, y). the angle of rotation # of the camera about its
Y axis, the actual range Z, and the baseline of the motion
(which is a function of # and D,). This accuracy measure
| 8Z |, given equivalently by (11) and (15), is plotted in Fig.
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(b)
Fig. 19. (a) Range image: (b) perspective view of depth contours.
(b)
Fig. 20. (a) Range image: (b) perspective view of range image.
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{a)

(b}

Fig. 21. (a) Range image; (b) perspective view of depth contours.

Increasing error

in compulation
of range

incraasing
distance of
object from
camera

Increasing
angla oi rotation
of camera about
its Y axis

Linear trajectory—Error in computation of range as a function of
the distance Z of the object from the camera and as a function of the
rotation 6 of the camera about its ¥ axis, i.e., the motion configuration
(refer also to Fig. 2).

"Fig. 22.

22 for different values of the distance Z of the world point
from the camera and for different motion trajectories, varying
the rotation # of the camera about its ¥ axis and maintaining
constant the camera displacement and the number of frames.
The error in computation is propoertional to the elevation of
the 3-D plot. It is evident that the error increases with Z.
However, the variation in accuracy with the rotation of the
camera is very interesting; beginning with an axial motion
(6 = 0), the error increases, at first, as 9 increases and only
begins to decrease again after the angle increases beyond
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Increasing srror

n compuraien /

of ranga

t Increasing
distarce of
sojact from
camera

increasing ~.
angle of rotanon
af camara about
its Y axis

Circular trajectory—Error in computation of range as a function
of the distance Z of the object from the camera and as a function of the
rotation 6 of the camera about its ¥ axis, i.e., the motion configuration
(refer also to Fig. 2).

Fig. 23.

§ = 7° (approximately). The error corresponding to a rota-
tion of the camera of § = 45° is shown at the extreme of the
0 axis.

Since this graph assumes a /inear baseline (and hence,
does not exactly correspond to the experiment involving pure
rotational motion described in this paper), the accuracy
| 6Z |, which is plotted against Z and # as before but this
time changing the baseline to create a circular trajectory by
ensuring D, = D,, is plotted in Fig. 23. In this case, the
results are as expected; the error increases with Z and
decreases with #, although it is evident that the marginal
increase in accuracy with increasing 6 falls off quite quickly.
Note that these graphs are plotted for an image point at
coordinates (100, 1G0).

With regard to the experiments described above, the theo-
retical accuracy of the range computation |8Z | at a point
500 mm distant from the camera and at image coordinates
(128, 128) at the periphery of the field of view (since a
resolution of 256 X 256 pixels was used throughout) in the
case of linear egomotion along the focal axis is

N=1: 58.42mm
N =73: 1947 mm
N =15: 11.68 mm

Similarly, in the case of rotational egomotion about the
fixation point 500 mm distant from the camera, the theoreti-
cal accuracy is

N=1: 12.63mm
N=3 421 mm
N =5 2.52mm..

In the experiments described in the previous section, the
mean and standard deviation of the range measurements
along each cone contour was computed. It should be noted
well that to facilitate direct comparison of the results of the
four types of motion, all the range results have been normal-
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TABLE 1
SummaRry oF THE COMPUTED RANGE VALUES
T
Cane Actual | Translational Motion | Translational Motion Rotational Rotational
Radius | Range 1 image Tracked 3 ‘mages Tracked 1 Image Tracked | 3 images Tracked
W a ® @ N < B 4
Ry 5450 3545.0 | 1490 S45.0 | 9592 3450 | 83 5450 (648
RZ 536.0 5186 | 1432 5233 | 784 S443 | 52 5336 1108
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R6 S00.0 3343 | 1741 47956 | 959 5423 | 40 3058 56
Ry 4310 2584 11657 4976 | 1090 S41.7 | 32 4973 64
RS 4820 1685 [ 1319 4708 156.9 3417 | 2.1 4883 S2
RS 4730 4944 | 870 4403 1874 5413 13 4€0.1 67
R10 464.0 504 42.0 2%4 | 2223 5423 14 4752 (143
00 ACTUAL RANGE
?V{ {‘2--~———— MEASURED RANGE
600
RANGE <L
[Ty 500 I il T S
! \ - o
400
300 J 5\\
|
200 j
wo
I
1
° [
RI EH RY R4 (-] RE R7 RE (=] RIO

CONTOUR RADIUS
Fig. 24. Range: Linear motion along the optic axis (one image tracked).

ized so that the range of the furthest contour agrees with its
theoretical (actual) value; this would be a normal calibration
step in an industrial setup in any case. These results are
:abulated for the four types of motion investigated (rotational
and translational motion, one and three images tracked) (see
Table I). These values are also plotted graphically in Figs. 24
through 27, where the true range is also depicted.
Referring to these figures and Table, it can be observed
hat in the case of linear motion along the optic axis (one
image), the standard deviation of the range is approximately
three times greater than the theoretical accuracy; the mean
value deviates by a consistently increasing amount from the
rue range. However, the deviation is in the correct direction
30 that the relative depth of each contour is correct. These
inaccuracies can probably be accounted for by the inaccurate
location of the focus of expansion. It was assumed in the
:omputation that the FOE was located at the center of the
image, but any deviation from a true camera trajectory along
‘he optical axis will invalidate this, introducing errors. Since
nly one image is being tracked in this case, a slight lateral
novement of the camera results in asymmetrical optical flow
ind significantly increased variation in the computed range.
Tracking for three images provides, as expected, signifi-
cantly better results. The mean range of each contour follows
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Fig. 25. Range: Linear motion along the optic axis (three images tracked).
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Fig. 26. Range: Rotational motion about a fixation point (one image
tracked).
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Fig. 27. Range: Rotational motion about a fixation point (three images
tracked).

the true range quite well. Again, however, the standard
deviation of the range values for any one contour is quite
large (at least four times the theoretical accuracy).

In the case of rotational camera motion about a fixation
point, we observe much improved results when tracked across
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three images. Here, the mean computed contour range and
the actual contour range concur very well. The computed
ranges of the five largest cone contours are all within the
theoretical accuracy, whereas the five smallest contours are
typically computed to within 30% of the theoretical accuracy
(i.e., the error is up to twice the theoretical accuracy). The
standard deviation of the computed range values is extremely
low; in most cases, it is in the order of the theoretical
accuracy of the computation. In the two contours where this
is not so, the deviation may be explained by anomolous range
values at points on the contour where the direction of camera
motion is parallel to the contour orientation, and hence, large
errors in the computation of the orthogonal component v+
result.

In tracking a single image, the computed range values are
poor. The range values change very little, though at least the
direction of change is generally correct, according valid
relative depth to each contour. This probably due to the very
small magnitude of the measured orthogonal component v+ .

In processing an increased number of frames, these results
show a reduction in bias, i.e., the absolute error, for both the
translational and rotational cases, a decrease in variance for
the translational case, but an increase in variance for the
rotational case. First, the bias is reduced since, with an
increase in the baseline, the numerical accuracy of the depth
computation increases. However, the unexpected increase in
variance of computed depth in the rotational case is ac-
counted for by the shape of the object or, rather, by the shape
of the zero-crossing contours. Specifically, the orientation of
a significant proportion of the concentric circular zero-cross-
ing contours is identical to that of the direction of the optical
flow vectors. The increased variance is due to the inherent
ambiguity in matching these zero-crossing points when refin-
ing the vector length during the tracking phase of the algo-
rithm. This results in consequent errors in the depth computa-
tion: see Figs. 18(b) and 21(b).

V1. DiscussioN

It has been shown that tracking across three images in an
image sequence generated by a camera in rotation about a
fixation point, it is possible to compute the range of objects to
within at least 10 mm over a distance of 500 mm (i.e., 2%
error) using rotational camera motion about a fixation point.
Even better accuracy is achieved if one is prepared to aggre-
gate the range value along a contour. Ninety percent of the
mean ranges for the cone contours were computed to within
7.1 mm of their correct value, and 50% of them were
computed to within 3.6 mm of their correct value. The
variation in computed range values for the linear motion
along the optic axis can be accounted for by small lateral
deviations from the true trajectory. It is not clear whether this
limitation is due to inherent sensitivity of this technique or
whether it is due to poor positional control of the robot
manipulator. In any case, the theoretical and practical accu-
racy of the rotational motion suggests it to be a clearly
superior approach.

It should be noted, however, that for the other applica-
tions, the axial motion is an extremely interesting type of
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motion; it would be of particular use with autonomously
guided vehicles as they proceed in a straight line toward a
fixation point. Furthermore, one can improve the results
obtained in this paper by choosing an alternative experimen-
tal setup and, specifically, by extending the baseline and the
number of images used in computing the optical flow.

VII. ConcrLusions

This paper has described the successful use of passive
vision, under the guise of analysis of simple optical flow
based on two types of camera motion, to infer depth of
objects in bins. It is important to note that the theoretical and
practical accuracy achievable with this technique makes its
deployment as a ranging technique for robot manipulators
entirely feasible. The main advantage of the technique is that
it relies only on ambient lighting to accomplish the range
estimation. Without doubt, the technique will prove to be
even more robust when augmented with other visual cues,
and the task of integrating such motion with an analysis of
stereo disparity is actively being pursued [39]. Thus, the
approach represents a useful starting point from which a
robust passive 3-D robot vision system, based on the mutual
integration of several visual cues, can be developed.

All of the research described in this paper was carried out
using a low-level computer vision development package (VIS
[35]), and to achieve the required computational speed re-
quired of industrial vision systems, the system is currently
being ported to a specially designed transputer-based multi-
processor system.
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