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Abstract. Human fingerprints comprise a series of whorls or ridges. In
some special cases, these whorls are broken by so-called secondary
creases—colinear breaks across a sequence of adjacent ridges. It is a
working hypothesis that the presence of these secondary creases form
a physical marker for certain human disorders. A technique to automat-

ically detect such creases in fingerprints is described. This technique
utilizes a combination of spatial filtering and region growing to identify
the morphology of the iocally fragmented fingerprint image. Regions are
then thinned to form a skeletal mode! of the ridge structure. Creases are
characterized by colinear terminations on ridges and are isolated by ana-
lyzing the Hough transform space derived from the ridge end points.
Empirical results using both- synthetic and real data are presented and

discussed.
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1 Introduction

Human fingerprints comprise a series of whorls or ridges.
The imprint of these ridges forms a quasi-contiguous locally
linear series of ink prints where the surface of the skin has
come into contact with the paper on which the fingerprint is
formed (see Fig. 1). For most people, these ridges are well
formed and unbroken. However, in some people, these ridges
are broken by a crease where no skin has been inked and
come into contact with the paper. These colinear breaks in
the whorls of the fingerprint are called secondary creases
(See Fig. 2). It is a working hypothesis that such secondary
creases form a physical marker for certain human disorders.
This paper discusses the research and development of an
automated technique to detect and isolate secondary creases
so that this working hypothesis can be verified without relying
on human interpretation of the morphology of the fingerprint.

2 Segmentation

Before any automatic analysis of the morphology of the
fingerprint can be accomplished, it is first necessary to iden-
tify and label those parts of the image of the fingerprint that
correspond to the ridges or whorls, i.e., the inked part of
the paper.
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In normal circumstances where the object of interest, i.e.,
the ridges, are of a distinctly different gray level to the back-
ground, i.e., the paper on which the fingerprint is imprinted,
this process of segmentation could be effected by *‘thresh-
olding.”” In this process, the gray level of each pixel is com-
pared with an appropriate reference level, the threshold, and
the pixel is then assigned a value of 255 or 0 depending on
whether it is greater or less than the threshold. The resultant
binary image comprises pixels of gray level zero, signifying
that a pixel represents a ridge, or 255, signifying that a pixel
represents the paper. Unfortunately, this straightforward ap-
proach is not practicable for two reasons.

First, the level of inking of the finger can vary considerably
and consequently the ‘‘blackness’’ of the print varies from
fingerprint to fingerprint and from region to region in a given
fingerprint. Second, a segmented image of a fingerprint that
has been generated by thresholding is extremely fragmented
in the sense that a single ridge is broken up into many (of
the order of tens or hundreds) isolated, nonadjacent, blobs
or regions. This is a natural consequence of the textured
nature of the surface of the skin that forms the whorls. While
the problem of inhomogeneous inking can be solved through
the use of dynamic thresholding' wherein the threshold is a
function of the image coordinates, the second difficulty of
ridge fragmentation is more problematic. An informal in-
vestigation of the feasibility of identifying the global structure
of each whorl through accepted techniques, such as mor-
phological opening, > yielded no useful solution.
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Fig. 2. A human fingerprint with secondary creases.

In the work described here, a robust, if computationally
expensive, solution is employed that addresses simultane-
ously the problems of fragmentation and segmentation. This
technique utilizes a combination of spatial filtering and region
growing to identify the morphology of the fingerprint image.

Ridges, as entities in themselves, in the fingerprint are
substantially larger than the fragments that make up the ridge;
that is, they are well represented by the lower spatial fre-
quencies comprising the image. By attenuating the higher
spatial frequencies. the fragmented image detail is removed
and the global structure of the ridge morphology is retained.
This can best be accomplished* by convolving the fingerprint
image with a 2-D Gaussian function:

I y)*Gxy) , N

where I(x,y) represents the image intensity at a point (x,y)
and G(x,y) is the 2-D Gaussian function of a given standard
deviation ¢ defined by:
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The value of o governs the spatial scales that are retained:

G y)=

the larger the value of o. the larger the scale of the objects
represented in the filtered image. In all of the results cited in
this paper, o =7.0 pixels. This value was determined em-
pirically by a calibration procedure. based on the normal
distance between the ridges.

The ridges are isolated through the use of a Laplacian
second-derivative edge detection filter
v 2
ax= 9y~

)

i.e., the sum of second-order. unmixed, partial derivatives.

The evatuation of the Laplacian and the convolution with
the Gaussian commute so that the segmentation and selection
of the spatial scale can be effected with a single filter: the
Laplacian of Gaussian’:

V(63 # GO MI=VG (xy) *1(x,y) . 3

The Laplacian-of-Gaussian operator yields thin continuous
closed contours of zero-crossing points that bound regions
in the filtered image. These regions are recursively nested,
with each region having, alternately, an opposite sign (pos-
itive or negative) as one descends through the nesting (see
Ref. 6). In this work on the detection of secondary creases,
segmentation is achieved by identifying each region by its
sign, computing the area of each region, and isolating the
region with the largest area. This is the background region,
and all other regions are deemed ridge regions. This seg-
mentation then is represented as a binary image, for example,
see Figs. 5(b) through 7(b).

3 Morphological Processing: Thinning and
Isolation of Ridge Termination Points

Once the elongated ridge regions have been isolated, it is
necessary to identify locations of their ends. This is accom-
plished by morphological processing, thinning the region to
form ‘‘skeletons,”” which are one pixel wide, and then by
identifying the end points of these skeletons. Strictly speak-
ing, athinned region is a digital approximation of the skeleton
and, thus, for the sake of correctness, we refer to it explicitly
in the following as a thinning. The procedure can be sum-
marized as follows (see Ref. 7 for further details). Let X
denote the set of points (pixels) that comprise the ridge re-
gions. The thinning of this set X is accomplished by the
morphological filtering of the set X with a sequence of struc-
turing elements L, as follows:

I3

XO{LY}, C))
that is,
{((.(XOLHOL»OL?..OLY , (5)

where XOL is defined as:
XOL=X\X®L . (6)

The operator ® denotes the hit-or-miss transformation. This
transformation is defined as:

X®L={x|L{cx; LECx }, (7
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Fig. 3 Sequence of structuring elements L’ through L® used in the thinning operation.
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Fig. 4 Structuring elements £' through E£8 used to identify end points.

where Lf is that subset of L, translated to point x, whose
elements belong to the ““foreground’” (ridge) and L? is the
subset of L, translated to point x, whose elements belong to
the “‘background” (i.e., L7 M L?=0). The set complement
of Xis X €. A point x belongs to the hit-or-miss transformation
if and only if fo is included in X and L? is included in the
complement of X. Thus, X ® L defines the points where the
structuring element L exactly matches the set X, i.e., the ridge
pixels in the image. The set X O L, then, is the set X less the
set of points in X that maiches L. Thus, if X ® L identifies
border points, and L is appropriately structured to maintain
the connectivity of a set, then repeated application of the
thinning process successively removes border points from a
set until the thinning is achieved. At this point, further ap-
plication of the thinning transform yields no change in the
thinned set. The sequence {L}, which is used for thinning,
is based on a single-structuring element’ and is generated by
rotating the structuring element (through 360 deg in incre-
ments of 45 deg). This sequence {L} is shown in Fig. 3. The
thinning algorithm then amounts to the repeated trans-
formation of a set X; — X, | defined:

X1 =({((.(;OLHOL*)OL?)..OL") . (8)

The thinning is achieved when X;=X, . Initially, X,=X,
i.e., the original (unthinned) segmented binary image. Ex-
amples of thinned ridges can be seen in Figs. 5(d)
through 7(d).

Given a thinning X, we then identify the end points, i.c.,
points that are connected to just one other point, using the
hit-or-miss transform and an appropriate set of structuring
elements {E}, shown in Fig. 4. Thus, the end points of the
thinning are given by:

8

r=Uxer , ©)

i=1

that is, the set of end points is the union of all those points
that hit with one of these end-point structuring elements.

4 Hough Transform

4.1 Computing the Hough Transform

The technigue for the detection of secondary creases de-
scribed in this paper is based on the assumption that such
creases are characterized by colinear ridge ends. Having ex-
tracted the morphology of the ridges and having identified
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the locations of the end points of the segmented ridges, we
must now group these end points according to a colinearity
criteria: in effect, to find the virtual line formed by the ridge
ends. The Hough transform® is used to accomplish this. The
computation of the Hough transform for the detection of lines
is quite straightforward although, as we see in the next sec-
tion, postprocessing in the Hough transform space is required
to effect reliable and robust extraction of lines.

The equation of a straight line is given in parametric form
by the equation:

x cosf+y sinf=r , (10)

where r is the length of a normal to the line from the origin
and 0 is the angle this normal makes with the X axis. For a
given line, r and 8 are known. In this case, however, r and
6 are unknown because we do not yet know which are the
crease lines, but we have several specific samples of x and
¥, namely, x; and y,;, which are given by the coordinates of
the ridge end points. In the Hough transform, the solution to
Eq. (10) is computed for each (x;,y;) pair, yielding a set of
values for r and 8. These values are recorded by incrementing
an element of a 2-D array, known as the Hough accumulator,
for each (r,8). From a computational point of view, this is
performed quite simply by computing the value of § from
Eq. (10) for all values of r, knowing x; and y;. This solution-
set is, in effect, a sinusoidal curve in the -6 space, ie., in
the Hough transform space. The transform is computed for
all ridge end points (x;,y;), and end points that are colinear
will all have a single value of » and 6 in common; that is,
the solution-set sinusoidal curves will intersect in a single
point in the Hough transform space. Such points of inter-
section are characterized by local maxima in the Hough ac-
cumulator; see, for example, Figs. 8(c) and 9(c).

4.2 Detection of Local Maxima
in the Hough Accumulator

Unfortunately, ridge end points are almost never colinear,
even in the most ideal circumstances such as in the synthetic
test patterns that have been used to test the technique (see
Sec. 5.1). In the case of real fingerprint patterns, this colin-
earity is, at best, approximate (see Figs. 5 through 7). Con-
sequently, the solution-set curves in -6 space do not intersect
in a single point but in several points that are close together.
Before the effective local maximum can be detected by com-
paring the value of a single accumulator element with a given
threshold, it is essential to process the accumulator, i.e., the
Hough transform space, so that the accumulator values in a
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Fig. 5 (a) Gray-level image of a section of a fingerprint; (b) ridge regions derived from Laplacian of
Gaussian V2G of image, o = 7.0 pixels; (c) Hough transform space derived from end points of skeleton
of ridge regions; and (d) crease line superimposed on the skeleton of ridge regions.

(a)

(b)

Fig. 6 (a) Gray-level image of a section of a fingerprint; (b) ridge regions derived from Laplacian of
Gaussian V2G of image, o =7.0 pixels; (c) Hough transform space derived from end points of skeleton
of ridge regions, and (d) crease line superimposed on the skeleton of ridge regions (note that the
tolerance 82, which defines the degree to which a crease line can intersect ridges, is equal to 0.2 in
this example, whereas in Fig. 5 it is equal to 0.1; refer to Sec. 4.4 for further details).

local region are collected and assigned to a single specific
accumulator cell. This is accomplished in the research de-
scribed in this paper by iteratively reassigning the value of
each accumulator element that is not the local maximum of
its immediate 3 X 3 pixel region to one of its eight neighbors.
The neighbor to which the value is assigned is required to
be the local maximum in that 3 X 3 region. In this way, the
value of a local maximum increases as it is incremented by
the value of its neighbors. This iterative process is continued
until no more reassignment can be performed. at which point
the accumulator comprises a set of isolated points. each of

which represents a local maximum, and the point-wise thresh-
olding can proceed.

4.3 Selection of Threshold for
Isolation of Candidate Crease Lines

Not all of these local maxima correspond to valid lines in
the original image and it is necessary to identify a threshold
value that accumulator elements must exceed in order to be
considered as candidate crease lines. Because the content of
the fingerprint images varies considerably and, hence, so too

OPTICAL ENGINEERING / October 1993 / Vol. 32 No. 10/2619
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Fig. 7 (a) Gray-level image of a section of a fingerprint; (b) ridge regions derived from Laplacian of
Gaussian V2G of image, o =7.0 pixels; (c) Hough transform space derived from end points of skeleton
of ridge regions; (d) crease line superimposed on the skeleton of ridge regions.

does the resultant form of the Hough accumulator, it is de-
sirable to have this threshold chosen adaptively. This can be
accomplished by computing some simple statistics on the
distribution of the values in the postprocessed Hough ac-
cumulator and by basing the threshold on these statistics. In
this implementation, the threshold T is given by:

T=n+30 , (n

where . and o are the mean and standard deviation of the
values in the postprocessed accumulator, respectively. This
threshold is low enough to ensure all crease lines are included
but high enough to remove the majority of the accumulator
elements. The choice of the coefficient 3 in Eq. (11) is based
on practical experience in the use of the technique in this
particular application. A somewhat different value may be
required in other applications.

4.4 Constraints for the Isolation of Crease Lines

After application of the threshold on the Hough accumulator,
a set of candidate crease lines exists. Not all of these lines
do, in fact, join the end points of several distinct ridges.

For example, it is common that a single ridge can be
fragmented into a number of sections. Each of these sections
gives rise to an equal number of roughly colinear skeletal
line segments with two end points. Because these end points
are colinear, they too will give rise to a valid local maximum
in the Hough accumulator. This maximum cannot be distin-
guished from valid maxima corresponding to creases by anal-
ysis in the Hough space. However, it can be identified and
removed by reverting to analysis of the structure of the orig-
inal segmented and thinned images.

A second pathological case also exists. It is possible that
lines are formed from several end points of ridges that are
not adjacent in the original image and that do not exhibit the
spatial relationship required of ridges forming a secondary
crease. Again, since all spatial information is lost in the
Hough transform, these lines cannot be detected by analysis
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of the Hough accumulator. And again, they can be isolated
by analyzing the structure of the original segmented and
thinned images.

Both of these cases can be dealt with by the imposition
of two constraints on the lines formed by the ridge end points:
these constraints ensure (1) that the crease orientation is sig-
nificantly different from the average ridge orientation and
(2) that the crease line must connect spatially contiguous
ridge ends without excessively intersecting unbroken ridges.

The first constraint, which eliminates lines connecting the
end points of a single fragmented ridge, is that the orientation
of a crease line should be significantly different to the average
orientation of the ridges in the region surrounding the crease
line. Specifically, candidate crease lines are removed from
consideration if they satisfy the following inequality:

6,—8 <6,<6,+3! , (12)

where 6, is the average ridge orientation; 8! is a tolerance,
defined to be 20 deg in the implementation described in this
paper; and 6, is the orientation of the crease line. The average
ridge orientation is computed as the mean orientation of all
adjacent skeleton points in a region around the crease line
joining the end points. This region is bounded by two lines,
one on either side of and parallel to the crease line. The normal
distance from the crease line to the boundary of the region
is equal to twice the calibrated ridge width.

The second constraint, which ensures that the crease line
connects spatially contiguous ridge end points, concerns the
intersection of ridges by the crease line. Similar to the first
constraint, candidate crease lines are removed from consid-
eration if a significant proportion of the crease lines intersects
ridge points. Thus, lines are removed from consideration if
they satisfy the following inequality:

B

—“=35
e

RS

; (13)
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where 71, is the number of ridge pixels lving on the crease
line, I, is the length of the crease line. and 87 is the tolerance.
The tolerance 8; is defined to be 0.1 for all examples in the
implementation described in this paper, unless otherwise
stated.

Examples of isolated secondary crease lines are shown in
Figs. 5(d) through 7(d) and in Figs. 8(d) and 9(d).

& \Verification of Resulis

To validate the technique. two forms of test have been run.
The first uses synthetic test patterns that have been con-
structed to assess. in a quantitative manner, how the technique
performs as the data degrades in a well-understood manner.
The second form of test deals with actual fingerprint data.

(a)

5.1 Tests on Synthetic Data

A series of test patterns, each comprising 10 ridges, were
devised and printed on plain white paper using a laser printer
(see, for example. Figs. 8 and 9). These patterns were printed
at an actual size of 8 X 6 mm to ensure that the tests on
synthetic data operated at the same magnification and field
of view as those on the actual fingerprint data. Consequently.
there is a natural variation (or noise) in the image of the test
pattern due to the limited resolution of the laser printer, the
fibrous texture of the paper, as well as imaging noise. This
helps ensure that the tests that are carried out on the synthetic
data are as realistic and representative as possible.

There are 26 test patterns in total. In the first, each of the
ridges has a gap of the same distance as the inter-ridge interval

Flg. B (a) Gray-level image of a synthetic test pattern; (b) ridge regions derived from Laplacian of
Gaussian V2@ of image, o =7.0 pixels; (c) Hough transform space derived from end points of skelaton
of ridge regions; and (d) crease line superimposed on the skeleton of ridge regions.
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Fig. 8 (a) Gray-level image of a synthetic test pattern; (b) ridge regions derived from Laplacian of
Gaussian V2@ of image, o= 7.0 pixels; (c) Hough transform space derived from end points of skeleton
of ridge regions; (d) crease line superimposed on the skeleton of ridge regions.
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(Le.. the normal distance between the ridges). and this gap
is at exactly the same position in each ridge: the ridge end
points are all colinear. The remaining 25 patterns are orga-
nized in groups of five, with groups 1, 2. 3, 4, and 5 having
10, 20. 30. 40, and 50% of the ridges displaced from the
original position. respectively. Within each group, this dis-
placement is varied. with patterns 1, 2. 3, 4. and 5 having
the ridge(s) displaced by 50. 100. 150, 200. and 250% of the
ridge gap distance.

The technique described in this paper was applied 10 times
to each pattern and the number of correct crease detections
were recorded. The position and orientation of the pattern in
the field of view was altered slightly for each of the 10 ap-
plications. Table 1 summarizes the results of this series of
tests and details, for each pattern, the rate of correct isolation
of the crease. No incorrect crease detections were recorded
but some crease lines were not detected. These results dem-
onstrate that the technique is consistent and robust. It fails
when 40% or more of the ridges are displaced by 150% or
more of the ridge gap. It should be noted that this failure is
due, in every case, to the constraint that the detected ridge
line cannot contain more than 10% of ridge points along its
length (this is the tolerance specified by 82), and it has been
verified that the ridge line would have been detected if this
tolerance was altered.

Before proceeding, it is worth considering Fig. 9 again.
Notice that a single crease is detected and that the orientation
of the crease is approximately 10 degrees from the vertical.
Is this a good result? To answer this question, we must first
ask several other questions: Is there a crease in the image
and how many creases are there? What are their orientations?
Are these creases detected and are the orientations correct?
Clearly there is a crease in the image but Fig. 9 could be
construed to comprise two vertical, but displaced, ridges.
However, each of the images of the synthetic test patterns 1s
intended to represent a single crease in which a given, and
known, proportion of the ridges are displaced from the true
(perfect) position. The orientation of this perfect crease is
given by the line joining the end point of the majority of the
colinear end points, which, in the case of Fig. 9, is approx-
imately vertical. Nonetheless, Fig. 9 does represent a good
result in that the crease has been detected, despite its (inten-
tional) deformation, and there is a quantifiable error in its
orientation. However, since in this application it is the de-
tection of the crease and not its orientation which isimportant,
this error in the measurement of orientation is not si gnificant.

5.2 Tests on Real Data

The technique described in this paper has also been exten-
sively tested on a somewhat limited data set of fingerprints
(in excess of 160 fingerprint regions) and it has proved to be
reliable and -obust in isolating secondary creases. Represen-
tative examples of the results that have been achieved are
shown in Figs. 5 through 7.

6 Discussion

The technique described in this paper works well. Nonethe-
less, a number of issues should be noted.

First, it has been necessary to use a high imaging mag-
nification with an attendantly small field of view in all of the
work described. The primary reason for this is to ensure that
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Table 1 Resulis of application of technigue on synthetic test pai-
terns: rate of correct isoiation of crease (all figures are expressed
as percentiles).

—

Number of Displacement of Ridge (% of ridge gap)

Displaced Ridges

(% of total) 6 50 100 150 200 250

0 100 - - - - -
10 - 100 100 100 100 100
20 - 100 100 100 100 100
30 - 100 100 100 100 100
40 - 100 100 ¢ 0 0
50 - 100 100 o0 0 0

the features of interest, i.c., the fingerprint ridges, are not
undersampled and that they are weli represented by the digital
images that are the object of the analysis. The current field
of view is approximately 8 X 6 mm with an image resolution
of 256 X 256 pixels and an effective resolution of 32
pixels/mm. (For the sake of comparison, note that the image
resolution of fingerprint database at the National Institute of
Standards and Technology in the United States is 19.7
pixels/mm.). This means that it would require 4 X 4=16
images to scan and analyze a single fin gerprint of dimensions
no greater than 32 X 24 mm. There is, however, a. second
reason why so small a field of view is employed. It has been
assumed in all of the foregoing that secondary creases are
locally linear and that they extend across the greater part of
the field of view. If a larger field of view were to be used,
these assumptions would no longer be valid.

Second, the spatial filtering of the image to emphasize the
morphology of the whorls is a key step in the process. The
parameter that governs this spatial scale is o, the standard
deviation in the Laplacian of Gaussian operator. In all of the
results cited in this paper, o= 7.0 pixels. As we noted at the
beginning of the paper, this value is determined empirically
through a calibration procedure, based on the normal distance
between the ridges. It should also be noted that the technique
is not particularly sensitive to the value of this parameter and,
for example, a value of 0=9.0 pixels has been used suc-
cessfully in many informal tests.

Third, the extracted ridge end points are almost never
exactly colinear and, consequently, the Hough transform
space is not as well structured as is often suggested in the
literature. Thresholding an unprocessed Hough accumulator
gave rise to very unstable results. It is essential to postprocess
the Hough accumulator, in the manner described above, prior
to the application of a threshold. This threshold should be,
and is, adaptively chosen and, importantly, it should be a
lower rather than a higher threshold so that candidate lines
are not removed from consideration as secondary creases.
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Invalid lines can then be ignored after subsequent analysis
in the original spatial domain of the segmented and skele-
tonized image, rather than in the Hough transform space.

Two parameters govern the constraints used to validate
the secondary crease lines: 8! and 32.

The parameter 8 is a tolerance on the average orientation
of the ridges in the vicinity of the crease line. If the crease
line is equal to the average orientation, plus or minus this
tolerance, then the line is deemed not to be a crease line and
is ignored. In all of the examples shown in this paper. 8! is
defined as 20 deg, unless otherwise stated.

The parameter 87 is a tolerance on the allowable proportion
of a crease line that intersects ridges in the original segmented
image. That is, a line drawn along the detected crease is likely
to cut across parts of a number of ridges; if the ratio of the
number of pixels on the line that lie on ridges to the total
length of the line is greater than this tolerance 52, then the
line is deemed not to be a crease line and is ignored. In all
examples shown in this paper, 87 is defined to be 0.1 unless
it is stated otherwise.

7 Conclusions

The technique for the detection of secondary creases in finger-
prints that is described in this paper is robust and works well
on all of the data on which it has been tested. This is confirmed
by its performance on the synthetic patterns described in the
previous section. The clinical usefulness of the technique
remains to be assessed by exposing it to a larger data set and
by assessing the correlation between the presence of (auto-
matically) detected secondary creases and the incidence of

the disease of which secondary creases may be a physical
marker.

References

1. J. 8. Weszka, *‘A survey of threshold selection techniques.”” Comput.
Graph. Image Process. 7, 258-265 (1978).

2. J. Serra, Image Analysis and Marhemarical Morphology, Academic
Press. London (1982).

3. E.R. Dougherty. An Introduction 10 Mathemarical Morphology. Tuto-

rial Text. TT09, SPIE Press. Bellingham. WA (1992).

D. Marr., Vision, W. H. Freeman and Co.. San Francisco. CA (1982).

. D. Marr and E. Hildreth. **Theory of Edge Detection.”” Proc. R. Soc.

London B207, 187-217 (1980). -

6. D. Vernon and G. Sandini. Parallel Computer Vision—The VIS a VIS
Svstem, Ellis Horwood, London (1992).

7. D. Vernon, Machine Vision, Prentice-Hall International. London (1991).

8. P. V. C.Hough, ‘‘Method and means for recognizing compiex patterns.’’
U.S. Patent No. 3,069,654 (1962).

ks

David Vernon was appointed a fecturer in
the Department of Computer Science in
Trinity College, Dublin, Ireland, in 1983.
Prior to this he worked with Westinghouse
Electric Inc. as a software engineer from
1979 to 1981 and left Westinghouse to do
postgraduate research. He holds the de-
grees of BA, BAl, MA, and PhD, all
awarded by the University of Dublin, Trinity
Coliege. His recent research activities
have been concemed with the develop-
ment of robot systems that display true autonomy. His work encom-
passes computational theories of perception, self-organization, and
intelligence. He is the author of one book and a coauthor of another.
Dr. Vernon is a fellow of Trinity College, Dublin, ireland. He is pres-
ently on leave at the Commission of the European Communities.

OPTICAL ENGINEERING / October 1993 / Vol. 32 No. 10 /2623



