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Abstract\‘

This paper describes expericnce gained in us-
ing optical flow ficlds, arising from constraincd
camera motion, o cstimate range information,
for robotic part manipulation. Several key is-
sucs in robot vision arc addressed. These include
the computation of Opllcdl flow, compulation of
~ depth, interpolation of depth valucs, model con-
struction, object recognition, and pose estimation.
The paper provides-zi‘n example of the approach
and evaluatcs -the system’s performance in the
context of its applicability to part manipulation.

)

1 The robot vision paradigm for

adaptive robot mampulatlon

It is worth outlining at the outsct the type ol sys-
tem cnvisaged in this papcr Visual undcrstand-
ing of a 3-D environment is csscnllally an ac-
tive proccss, requiring the acqutsmon of several
images of the local environment prior to analy-
sis. This is popularly known as ‘active vision’
but it must be distinguished from the common
industrial tcchniques which exploit ‘active sens-
ing’. The word active in the former refers to the
investigative nature in passivc vision while the
latter refers to the use of contrived itlumination
(c.g. light stripers, lasers) or other intentionally
radiated signals (e.g. ultra-sonics) to effect the
computation of 3-D information. 'In this paper, we

will use the word ‘passive’ to refer to the former
approach and ‘active’ to refer to the latter. This
robot vision paradigm, then, compriscs image ac-
quisition from muitiple vicwpoints, computation
of 3-D structure, object matching or recognition,
posc cstimation, formulation of a grasping strat-
cgy, and subsequent manipulation. We arc con-
cerned in this paper with all of these issucs except
the last two, although it is readily acknowlcdged
that they arc indeed key issues.

2 Structure from motion.

The essential idca is to analyse the apparent mo-
tion of objects arising from the changing vantage
point of a moving camera in order to compute,
first, the distance from the camera of key fea-
tures on the object (e.g. edge contours), and sec-
ond, the structure of the object by intcrpolation
and model construction. From an intuitive point
of view, camera motion is identical to the sterco
process in that we are identifying points in the im-
age (in this case, cdge contours) and then tracking
them as they appear to move due to the changing
position and, perhaps, attitude of the camera sys-
tem. At the end of the sequence of images, we
then have two sets of corresponding points, con-
nected by optic flow vectors, in the first and last
images of the sequence. The dcplh or distance,
of the point in the world can then be computed
by triangulation of the two ends of the optic flow
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Figure 1: Rotational motion of a camera about a
fixation point

vectors. In the research described in this paper,
we have confined our attention to one simple type
of camera motion in which the camera is rotated
about a fixation point (see figure 1). The exact
details of this technique can be found in [7] and
[9]; we will content ourselves here with just a
summary of the approach.

There are eight steps in the computation of the
optical flow field. These are:

1. Acquisition of a number of images (nine in
this instance).

Laplacian of Gaussian filtering.
Zero-crossing extraction.
Adaptive selection of zero-crossings.

Computation of (temporal) first differences.

A o e o

Computation of the orthogonal component
of velocity.

~

Computation of the true velocity vector.

8. Tracking of feature by isolation of adjoining
(contiguous) flow vectors.

There are two components of optical flow: the ro-
tational v, and the translational v,, i.e., v = v, +v,.

The rotational component can be determined di-
rectly from the known camera trajectory while the
direction of the translational component is also
constrained by the camera motion. The main dif-
ficulty when attempting to compute the true op-
tical flow of a point on an edge contour in the
image is that we cannot say with any certainty in
which direction the point has moved, based purely
on local information. The only thing we can com-
pute with certainty is the orthogonal component
of the velocity vector, i.e. the component which
is nomal to the local contour orientation. This
vector component is referred to as v* |, and the
second component is referred to as the tangential
component, v'. Thus, the true velocity vector v
is also given by:
v=ovl 407

I{ the luminance intensity does not change with
time (i.e. there are no moving light sources in
the environment) the component of the orthogonal
velocity vector for each image point is given by:

o1/t

| VI
where 9 indicates the partial derivative operator
and | VI | is the local intensity gradient.

In the technique described here, we compute
the time derivative of a V2G filtered image in-
stead of the raw intensily image and compute
the optical flow at zero-crossing contours. This
means that the amount of data to be processed is
limited and, futhermore, the effects of noise are
less pronounced.

For the constrained camera motion shown in
figure 1, the image velocity components can then
be wrilten as (see [9] for details):

(z(Dl — Dy cos8) — FD,sind

v= Z At ’
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Where, I is the focal length of the Iens, z and y
arc the coordinates of the point in the image planc
at time 7, 0 is the retational angle of the camera,
1>y an ), arc the distances of the camera from the
fixation point at time 7" and 1"+ A, respectively,
and Z is the distance of the camera to the world
point corresponding to the image point (z, y).
We now have two expressions for v:

U=U'L+‘UT

v =0, + U,

The computation of the truc velocity vector v is
effected by combining thesc cxpressions. This
can be accomplished dircctly by solving the at-
tendant system of equations or indircctly by a ge-
ometrical construction (sce {7]).

Computing v in this manncr and, in particu-
lar, computing v using image differences, errors
can still recorded in the final flow. A signilicant
improvement can be achicved by performing a
conlour-to-contour matching bctween successive
frames, along the direction of the flow vectors,
tuning the length of the flow vectors to the correct
size. Although a small difference between suc-
cessive frames is required to guaranice the accu-
racy in the computation of the orthogonal compo-
nent v+, a long bascline is required for the depth
measurcment. For this rcason, many images are
normally considcred and the flow ficld obtaincd
for a sequence of imagcs is uscd for range com-
putation: the flow vector from the first image to
the last image being employed in the computation
of depth.

The depth, for cach contour point, is computed
by applying the inverse perspective transforma-
tion, derived from camera modcls corresponding
to the initial and final camera positions, (o the
two points given by the origin of the optical flow
vector and the cnd of the optical flow vector.

To illustratc this approach to computing the
depth of objects, figurc 2 shows a motion sc-
quences of comprising ninc images. Each of
the constituent images in these image scquences

Figure 2; A sequence of intensity images

were then convolved with a Laplacian of Gaus-
sian mask (standard deviation of the Gaussian
function = 4.0 pixels) and the zero-crossings con-
tours werc extracied. An adaptive thresholding
technique was cmployed to identify the most rel-
evant contours (sec figure 3). The associated op-
tical flow field is also shown in figure 3, togcther
with a rangc image representing the range of all
visible points on the surface. This was gencrated
by weighted lincar interpolation between depth
valucs on zcro-crossing contours. Spurious val-
ucs in this range image have been suppressed by
applying an 11x11 pixcl modal filter, whercby the
value of cach point in the range image is replaced
with the value associated with the mode of a his-
togram of the values in a local region around that
point.

We proceed now to the issuc of construction
of 3-D modcls from the range data and o the
recognition of these modcls and the computation
of posc for subscquent robotic manipulation.

3 Model matching and pose estima-
tion

The 3-D representation developed and used in
this system is a simple planar-surfacc based rep-
rescntation, not dissimilar to that of Roberts [5].
This representation most naturaily describes poly-
hedral objects, but by using multiple surfaces
can be employed to represent surfaces which are
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Figure 3: The third image in a sequence of
nine images (top left), its associated ‘significant’
zero-crossings (top right), the optical flow deter-
mined between the third and eight images (bottom
left), and the resultant interpolated and filiered
range map (bottom right)

curved. Obviously, though, this representation
of objects is not stable (i.e. different instances
of the same object can have different representa-
tions), but along with the recognition technique
to be detailed next, it is more than adcquate
for the task of representing objects to be recog-
nised. Faugeras [2,3] and Henderson [4] describe
a method of interpolating surface representations
from well-sampled point data (e.g. range data).
‘3-point seed’ planar surfaces are generated using
any combination of three points which are within
the sampling distance of each other. Thesc seed
surfaces are subscquently merged into larger sur-
faces. This type of technique is employed here,
although the 3-point seed surfaces are not merged
into larger surfaces. Rather, they are processed
and subsequently used to gencrate other 3-D rep-
resentations: the 2%-D skelch (a representation of
depth and local surface orientation), EGIs (Ex-
tended Gaussian Images — a 2-D histogram of
the local surface normal vectors of an object), and
directional histograms (1-D histograms of certain
components of the local surface normal vectors
of an object).

The object recognition strategy proceeds by in-
voking approximate views of known models (i.e.

models in the database of objects), fine tuning
these views with respect to the viewed object (i.e.
the object view generated from the optical flow),
and then by evaluating a mecasure of similarity
between known models and viewed objects. The
following summarizes the essentials of the algo-
rithm; for details see {1].

Model view invocation is performed by de-
termining possible orientations from which each
known model could be viewed (in order to gen-
erale a view similar to the viewed object). The
focal axis of the viewing device/camera with re-
spect 1o the known model’s frame of reference is
first determined, and subsequently possible val-
ues for the roll of the camera with respect to
its own frame of reference (i.e. around the fo-
cal axis) arc calculated. In order to determine
potential orientations of the camera with respect
to a known model’s frame of reference, a sample
of all possible orientations is used. This sam-
pling of oricntation space is defined by the EGI
of the known model. Using each of EGI clements
(surface nonmals directions) as possible orienta-
tions of the camera focal axis, directional his-
tograms of the tilts! visible from the known model
are determined. These directional histograms are
compared using a correlation technique with a di-
rectional histogram of tilt determined from the
viewed object, resulting in a degree-of-fit for each
possible orientation.

Having determincd potential orientations for
the camera focal axis, potential values for roll,
around that focal axis, must be calculated. This
is accomplished by correlating the directional his-
togram of roll defined by the viewed object with
that derived from the known model in an arbitrary
roll, as viewed using the previously determined
focal axis.

At this stage, we have potential orientation
frames of reference for known models. These,
however, are only approximations as the orienia-

"The tilt is defined as the angle subtended by the principle
ray of the camera and the local surface normal vector.



tion space is quitc coarscly sampled. Onc task of
modcl matching is, then, to fine tune these oricen-
tation frames and to determine the position of the
vicwing camcra relative to the known modcl.
The object recognition strategy continucs, then,

by

1. Determining of approximate object position
by computing the distance o the centroid of
the viewed object and by invoking a known
view for a camera at this distance.

2. Fine tuning of object oricntation in a manner
similar to that of computing the camcera roll
above. '

3. Fine tuning of vicwed object position by
translating it in a direction normal to the
principle ray of the camcra, choosing the po-
sition (translation) which yiclds the highest
correlation between maps of the surface nor-
mal vectors of both viewed and known mod-
cls.

4, Fine tuning of object depth by translating
along the principle ray of thc camera, choos-
ing the position which yiclds thc highest
corrclation between range images of both
viewed and known modcls.

5. Fine tuning of vicwed object position to sub-
pixcl accuracy by fitting a quadratic function
10 the variation in correlation bctween sur-
face normal maps and choosing thc position
corresponding to the maximum of this cor-
relation curve.

The final object recognition is accomplished by
choosing the known model (view) which yiclds
the maximum corrclation in this fine tuning;
clearly, the objcct posc has also been computed
at this stage also. Figurc 4 shows cxamples of an
object data-base while figurc 5 shows the result
of this object recognition stratcgy.

© o os.alem.

Figurc 4: Databasc of object models

Figurc 5: Pose of modcl which achiecved maxi-
mum Scorc in rccognition strategy

4 The VIS a VIS environment

A brief word in dbout the computer vision envi-
ronment used in this rescarch is in order. Unfor-
tunately, space constraints prohibit no more than
a cursory summary. All of the results described in
this paper were obtained using a parallel computer
vision system, VIS a VIS, which effects coarse
granularity parallclism on a array of transputers.
The acronym VIS stands for Virtual Image Sys-
tem: the cnvironment facilitating dynamic cre-
ation of widc varicty of image types. Parallclism
is achicved by Remote Procedure Calls to other
instantiations of VIS running on other transputer
nodes and robot manipulation is effected using
an in-built language which controls a Scara-type
robot in a Cartesian frame of reference. See [6,8]
and a forthcoming book [10] for further details.
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5 Summary and discussion

The technique described in this paper has been
extensively tested using the passively-acquired
range data generated using the structure from mo-
tion approach described above and it has achieved
100% success in abject recognition {or unambigu-
ous objects. While it would be foolish to contend
that this approach represents a ‘final” solution to
the problems associated with object recognition
using passive computer vision, it has proved (o
be quite robust — given the noisy nature of the
models which are generated using passive vision
— and demonstrates the usefulness of optical flow
for object recognition and pose estimation in the
context of robotic part manipulation.

There are several outstanding issues in the use
of passive vision for robotic part manipulation.
These include segmentation, grasping and ma-
nipulation strategics, and the computational com-
plexity of the task. These issucs arc the next to
be addressed in this research programme. How-
ever, the computational complexity of the tech-
nique outlined places it, at present, far outside the
bounds of industrial feasibility; on a small paral-
lel system (twelve nodes), the total time required
for object recognition and pose estimation is of
the order of 45 minutes. It can be argued that
the technique will scale well but it remains to be
demonstrated that this is the case. As an industrial
tool, its robustness and repeatability must also be
established. Obviously there remains much (o do,
but the prognosis is good!

6 References

[1] Dawson K.M. and Vernon D. 1991, ‘Modcl-
Based 3-D Object Recognition Using Scalar
Transform Descriptors,” Proc. SPIE, Vol.
1609 (accepted for publication).

[2] Faugeras, O. D. 1983. ‘Conversion algo-
rithms between 3D Shape Representations’
in“Fundamentals in Computer Vision” -

(3]

[4]

(71

(8]

[9]

[10]

— /22—

edited by O. D. Faugeras. pp. 305-314,
Cambridge University Press.

Faugeras, O.D. and Herbert, M. 1986.
“The representation, recognition and loca-
tion of 3-D objects’, International Journal of
Robotics Research, Vol. 5, No. 3. pp.27-52.

Henderson, T. 1983. ‘Efficient 3-D Object
Representations for Industrial Vision Sys-
tems’, IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, Vol. PAMI-5,
No. 6, pp. 609-618

Roberts, L.G. 1965. Machine Perception of
Three-Dimensional Solids.”, Chapter 9 in
Optical and Electro-optical information pro-
cessing (edited by J.T. Teppett e al. , MIT
Press, Cambridge, MA. pp.159-197.

Sandini, G., Tistarelli, M., and Vernon, D.
1988 ‘A Pyramid Based Environment for the
Development of Computer Vision Applica-
tions’, IEEE International Workshop on In-
telligent Robots and Systems, Tokyo.

Sandini, G. and Tistarelli, M. 1990. ‘Active
Tracking Strategy for Monocular Depth In-
ference from Multiple Frames’, IEEE Tran-
sanctions on Pattern Analysis and Machine
Intelligence, Vol. 12, No. 1, pp.13-27.

Vernon, D. and Sandini, G. 1988. ‘VIS:
A Virtual Image System for Image Under-
standing’, Software — Practice and Experi-
ence, Vol. 18, No. §, pp. 395-414.

Vernon, D. and Tistarelli, M. 1991. ‘Us-
ing Camera Motion to Estimate Range for
Robotic Parts Manipulation’, IEEE Trans-
action on Robotics and Automation, Vol. 6,
No. §, pp. 509-521.

Vermon, D, and Sandini, G. (eds.) 1992,
‘Parallel Computer Vision — The VIS a VIS
System’, forthcoming publication by Ellis
Horwood, London.



