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The work presented in this paper shows how
the association of proprioceptive and exteroceptive
stimuli can enable a Kohonen neural network,
controlling a robot arm, to learn hand—eye co-
ordination so that the arm can reach for and track
a visually presented target. The approach presented
in this work assumes no a priori model of arm
kinematics or of the imaging characteristics of
the cameras. No explicit representation, such as
homogeneous transformations, is used for the specifi-
cation. of robot pose, and camera calibration and
triangulation are done implicitly as the system adapts
and learns its hand—eye co-ordination by experience.
This research is validated on physical devices and
not by simulation.
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1. Introduction

One of the first skills which humans learn is how
to control their limbs. The aim of the work presented
in this paper is to show how the association of
proprioceptive and exteroceptive stimuli can enable
a neural network, controlling a robot arm, to learn
hand—-eye coordination so that the arm can reach
for and track a visually-presented target.

The inverse kinematic problem is that of comput-
ing robot arm joint positions for a given position
and orientation of the end-effector [1], i.e. it
involves a mapping from x,y,z Cartesian space to
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81,8, ... 6, joint space. The hand-eye problem
requires another stage: the mapping from camera
(eye) image plane coordinates to spatial coordinates.
Taking the stages together then, the hand-eye
problem involves a mapping from i,j image space
to x,y,z Cartesian space followed by a mapping
from Cartesian space to 0,,8,, ... 8, joint space.
The first mapping stage is traditionally done using
triangulation methods while, for the second stage
homogeneous transformation matrices are often
used to represent the x,y,z roll, pitch and yaw
configuration of the manipulator, i.e. its pose in
Cartesian space [2, 3]. The mapping itself from
Cartesian space to joint space is normally achieved
by analytic mathematics. As well as using such
homogeneous transformations and triangulation
methods, details about the cameras, in the form of
camera calibration models, must be included to
fully specify the system. If a camera position or the .
length of one of the robot arm segments are
changed, the calculations just detailed must be -
redone to find the inverse kinematic solution for
this new configuration. Such traditional methods
can be complex and cumbersome, and are further
complicated by the fact that a given spatial position
can be achieved by the robot arm’s end-effector
using several different motor position configurations.

In the work presented in this paper, in which a
neural network controlling a robot arm learns
hand-eye coordination, the inverse kinematic prob-
lem per se is not solved. This is because in this
work, camera plane images (i.e. extra-body or
exteroceptive input stimuli) and motor position
information (i.e. body or proprioceptive input
stimuli) are used, but real-world x,y,z spatial
coordinates are never explicitly referred to or
calculated, i.e. the mapping developed in this system
(learned by the neural network by association) is
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Editorial

An applications journal has a responsibility to present papers which are of current interest
both in academic and direct application environments. I believe that the four papers presented
in this issue cover areas of acute current interest: robotics, finance, rule extraction, and data
analysis.

In the field of robotics, neural networks are rapidly assuming importance due to their
adaptive abilities, with supervised and unsupervised learning algorithms. Research interest is
focusing very strongly on the self organising algorithms, and the first paper presents an
interesting practical investigation into the subject, with many ideas which are widely applicable.

The second paper expands on the work presented by the same authors in the very first
issue of the journal. The principles of asset location, foreign exchange, and bond trading are
considered, all of which being matters of concern and interest at the present time. Certainly
in the UK, there has been an enthusiastic take-up of neural computing in companies in the
financial sector. Understandably, they are not always ready to broadcast their expertise, so
we are pleased to be able to review some of the techniques used in this rapidly developing
and lucrative field.

Newcomers to neural network practice are frequently concerned about the relationship
between rules and the heuristic nature of neural network learning. The third paper looks at
the rule problem and, using diagnosis as a testbed for the experiments, addresses the question
of the interface between numerical and symbolic knowledge representations and their
integration.

Market research is a fertile area for the application of neural computing. The question is
how to overcome the practical difficulties, and the final paper looks at data derived from
interview forms. Various problems of identifying trends and interpreting unsupervised learning
maps were studied by the authors, who present a vector quantisation technique to identify
trends and clusters. The paper brings into relief the problems of using neural networks to
analyse questionnaires, and contributes some interesting methods to this area of market
research practice.

Howard James
Editor
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from { image space {0 9,,9., ... 9, joint space. The
final result, hcwever, is the same in both the
traditional methed and in this work, i.e. a set of
motor positions, which will result in the robot arm’s
end-effector being at a target position, is computed.
The approach presented in this work assumes no a
priori model of arm kinematics or of the imaging
characteristics of the cameras. Homogeneous trans-
formations are not used. There is no need to
produce a camera calibration model, nor to do
explicit triangulation, because these are effected
automatically as the system adapts and learns to
associate the position of a target, as presented
visually to two spatially-separated cameras, and thus
characterised by two pairs of image co-ordinates
(iy 1) and (i;,/,), with the desired joint coordinates
(81,8,,05). The image coordinates represent the
exteroceptive information, while the joint coordi-
nates represent the proprioceptive information.

The inspiration for the approach taken in this
work was the fact that epigenetic structures are
known to exist in the human brain, i.e. structures
that develop after birth, so that, for example, when
a baby waves its arm about in a seemingly random
fashion it is, quite literally, developing hand-eye
co-ordination and learning by experience as it
superimposes epigenetic structures onto its genetic
brain structure. In doing this, a baby makes use
of sensory feedback from its eyes (exteroceptive
information) and its limbs (proprioceptive
information). Movements directed towards external
objects are generally organised on the basis of
several types of sensory signals [4]. But the key to
producing hand-eye co-ordination is the fact that
these signals must be integrated in a meaningful
way before the required hand-eye co-ordination
can be achieved [4, 5].

A further statement of the necessity for the
correct integration of the different types of sensory
modalities is given by Held and Hein [6], who have
shown that in kittens, if vision and proprioception
are experimentally dissociated, sensorimotor co-
ordination cannot be learned.

Inthe work presented in this paper, proprioceptive
and exteroceptive inputs are integrated in a meaning-
ful way to produce the required hand-eye co-
ordination, where an adaptive and to some extent
neuromimetic neural network learning approach
was adopted. A robot arm’s end-effector was moved
many times, in a random manner, within a cubic
space. For each step of a learning or training phase,
two cameras focused on an infra-red LED (which
will later act as the target to be reached for) placed
in the robot arm’s end-effector, and they produced
co-ordinates of its whereabouts in their image

planes. These co-ordinates served as exteroceptive
inputs to the neural network, while the robot’s
motor positions served as proprioceptive inputs.
These two types of sensory modalities were associ-
ated in a mapping which evolved in the neural
network’s weights. The random movements of the
arm are important in the development of sensory-
motor coordination because it should lead to uniform
sampling of the input space, and hence to an
unbiased ability to reach for the target [6]. After
training, the robot arm was able to reach for a
visually presented target which was in the field of
view of the two cameras and the spatial envelope
within which the robot arm was randomly moved
during training.

Gther neural network approaches to this problem
have been taken. They include work by Jordan {7],
Massone and Bizzi [8], Dean [9] and Mel [10, 11].
The work of the last author also caters for obstacle
avoidance and path planning. All of these
approaches use a supervised learning method during
the training phase, where for each input the network
was told what its output should be. Unsupervised
learning neural network approaches (where desired
— or target — outputs which are specified a priori
are not used in the training phase) include those
by Kuperstein [12], Coiton [4], Ritter et al. [13-15]
and Walter and Schulten [16]. Of these, only
Kuperstein’s did not use the Kohonen network
paradigm. Using Kohonen’s paradigm, one can
produce self-organized topological mappings of the
input, i.e. mappings such that input points which
are close together are represented in the mapping
by points which are close together.

1t is these topological mappings which are crucial
to the task in hand, because they associate the
two types of sensory input. There is an implicit
assumption in this work that such a mapping exists,
an assumption also made by others who use neural
networks for the task of hand-eye coordination
[4, 13-15]. It is not, however, assumed that such a
mapping is a bijection; indeed, a given spatial
position can be achieved by the robot arm’s end-
effector using several different motor configurations.
It is important to note also that these mappings do
not provide us merely with a massive look-up table
that links motor and spatial positions. This is
because neural networks can generalise to deal with
inputs which they have not encountered before (but
which are similar to ones with which they have
been presented). Kohonen networks are ideally
suited to producing such topological mappings with
this ability to generalise. If, however, another
method of producing such mappings could be found




it would be just as useful for this hand-eve
coordination task.

The work of Ritter et al. involves a simulation
which uses an extension of the Kohonen paradigm
along with an error correction scheme based on the
Widrow—Hoff learning rule to learn hand-eye co-
ordination cf a simulated 3-link robot arm. During
training of his neural network, the target to be
reached for is not placed in the robot arm’s gripper.
Instead it is randomly positioned in space in front
of the robot arm. Two cameras are used to locate
the target in their image planes and this alone
serves as input to the neural network, i.e. correlated
proprioceptive and exteroceptive inputs are not
used. The arm, governed by the network, makes
an attempt to reach for the target and the error in
resulting arm position relative to the target is
corrected. Ritter's work used a 3D neural network
to match the 3D work space. Three degrees of
freedom of the simulated arm were also employed.
On the other hand, the research presented in this
paper involves validation on physical machinery
rather than in a simulated environment.

As in the work presented in this paper, Coiton
built up a correlation of two types of sensory input
on a Kohonen network layer by placing an object
between a robot arm’s grippers and moving it
randomly in space. This object later became the
target to be reached for during testing. Both the
work presented in this paper and Coiton’s work
involve a mapping from one space to another, the
former work involving a mapping from image space
to joint space, with the latter work involving a
mapping from Cartesian space to joint space. Joint
space then is involved in the mapping for both
types of work. The significant differences between
Coiton’s work and the work presented here are:

® Instead of using two cameras to collect exteroceptive
inputs and associating stereoscopic image plane
data with robot arm joint values, i.e. true hand—eye
co-ordination which inherently comprises both
triangulation and the inverse kinematic solution,
Coiton et al. used three orthogonal sensors to
produce x,y,z Cartesian space co-ordinates of
the object/target position. Coiton’s network thus
associates Cartesian space inputs with robot arm
motor angles; i.e. his Kohonen network sclves the
inverse kinematic problem, it does not produce
hand-eye co-ordination.

® A consequence of this is that Coiton er al. had six
inputs into their Kohonen network, while seven
were used in the system described in this paper,
i.e. Coiton used the same numbers of proprioceptive
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and exteroceptive inputs while this work used a
larger number of exteroceptive inputs.

® Coiton ef al. updated their network weights in a
different way to that used in this paper. They
used a Gaussian neighbourhood function and
updated close-by neighbouring cells to the winning
cell in an excitatory fashion, while more distant
cells were updated in an inhibatory manner. This
gain and neighbourhood values were decreased
over time but not linearly. In contrast, a simple
'square neighbourhood was used in the work
presented in this paper. No inhibition was used
in updating more distant cells, and both gain and
neighbourhood values were decreased linearly.

More recently, Walter and Schulten [16] have
investigated the use of a modified version of the
Kohonen paradigm to effect servo-control of a
PUMA 562 robot. As in the system described in
this paper, Walter’s and Schulten’s system utilises
two cameras. In this instance, however, the proprio-
ceptive information about the joint positions is not
input to the network. Instead, the system depends
solely on the exteroceptive data constituted by the
image co-ordinates of the target position and the
current position of the end-effector. Furthermore,
the system operates by implementing a closed-loop
control architecture whereby the image co-ordinates
of both target and end-effector are computed for
each individual movement in the total servo-motion
in an effort to eliminate the difference in their
positions. This contrasts with the approach in this
paper, which is more concerned with the association
of proprioceptive and exteroceptive data; proprio-
ceptive data identifying the current position of the
end-effector and exteroceptive image co-ordinates
identifying only the target position.

In the following, we will first describe the
experimental set-up, i.e. the equipment which
was used to validate the work and the essential
organisation of inputs and outputs, and then we
will detail the approach which was used to produce
hand-eye co-ordination from this system. This is
followed by an analysis of the system’s performance
and we then proceed to draw some general con-
clusions about the work.

2. Experimental Set-up
2.1. The Hardware
Three essential components are required to effect

hand-eye coordination: a robot arm (the ‘hand’), a
camera and image acquisition system (the ‘eye’),
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and a computer system which implements the
Kohonen network. In the system described in this
paper, a Universal Machine Intelligence (UMI)
RTX SCARA-configuration robot arm is used. This
arm has six degrees of freedom: one transiational
(prismatic) motion of the arm in the vertical z
direction, a rotational (revolute) motion of the
shoulder, 6,, a rotational (revolute) motion of the
elbow, 0., and roll, pitch and yaw wrist movements
(see Fig. 1).

In the work described in this paper, only the first
three degrees of freedom are used. The RTX is a
low-cost robot rather than an industrial robot and
has a nominal positional repeatability of 0.5 mm at
the wrist with the arm at its full extension of
507 mm in the ‘straight out’ position. For the
training phase, an infra-red light emitting diode
(LED) is placed between the robot arm’s grippers.

Base Frame z
of Reference

Prismatic Joint in
Vertical Direction

This LED is viewed alternately by two stationary
filtered cameras which can detect only infra-red
light.! Both images are transferred via an Imaging
Technology framestore board to the controlling
computer’s memory where, using a simple computer
vision thresholding algorithm, the i,j positions of
the LED’s centre in the cameras’ image planes are
computed. These positions serve as exteroceptive
inputs to the neural network. The computer also
controls the robot arm movements, and can com-
municate’ with it to determine its current motor

! The LED is used simply to ease the task of visual identification
of the position of the arm; it renders trivial the normally difficult
process of segmentation (differentiating between object of
interest — the arm — and the background) since only the infra-
red light emitted by the LED is imaged by the cameras.

Revelute
Shoulder Joint

Revolute
Elbow Joint

infra-Red
L.ED.

Cameras with
infra-Red
Pass Filters

Fig. 1. Schematic diagram for the experimental layout.




positions. These positions serve as proprioceptive
inputs to the neural network.

2.2, The Software

Although a real robot arm is used in this work so
that robot arm movements and positions are not
simulated, the architecture and mechanism for the
Kohonen artificial neural network paradigm are
implemented in software. The network is configured
as follows (refer to Fig. 2).

Exteroceptive inputs are given by the two cameras’
i,j image plane co-ordinates of the position of the
LED (i1,j1,i2,j2), while proprioceptive inputs are
given by the corresponding vertical translation,
shoulder and elbow robot arm motor positions
(z,85,8.) which cause the LED to be in that particular
position. The input layer to this Kohonen network
then is comprised of seven sensory inputs
(f15/1,82502,2,85,8,). Each of these inputs has a
weighted connection to every node, or unit, in the
second layer. These weighted connections are called
the sensory weights. The weights associated with
the proprioceptive inputs will later also be used to
command the robot arm to move to different
configurations when the neural network, controlling
the robot arm, has been trained. Details of how
these inputs are generated will be given in the next
section.
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3. Network Training and Verification
3.1. Training

The steps involved in training a Kohonen network
are as follows:

¢ Randomly initialize all weights to be in the range
zero to one. Then repeat the following steps for
T iterations, where T is the number of training
-steps.

® Randomly choose inputs (i.e. a robot arm
configuration) in the range zero to one. (This
step is described more fully later in this section.)

® On the basis of a Euclidean distance metric, find
the node whose weights are most similar to the
input. :

® Update that node’s weights and those of its
neighbours according to the following equations:

Wi = a(ip; — wiy)] (1)

[Wtjinew = Wtjiald + Wt],] (2)
where w; is the weighting between node j and
input i, ip; is the i-th input, and o is the gain or
learning rate (an adjustible parameter with value
less than one).

® Reduce neighbourhood size and learning rate as
per the following two equations:

s3]

where d, is the initial neighbourhood size, ¢ is

Sensory motor, or second layer:

Square array of nodes

Input layer

8.

PROPRIOCEPTIVE INPUTS
Scaled vertical motion, shoulder

and elbow motor weights

Fig. 2. Architecture of the neural network which learns the hand-eye co-ordination for the given robot arm and camera configuration.
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the carrent updating/training iteration, and T is
the total number of iterations:

r /
o= af1-4)] ,

L Oto\l T/ )
Typically, the neighbourhocd size begins large,
e.g. one-half to cne-third of the grid size. In this
instance, a simple square neighbourhood is used
and neighbourhood size can only have integer
values.

Altering oy can speed up or siow down
how quickly the network organises. For this
experiment it was empirically chosen to be 0.5.

From equation (1} it can be seen that the updating
process stops automatically when o becomes zero.
It should also be stopped when the neighbourhood
size reaches zero.

For the task of hand-eye co-ordination, the
random inputs in the range zero to one are found
in the following way. Random values for the vertical
translation, shoulder and elbow motor positions,
z,8,,0,, are chosen. If these positions would result
in the robot arm’s end-effector being within a pre-
defined rectanguloid space, centred in front of the
arm’s torso, then the arm is commanded to move
to this motor configuration. If the random values
would not result in such a configuration, then
another set of random values are chosen, and this
is repeated until a set of motor positions satisfying
the (unchanged) rectanguloid space condition is
satisfied. The two cameras then view the infra-red
emitting LED, which is between the arm’s grippers,
and the i,j position of its centre in their image
planes is found. If either of the cameras is unable
to view the LED, then ancther random position,
satisfying the rectanguloid space condition must be
found. The seven inputs, i.e. three motor positions
(z,8,,8,) and four camera image plane positions
(41,/1,625/2), are scaled to be in the range zero to
one, and are then fed as inputs to the input layer
of the network. All seven inputs are scaled so that
each will contribute evenly to the evolving network’s
distribution of weights.

3.2. Testing

When training is completed the system is ready to
be tested. The LED is removed from the robot
arm’s grippers and is placed somewhere within the
predefined space, in front of the robot arm, within
which the neural network was trained. It must be
placed in such a manner that it is visible to both
cameras. The LED, thus positioned, has become

the target for which the robot will reach. The i
co-ordinates of the LED’s centre in the camera
image planes are found once again. The controlling
computer interrogates the robot arm and finds its
current vertical translation, shoulder and elbow
positions (z,9,9,). Scaled versions of all seven
inputs are fed into the trained neural network. A
Euclidean distance competition is held for the seven
inputs and a winning node is found. The weights
corresponding to the proprioceptive inputs attached
to this winning node, when scaled up to their full
range values, should produce a set of motor
positions, which should result in the robot arm’s
end-effector being closer to the target. This process
is then repeated, i.e. the scaled-down camera inputs
(which should be the same as before if the target
is stationary) and the scaled-down versions of the
robot arm’s new motor positions are fed into the
trained net, a winning node is found and scaled-
up versions of its weights corresponding to the
proprioceptive inputs are used to command the
robot arm to move to a new position which should
be even closer to the target. This process is continued
until the latest position to which the robot arm is
moved is the same as the previous position, i.e. no
more movements are required. Thus for a stationary
target the robot arm should home in on it, initially
making large movements and then smaller and
smaller ones, i.e. the system should act as a
servomechanism. For a moving target the robot
arm, controlled by the neural network, should be
able to follow it and track its movements.

3.3. Underlying Assumption

Before proceeding further, it is worth considering
why the Kohonen network is a suitable mechanism
for servo-control, and how servo-control can be
effected by such a network. We first note that
proprioceptive and exteroceptive inputs are corre-
lated during training, in the sense that given motor
inputs cause the LED which is grasped by the robot
gripper to be in a certain position which is detected
by the cameras and fed to the network as exterocep-
tive inputs. Thus, during training, the inputs are
co-ordinated hand-eye inputs.

In the testing phase, the inputs are no longer
correlated. Proprioceptive and exteroceptive inputs
which belong to different correlation groups are used
as inputs to the network. Were the proprioceptive
inputs, found during the testing phase, matched
with their corresponding correlated exteroceptive
inputs (from the training phase) and used as inputs
to the network, they may have caused one node in
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Fig. 3. Node A corresponds to a possible winning node associated
with inputs that are correlated with training-phase exteroceptive
inputs; node B corresponds to a possible winning node associated
with uncorrelated inputs; node C corresponds to a possible
winning node associated with inputs that are correlated with
training-phase proprioceptive inputs; the actual winning node
corresponds to a motor arm position part-ways between the
current robot arm position and the target position.

the sensori-motor layer to have won the Euclidean
distance competition. If the exteroceptive inputs,
found during the testing phase, were matched with
their corresponding correlated proprioceptive inputs
(from the training phase) and used as inputs to the
network they may have caused a different node to
have won the Euclidean distance competition.
Because Kohonen networks form topological map-
pings of the inputs space, so that two similar input
points cause nodes which are close to each other
in the output layer to win the Euclidean distance
competition, it is anticipated that using uncorrelated
inputs during the testing phase, as just described,
would result in a winning node that would corre-
spond to a motor arm position part-ways between
the two positions to which the two correlated sets
of inputs correspond, i.e. part-ways between the
current robot arm position and the target position
(see Fig. 3). This assumption underlies the work
described in this paper, and it is one of the primary
goals of the paper to validate this assumption.

4. Validation of the System

The important parameters associated with the train-
ing of this system are:

® the number of training iterations
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the array size

the initial neighbourhood size
the initial learning rate/gain
the time to complete training.

¢ o e

The dimensions of the working space over which
the system was trained are 35 cm in the z (height)
dimension, ranging (in the robot’s co-ordinate frame
of reference) from —55 cm to —20 cm; 34 cm in
the x (width) dimension, ranging from —17 cm to
17 ¢m; and 9 cm in the y (depth) dimension, ranging
from 39.5 cm to 48.5 cm. These x and y values
were chosen because they provided an area over
which the end-effector’s movements could be evenly
spread, thus producing an even distribution in
network weights.

Three distinct scenarios were investigated: a4 x 4
array size, with an initial neighbourhood size of 2;
a 10 x 10 array size, with an initial neighbourhood
size of 4; and a 20 X 20 array size, with an initial
neighbourhood size of 8. In each case, the initial
learning rate was set at 0.5. The number of training
iterations for the 4 X 4, 10 x 10, and 20 x 20 array
size was 1000, 1500, and 6000, respectively. It
should be noted that the 4 X 4 array size was used
primarily to verify that the system was functioning
correctly; it does not represent a plausible network
for robot control.

In all three scenarios, the network enabled the
end-effector to reach for the visually presented
target, iteratively reducing the distance between the
end-effector and the target, initially by making gross
movements and then by making finer ones. Figure
4 depicts a graph of the average length of a
movement (in a sequence of movements which are
made in attempting to reach for a given target) as
a function of the number of the movement in the
sequence.

Some points are worth noting about the behaviour
of the different systems. First, larger distances
between the initial position of the end-effector and
the target required more individual movements in
order to achieve the target position. Second, net-
works comprising a larger number of nodes (e.g.
20 X 20 array vs. 10 X 10 array) also effect the
total movement using a larger number of individual
movements. This is so because a node in Kohonen
networks which use larger arrays corresponds to a
smaller volume, or receptive field, in the working
envelope of the robot than a node in a smaller
array. Thus, nodes in larger arrays are capable of
discriminating between two similar inputs which
would have caused the same node to win in smaller
arrays. Because of this, while the network ‘decides’
that it has reached the target in the case of a
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Fig. 4. Average length of movement (in a sequence of movements which are made in attempting to reach for a given target) as a

function of the number of the movement in the sequence.

smaller network, i.e. the current winning node is
the same as the last winning node, based on similar
inputs, so that no more movements are required
for it to reach closer to the target, a different node
will win in the larger network, based on the same
similar inputs, indicating that another movement is
necessary.

This also explains why using a larger network
results in the end-effector being closer to the target
after the sequence of servo-movements than is the
case for a smaller network. For the larger network,
the average distance between target and robot arm
end-effector (once the arm had reached for the
target) is 4.51 cm for targets at a height of —55 cm,
3.62 em for target heights of —40 cm, while for
targets at —25 cm it is 3.65 cm. These values are
smaller than for corresponding heights using the
smaller array/fewer training steps combination. The
closest distance which the end-effector achieves in
reaching for the target during testing was 1.28 cm.
Occasionally, the distances between the target and
robot arm which result after reaching movements
have been made are quite large, i.e. approximately
6 cm. It is unclear why such outliers occur.

A boundary effect can be seen in this (larger)
network, i.e. a diminished ability to reach for the
target at the edge of the working space over which
the network was trained. This can be seen from
the fact that the resulting Euclidean distance
between target and end-effector was larger for
targets placed at the lower extreme of the working

space than for those in the middle of it. That a
boundary effect exists is also borne out on examin-
ation of z value ranges reached by the end-effector
at different target heights. For target heights at
—25 cm and —40 cm, the arm height ranges straddle
the target heights, while for target heights at —55 cm
they do not. This boundary effect was larger for
the system resulting from the smaller array/fewer
training steps combination. Such boundary effects
have been discussed extensively by Kohonen [17].

Tests were also conducted on the 10 X 10 system
with targets placed at random x and y positions,
with the value of z fixed at —25 cm. In this
configuration, the system was unable to reach for
the desired targets. This occurs because the selection
of random training positions is biased towards the
lower end of the z range, i.e. —55 cm, and against
the upper end, i.e. —20 cm. Hence the system is
better able to learn, and subsequently perform, at
this height. This can be seen from Fig. 5, which
depicts the spatial points used during training. The
question then arises, of course, as to why there is
a bias in these randomly selected training points.
The reason is that, although the randomly chosen
spatial positions were deemed to be acceptable
training positions if they would result in the end-
effector being within the pre-defined training envel-
ope, there is an additional constraint that both of
the cameras must be able to locate the LED in
their field of view at that position. If they cannot,
then that position is rejected, i.e. it is deemed not
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Fig. 5. Distribution of points used when training the 10 x 10
network.

to be a suitable training point. This happens when
selecting points in the upper part of the working
envelope (i.e. towards the end with values of
—25 cm in the z dimension). This results in a bias
in the training positions, and the inability of the
system to reach for points in the upper part of the
training envelope.

Figure 6 depicts the distribution of training
positions which were used for the larger test array
(20 X 20 nodes). A bias once again clearly exists
in this set. It can also be seen from this figure that
the training area was both densely and uniformly
sampled below the —25 cm level.

Apart from the boundary effect and this camera-
induced bias, neither the 10 x 10 system nor
the 20 X 20 system displays any significant non-
uniformity in accuracy as a function of position in
the work-space.

In principle, the system is capable of tracking a
moving target, i.e. if the target was moved from
one position to another after the robot arm had
made some movements it could then move to the
new target position, homing in on it as before.
However, because the robot arm moves quite slowly
it could not track a target in real-time. It is the
arm movements themselves, and not the software
governing the system, that is the limiting factor in
this case.
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Fig. 6. Distribution of points used when training the 20 X 20
network.

Figure 7 depicts a three-dimensional plot of the
x,y,z values corresponding to the network nodes’
weight values where neighbouring array nodes have
been linked. It resembles a corrugated or ruffled
plane which does not completely cover the training
space and represents the system’s attempt to map
a higher dimensional problem space onto a two
dimensional plane.

Fig. 7. Three-dimensional plot of the x, y, z points corresponding
to the network nodes’” weight values where neighbouring array
nodes have been linked.
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Another point of interest about the result frem
this training run is the variaticn with height of th
value of the first component of the winning node?
for the last movement made towards the target.
For target heights of —25 cm, the value of the first
component of the winning ncde ranges from 16 to
18; for target heights at —40 cm, the value of the
first component of the winning node ranges from 8
to 11; while, for target heights at —53 cm, it ranges
from 0 to 2. Thus, there is an increase in the value
of the first component of winning node with
height for this training run. For one servo-motion
comprising four individual movements, where the
z value decreases with each movement, the corre-
sponding winning node indices for each movement
are (3,19), (2,19), (1,19) and (0,19).

A further test was run on this system. In this
instance, the LED representing the target to be
reached was placed between the robot arm’s end-
effector. The system’s response, i.e. its attempt to
reach for the target, was either to make no
movement having ‘decided’ that the end-effector
had reached the target, or to make a small movement
of the order of 1 cm. Such small movements would
have been made because of the network’s discrete
or quantized nature, i.e. only a certain number of
positions can be reached for, corresponding to the
number of nodes in a well-trained network, and if
the target was not exactly at such a position, a
movement to the network’s closest position would
be made.

During the course of the work described in this
paper, an exact model of how the performance
varies with array size (and, attendently, the number
of training iterations) was not derived. However, a
rough indication can be inferred from Fig. 8, which
depicts the average error in the final servo-motion
position as a function of network size.

5. Conclusions

The system described in this paper is capable of
reaching for a visually presented target and achieving
the required position after a number of movements.
The error in achieved position and the position of
the target is, on average, approximately 3 cm; the
smallest disparity in position achieved in tests was
1.28 cm. The system acts as a servo-mechanism,
making up to four movements to reach the target
when the 20 X 20 network is employed. Initial

2 The array of nodes in the Xchonen net is two-dimensional:
thus, the position of every node can be described by a tuple
with two components.
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movements tend to be larger than later ones in a
given sequence, so the system incrementally reduces
the disparity between its current position and the
required target position, converging on the target
until the limit of the positional resolving power of
the network is reached. The number of movements
made in a sequence depends on the initial distance
between the target and the end-effector of the robot
arm. The system could, at least in principle, track
a moving object although, for this implementation,
not in real-time. A boundary effect was found to
exist in the networks. This effect decreased with
increased network size and with the number of
training steps employed. In addition to this boundary
effect, the system was found to have a diminished
ability to reach of targets in the upper part of the
robot’s working envelope (or, rather, that part of
the envelope which was used in training the
network). This was due to the frequent inability of
the cameras to image the LED when in this part
of the envelope. Apart from the boundary effect
and this reduced ability to reach for targets in the
upper part of the envelope, the system does not
display any significant non-uniformity in accuracy
as a function of position in the work-space.

To place this work in the context of existing
technology, the system demonstrates the feasibility
of this self-organising/learning methodology. In
terms of practical usefulness, however, an error of
approximately 3 cm over a work-space of width
34 cm, depth 9 cm and height 35 cm compares badly
with the very accurate traditional methods discussed
in the introduction to this paper.

It is important to note that a wide-angle infra-
red LED was used as the target solely to simplify
the vision processing, specifically to facilitate simple
segmentation of the robot end-effector and target.
Other objects could also be used as the target if
more advanced vision techniques were deployed.

This work has demonstrated that increasing net-
work size and training times produces systems which
are better able to reach for the target, i.e. which
make more servo movements, achieve better accu-
racy, and have a reduced boundary effect. With
greater computational power then better systems
could be produced. This is not to say that a very
large network with a very large number of training
steps would necessarily result in a system with
arbitrarily high accuracy. Nonetheless, while the
question as to the limit of attainable accuracy is
not answered in this paper, it has clearly established
that accuracy does increase with network size and
with the number of training iterations. Unfortu-
nately, so does the time required for training the
network.
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Fig. 8. Variation in the average error in final servo-motion position as a function of network size.

The merit of this system is that it is an adaptive,

self-calibrating system which learns by experience,
and which does not involve calculations such as
those involved with camera calibration models,
triangulation methods, and the development of
homogeneous transformations.
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