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A new approach to object recognition is presented, in which secondary representa-
tions of 3-D models are synthesized/derived (in various forms) and subsequently com-
pared in order to invoke views of models, tune model pose and verify recognition hy-
potheses. The use of these secondary representations allows complex models {(e.g. surface-
based or volumetric models) to be compared implicitly (rather than explicitly comparing
the component primitives of the models). This in turn overcomes the problem of the
stability of the model primitives, and provides independence between the complex 3-D
representations and the recognition strategy (i.e. the invocation, matching and verifi-
cation techniques). The secondary representations employed are Extended Gaussian
Images, directional histograms, needle diagrams, depth maps and boundary curvature

signatures.
The technique is demonstrated using models, of reasonably complex objects, derived
from actively sensed range data.

Keywords: Object recognition, 3-D modelling, active sensing, extended Gaussian images,
histograms, needle diagrams, depth maps.

1. INTRODUCTION

A large number of the current approaches (see Refs. 1-4 for surveys) to 3-D object
recognition address the problem by comparing 3-D object models (i.e. comparing
3-D models extracted from image data with 3-D object models which are known
a priori). These comparisons are typically performed directly, between the basic
component primitives of the object models (e.g. edges, or surfaces). Unfortunately,
this requires that these primitives should be stable (i.e. be represented in the same
way) regardless of viewing direction, noise, and possible occlusion, and this in turn,
places serious constraints on the domain of objects which can be reliably, and ef-
ficently, recognized. In other words, it seems to be generally considered that “the
matching problem will not be solved until an adequate representation is defined” 2

Counsider, for example, the use of surface information, which provides an ex-
tremely powerful representation for use within object recognition strategies, due to
the level of abstraction and the richness of the data. Most researchers who have
addressed the direct comparison of surfaces (e.g. see Refs. 5, 6, 10 and 11) have
encountered problems due to stability of the primitives. Note that Ref. 11 docu-
ments a comparable system {to the one documented in this paper), based on the
use of segmented surface primitives which are matched using an interpretation tree.
However, they point out in a previous paper!? that “the surface fitting problem is
a difficult one”.
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This paper presents a new method of comparing 3-D models which, although
working with a surface description, overcomes the need for the segmentation of range
data into separate surfacss, and hence overcomes the problem of their (i.e. the
surface’s) instability. It has been tested extensively using both actively sensed
range data, and range data compuied from passively sensed images using a depth
from camera motion algorithm. The tests using actively sensed range data are
documented in this paper and the other tests (the data for which was significantly
more noisy), which are only commented upon in this paper, are documented in
detail in Refs. 12 and 13. ‘

The problem being addressed is that of the automatic recognition of three-
dimensional non-articulate rigid objects (i.e. objects which contain no parts that
may move relative to one another). In this context that problem is equated to the
matching of a view of a solitary 3-D object model {i.e. which has been segmented
from all other objects in some scene), the viewed model, with known object models in
order to recognise the view of the object model observed (Note that the terms viewed
and known when being used in these contexts will appear in italics throughout the
paper). Recognition is taken to imply determination of the position and orientation
of a known object model which best matches the viewed model, along with an
associated measure of reliability.

In order to overcome the need to segment a surface based representation of
an object into a number of reasonably sized surfaces, it is necessary to compare
“complete” object models. Object models, though, can only be compared directly
{i.e. without requiring the comparisen of model primitives) using scalar transform
descriptors (where scalar transform descriptors are taken to be representations, in
terms of a number of scalar values, of entire objects/shapes), and these, at present,
are sither relevant only to the 2-D shape domain or are just too simple to be
applied in the general 3-D domain. This has led to the current dependance on
the comparison of model components. In order to allow the direct comparison of
complex 3-D models, it is therefore necessary to develop new, rich, scalar transform
descriptors, and that task is addressed in this paper, within the framework of a
complete recognition system.

The approach taken is, in some ways, similar to those of Ikeuchi’ and Krish-
napuram et al,'* in that it addresses object recognition in terms of a number
of subproblems (i.e. the separate identification of cbject orientation and object
position). It also draws on the work of Horn®® as the Extended Gaussian Image,
and the sampled unit sphere itself, aze employed in order, respectively, to allow the
distribution of visible surface normals to be considered, and to provide a sampling
of the potential values of crientation.

Additionally, a technique, comparable to that of Faugeras'®1® and Henderson,
of generating “3-point seed” surfaces from dense range maps is employed. Segmen-
tation of the resultant surface models is addressed in a fashion similar to that of
Han.!8

The paper addresses, in turn, the representations to be used, the methods of
obtaining thcse representations for both snown and wiewed objects, the model
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invocation strategy, the model matching stirategy, the method of hypothesis
verification, the iesiing which was performed and finally some brief conclusions
are made.

2. INTRODUCTION TO THE REPRESENTATIONS

Within the approach presented here, are two distinct classes of object
representation:

A. The first class of representation details 3-D objects so that they may be theo-
retically manipulated and considered from any viewpoint. The representation
used here was a simple planar-surface based model similar to that of Roberts.1?
However, due to the use of secondary representations, the recognition strategy
is independant of the type of representation used to detail the objects.

B. The second class of representation is derived from the first and, hence, the vari-
ous different representations used from this class may be regarded as secondary
representations of the detailed object models. They may also be regarded as
complex scalar transform descriptors, as each representation is composed of a
fixed-size array of scalars. These representations depend only on certain ob-
Jject paramaters (e.g. orientation), and are used to guide the recognition system
efficiently through the potentially exhaustive search for the correct position
and orientation of the correct model. The secondary representations used are
directional histograms, needle diagrams, depth maps and boundary curvature
histograms and are presented, in turn, in the subsections which follow.

2.1. Directional Histogram

The concept of the “Directional Histogram” was developed for the approach pre-
sented herein, and is simply the notion of mapping a single component of the visible
3-D orientations {i.e. the surface normals) of a model to a 1-dimensional histogram,
where those components are defined about the coordinate axes of the viewing cam-
era model.

AY
Axes of the Z
Viewing Camera. Pitch . 3-D Vector Viewing
3 Direction
x /]
o Yaw
] —
Tilt
Roil

Fig. 1. Definitions of roll, pitch, yaw and tilt about the coordinate axes of the viewing camera.
Note that tilt is defined only with respect to the focal axis and hence is independent of roll.



962 X. M. DAWSON-HOWE & D. VERNON

The various components of the orientations used are roll, pitch, yaw and tilt.
Roll, pitch and yaw are defined respectively as rotations about Z, X, and Y coor-
dinate axes of the camera model. Tilt is defined as 7 less the angle between the
orientation vector and the focal axis (i.e. the Z-axis of the camera model). See
Fig. 1. The directional histogram sums ¢ component of the surface normals.

For example in the case of a yaw directional histogram the component of orien-
tation which is employed is that which is in the Y plane (see Fig. 2). The histogram
cells range from —90° to +90°, that being the possible range of visible surface nor-
mals, and typically employ a resolution of around %o. The histogram is a sum of
all the surface normals of the visible cells of the object model (i, v:, 2;) where the
angle/cell mapped to in the histogram is defined by tan™ 1 Zi and the weight is de-

fined by /27 + z7. Roll, pitch and tilt histograms are deﬁned in similar fashions and

Camers frames of reference:  Viewpoint 1 Viewpoint 2
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Fig. 2. Example of yaw directional histograms. These two yaw histograms of two views of a
garage-like object are a simple example of how directional histograms work. The visible surface
areas of the views of the object are mapped to the histograms at their respective yaw angles
(which are defined with respect to the focal axes of the camera). In order to aid understanding
the sections of the histograms which are mapped from given surfaces are shaded in the grey-level
of the surfaces, Notice the shift in the histograms, which is due to the slightly different values of
yaw of the two viewpoints.
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examples are shown in Figs. 3 to 5. In the case of roll, the visible orientations range
from —180° to +180°, the angle is defined by tan‘l-gf' and the weight is defined by
v/z? + y?. In the case of pitch the visible orientations range from —90° to +90°, the
angle is defined by tan~!Z: and the weight is defined by /2 +yZ. In the case of
tilt the visible orientations range from 0° to +90°, the angle is defined by |tarn™! o
and the weight is defined by /77 + 2.

Using these histograms the various components of 3-D orientations (i.e. roll,
pitch, yaw and tilt) can be considered (and manipulated) separately.

Viewpoint | - :
i i Camera coordinate {rames Viewpaint 2 Y

(where Z is painling away). T

Ares

§

Fig. 3. Example of roll directional histograms (derived from the two views of the garage-like object
shown in Fig. 2). While the roll components (i.e. angles) of the orientations for the two views
remain the same, the areas mapped change slightly (due to the change in yaw relative to the
camera). Again, in order to aid understanding, the sections of the histograms which are mapped
from the given surfaces are shaded in the grey-level of the surfaces,
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Fig. 4. Example of pitch directional histograms (derived from the two views of the garage-like
object shown in Fig. 2). They are similar to the previously shown roll histograms in that the
components of the orientations for the two views remain the same although the areas mapped
from each individual surface changes slightly (due to the changes in yaw relative to the camera).
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Fig. 5. Example of tilt directional histograms (derived from the two views of the garage-like object
shown in Fig. 2). Notice how, for the first view, the two orientations result in the same value of
tilt, and in the second view how the values change. Although the diagram looks similar, these
histograms differ significantly from the yaw histograms shown in Fig. 2.

Direction
Change
in
CURVATURE

BOUNDARY

Fig. 6. Example boundary curvature signature. A view of a mushroom-like object is shown, along
with it's boundary rate of change of a curvature signature.

2.2. Needle Diagrams

Needle Diagrams are icomnic representations of object models from a given view-
point with every point representing the object’s local three-dimensional orientation
{rather than the scene illuminance/reflectance).

2.3. Depth Maps

Depth Maps are also iconic representations of an object models from a given view-
point, with every point in the array representing the distance of the object (as
viewed at that point) from the viewpoint (i.e. the focal point of a camera).

2.4. Boundary Curvature Signatures

By following the silhouette of an object we may calculate a measure of its boundary’s
curvature. That measure may then be used to calculate the rate of change of
curvature for all points on the boundary, providing a description of the boundary
which is invariant to roll (e.g. see Fig. 6).
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3. OBTAINING OBJECT MODELS

Known object models were defined, in terms of planar surfaces, using a simple
Computer-Aided Design (CAD) specification technigue. This was felt to be prefer-
able to the alternative of building the models from multiple views, as it provided
well-defined (noise-free) models which could be manipulated more efficiently. Ex-
amples of the models specified using this technique are shown in Fig. 7 and these
models, in fact, comprise the database of known objects which were used during
testing.

Fig. 7. CAD models.

Fig. 8. A range image of a coffee cup in which brightness is inversely proportional to the depth
(i.e. the closer a point is, the brighter it is). The rectangular region which is marked is used in
the examples which follow, in order to show in a more detailed fashion, the effects of the various
processing operations which are employed.

T VPP S R
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The views of objects to be recognised were supplied as range data, by the Pattern
Recognition and Image Processing Lab. of Michigan State University. They were
produced using a Technical Arts 100X scanner (commorly known as the ‘White
scanner’) and scan conversion software which was criginally developed by Paul Bes]
(which provides the depth information in terms of (z,y, z) coordinates). A sample
range image is shown in Fig. 8.

Viewed models had to built from this range data, and this was done in three
steps:

1. Surface interpolation.
2. Surface smoothing.
3. Model segmentation.

Each of these processes is described, in turn, in the sections which follow.

3.1. Surface Interpolation From Laser Range Data

Faugeras!®!® and Henderson'7 describe a method of building surface representations
from well-sampled point data {e.g. range data). “3-point seed” surface planes are
generated using any combination of three points which are within the sampling
distance of each other. These seed surfaces are subsequently merged into larger
surfaces.

The method for object recognition detailed in this paper does not require that
the surfaces be bounded by perceptually relevant edges (e.g. object boundaries, or
lines of high curvature). Because of this, it was sufficient to represent the range
data in terms of 3-point seed surfaces (e.g. see Fig. 9), overcoming the difficul-
ties of representing objects which cannot be readily segmented into stable surface
representations. '

The use of very simply extracted surface primitives does not in any way detract
from techniques for extracting larger scale surfaces — and in fact the recognition
technique would work equally well with larger scale primitives.

3.2. Smoocthing Surface Orientations

Direct interpolation between range points, however, must take into consideration
iwo issues which are well known from the intensity image domain (see Ref, 21)

1. Signal noise: In other words fluctuations in the signal due to random effects.

2. Sensor accuracy: Amny depth sensor will only produce results to a given reso-
lution. If that {quantisation) resclution is small with respect to the sampling
resolution of the sensor then surfaces which are interpolated between adjacent
range points could easily be seriously affected (in terms of their orientation).
This is not an unusual affect, and actually occurred in the range data which was
used supplied. For example, consider Fig. 10, in which a surface interpolation of
part of the coffee cup range image is shown. It is evident that there is a stepping
effect in the range data of the curved surface of the coffee cup.
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In order to overcome these problems it is necessary to smooth the signal in some
way, and as it was intended to use the surface information from the model, the
surfaces themselves were smeothed on the basis of their orientations.

A local smoothing filter Ssgentermw, djacent (z,y,2) for the normals of the 3-point
seed surfaces (where (z,y,z) represents the normal vector of any 3-point seed
surface) was defined as follows, and is graphically shown in Fig. 11. Wcenter and
Wadjacent are weighting for the center/current surface and the adjacent surfaces,

respectively.

Fig. 9. The 3-point seed surface counnections for the marked region of the previously shown range
image. Each vertice represents a point from the range image.

Fig. 10. Rendering of the 3-point seed surfaces whera the grey-level is inversely proportional to
the angle of tilt. Notice the step-like effect which is caused by the signal quantization.
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Weighting for the
center patch.

Weighting {or
adjacent paiches.

Fig. 11. A local filter for smoothing the orientations of 3-point seed surfaces,

R SR
Fig. 12. Rendering of the 3-point seed surfaces after smoothing the model on the basis of the
surface orientations.

Given a surface a with surface normal vector (z,,%.,2,) and three adjacent
surfaces b, ¢ and d with surface normal vectors (zy, ¥, 25 ), (Zes Ve, 2e) 204 (24, Yd, 2d),
the smoothed normal vector for surface a (Zsmooth, Ysmooths Zsmooth) 18 defined as:

Taverage Yaverage <average
chenterxwadjaceﬂt (xa) yD.? zﬂ) - ( Vl ) '% 3 ‘/[ (1)
where
¢

Taverage = Ta-Weenter +{Ta +2p + zc)-wadjncent

Yaverage = Ya-Weenter + (ya - Yy + yc)~wadjacent

Zayerage = Za - Weenter + (za + zp -+ zc):wadjacent
and

Vi = Average vector length = \/Toverage® + Yaverage® + Zaverage? 2)

In order to propagate the effects of this local filtering operation, the filter is
applied to the surface model iteratively. For example the surface model shown
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previously in Fig. 10 when smoothed with Sy s for 8 iterations results in the sur-
face model rendered in Fig. 12. The values of Weenter a0d Wagjacent (€. 1 and 2,
respectively) were chosen through experimentation.

3.3. Object Segmentation

The technique of implicit model matching, as detailed in this paper, requires that
viewed models represent only single objects. Hence, if scenes with multiple objects
are to be considered the scene model must be segmented into separate object mod-
els. Boundaries between viewed 3-D surfaces may be classified as convez, concave
and jump boundaries (see Han et al.'®) and these classifications may be used when
segmenting surfaces into objects. In this research a very simple approach of seg-
menting only at jump boundaries has been employed (as these may be detected quite
easily in data which has not been segmented into surfaces). For example in Fig. 13
this simple type of segmentation allows the Wye piping joint to be segmented from
the other pipes, but does not allow the other two pipes to be segmented correctly.
More complex segmentation techniques such as those of Han et al. should be
employed, although it should be noted that those techniques may be extended even
further, by making use of characteristics of the surfaces (such as major axis in the
case of curved surfaces) which are seperated by the boundaries. For example, the
major axes of the cylindrical parts of the pestle (shown in Fig. 14) which are broken
into separate regions by the simple segmentation technique used herein, are the
same and hence the surfaces are more than likely to belong to the same object.

Fig. 13. Segmentation of objects in a complex scene.

4. MODEL INVOCATION

Model invocation is the selection of known models with which to attempt match-
ing {of the viewed model). However, with the apprcach presented in this paper,
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matching is performed between views of object models. Hence, rather than just
invoke object models, it is necessary to invoke approximate views of models. (Note
that only approximate views of the known object models need be invoked as the
matching operations both calculate the model position and fine tune the model
orientation of the invoked known model views). This inherently addresses model
invocation (in the strict sense of the term) as, if no view of a particular model is
invoked then the model itself is not invoked.

Fig. 14. Mistaken segmentation of a single object.

Viewing Camera Y
Reference Frame

X

Roll around the
Focal Axis

Focal Axis of
the Viewing Camera

Object reference frame
Fig. 15. Viewing angle geometry.
Model view invocation is performed, herein, by determining possible orientations

from which each known model could be viewed (in order to result in a view similar
to that of the viewed model). The focal axis of the viewing device/camera with
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respect to the tnown model’s frame of reference is first determined, and subsequently
possible valuss for the roil of the camera with respect to it’s own frame of reference
{i.e. around the focal axis) are calculated (see Fig. 13).

4.1, Cameras

It has been stated that the task of model invocation is to determine orientations
from which each known model could be viewed, so that the resultant view might be
similar to that of the viewed model. This is an important point, as it is indicative of
the fact that, rather than compute transformations which theoretically map known
models to the same 3-D space as the viewed model, the task of model invocation and
model matching in this method is to determine potential orientations from which to
view the ktnown models (i.e. a virtual camera model), with respect to the individual
known models frames of reference (much as Goad does in Ref. 22).

The viewed model should have a camera model of some sort associated with it
{i.e. that which represents the original viewing device). The camera model used with
krnown models is similar, in that it uses the same internal parameters, although it is
defined with respect to a different coordinate frame (i.e. that of the known object
model).

This use of camera models does not cause any restrictions on the technique and
it is necessary due to the use of iconic representations (i.e. depth maps and needle
diagrams) during the matching process.

4.2. Determining Potential Orientations of the Focal Axis

In order to determine potential orientations of the camera with respect to a known
model’s frame of reference, a sample of all possible orientations. is used. This sam-
pling of orientation space is defined by the tesselations of a unit (Gaussian) sphere.

Using each of the sphere tesselations surface normals as possible orientations
of the camera focal axis, directional histograms of the tilts visible from the known
model are determined. These directional histograms (after being smoothed) are
compared with a directional histogram of tilt determined from the viewed model,
resulting in a degree-of-fit for each possible orientation.

A degree-of-fit is calculated using normalised cross correlation for each invoca-
tion and gives a measure of likelihood that the model at an orientation within the
range defined by the relevant sphere tessalation is that which must be recognised.
The orientations which possibly contain a match are defined by those tessalations
of the sphere which contain local maximum values for the degree-of-fit of tilt (as
they will change slowly from tessalation to tessalation, as long as the visible view
of the model changes slowly between tessalations), and the likelihood is defined by
the degree-of-fit.

An example of the comparison of tilts from each possible orientation is shown in
Fig. 16. The &nown model is considered from all possible viewpoints as defined by
each tesselation of the sphere, and each tesselation of the sphere is shown encoding
the degree-of-fit determined through the comparison of tilt histograms.
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Fig. 16. The comparison of tilt histograms. The known model (top right) is considered from
each possible viewpoint, as defined by the tesselated sphere — and the grey-level of esach sphere
tesselation shown is proportional to the degree-of-fif found between the tilt histogram determined
from the viewed model (top left) and that determined from each view of the known model. Notice
the band of tesselations around the spheras. These represent equivalent views of the known cylinder
model which correspond to the wiewed model of the cylinder.

4.3. Determining Possible Values of Roll

Having determined potential orientations for the camera focal axis, potential values
for roll, around that focal axis, must be calculated. This is accomplished by com-
paring (using normalised cross correlation) the directional histogram of roll defined
by the viewed model with that derived from the known model in an arbitrary roll,
as viewed using the previously determined focal axis. The comparison is performed
at all possible values of roll (where the resolution of the search for roll is defined
by the resolution of the directional histograms used), of the theoretical model, sim-
ply rotating (i.e. shifting in a circular fashion) the roll histogram of the theoretical
model in order to define each possible roll. Smoothing of the histograms before
comparison again provides a smoothly changing degree-of-fit, and once again the
local maxima define the potential matches. An example of the comparison of roll
histograms is given in Fig. 17.

The result of this operation is the determination of viewing orientation frames
of reference, defined with respect to known models’ frames of reference, which may
provide views of those known modals, which are similar to the viewed model.

5. MODEL MATCHING STRATEGY

Model invocation, in this method, supplies potential orientation frames of reference
for known models. These, however, are only approximations as the orientation
space is quite coarsely sampled. One task of model matching is, then, to fine-tune
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Fig. 17. Example: comparison of roll histograms for two views of an object, taken using the same
focal axis but with the roll of the camera around that axis is altered.

these orientation frames and to determine the position of the viewing camera relative
to the known model.

Model matching consists of a number of steps, during which the orientation
frames will either be accepted {and their updated versions passed to the model
verification stage) or rejected. Firstly, the approximate position of the object with
respect to the virtual camera is calculated. This is done first, as only visible surfaces
are considered in the next step, which is the fine-tuning of object orientation. Object
position is then fine-tuned, followed by object depth and finally object position is
re-tuned (as the tuning of object depth will affect the object position tuning), this
time to sub-pixel accuracy. Each of these steps is discussed in turn.

5.1. Determining Approximate Object Position

In order to allow the position of the object to be fine-tuned (and in order to allow
the object to be viewed during tuning operations in general), the position of the
virtual camera (see Sec. 4.1) with respect to the known model must be estimated.
To do this, the position of the viewed model with respect to its viewing camera
may be employed (see Fig. 18). The imaged centroid of the viewed model, and an
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Viewing camera:
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lmaged
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3D centroid

Fig. 18. The geometrical features used when determining approximate object position.

approximate measure of the distance of the viewed model from the viewing camera
are both very easily computed. The position of the camera which views the known
model is then approximated by placing the camera in a position relative to the
known model’s 3-D centroid, such that the centroid is at the correct approximate
distance from the camera {as determined from the viewed model), and is imaged by
the camera in the same position as the viewed model’s imaged centroid.

5.2. Fine-Tuning Object Orientation

Fine-tuning object orientation is performed in a similar way to the approximate
determination of object roll. Pitch, yaw and roll histograms derived from the theo-
retical model are compared to those derived from the viewed model. The differences
between them indicate the amount by which the orientation may best be fine-tuned
(e.g. see Fig. 19). This is done within a limited range of angles (the range being de-
fined by the sampling of the sphere which was used for sampling orientation space
during the model invocation stage), and at reasonably high angular resolutions
(i.e. 1°), in order to allow tuning to be accurate.

Additionally it should be pointed out that the individual fine-tuning operations
affect not only the current directional histogram (e.g. roll), but also, in a small
way the other directional histograms (e.g. pitch, yaw). Hence the fine-tuning is
performed by calculating a specific directional histogram, tuning the relevant com-
ponent of orientation, and then moving on to the next directional histogram. This
is done until the amount of tuning for all components of orientation falls below the
required accuracy, or until the total tuning on any of the orientations exceeds the
range allowed (in which case the invoked model view is rejected).
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Fig. 19. An example of the fine-tuning of orientation that is required. The two views of the
cube model shown have slightly different pitch values, and this is reflected in their directional
histograms.

5.3. Fine-Tuning Viewed Object Position

Fine-tuning of the viewed object position may be formally defined as tuning of the
relative position of the viewing camera with respect to the known models reference
frame, by translation in the plane which is orthogonal to the focal axis of the camera
(i.e. in the directions parallel to the image plane).

This operation is performed using a template matching technique in which each
needle diagram of the inown model is compared, using a normalised correlation
mechanism, with a needle diagram of the viewed model. The position of the template
which returns the highest correlation is taken to be the optimal position for the
known model. The needle diagrams are rendered (as are the depth maps used in
the next section) using a standard hidden surface removal algorithm.

5.3.1. Correlation of needle diagrams

The standard methed of comparing iconic representations is normalised cross-
correlation, but it is defined only with respect to scalars. For the comparison of
needle diagrams 3-D vectors must be compared and that correlation NV for each
possible position of the template (m, n) is defined as follows

2 2 ; flviewed(s, 7)) (r — angle(viewed(s, j), known(i — m)(j — n)))
2222 flviewed(d, j)) * =

NV{m,n) =
(3)

where viewed(, j) and known(s, j) are the 3-D orientation vectors from the viewed
and known needle diagrams respectively,

f(vector) = 1 (if the vector is defined)
=0 (if the vector is NULL)
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and
angle(vectorl,vector2) = The angle between the two vectors. (4)

In order to allow for possible occlusions of the viewed model, we consider only
points in the viewed models needle diagram viewed(i, j) which have object needles,
using the function f(}.

7 is the maximum difference between any two 3-D vectors, and angle() is a
function which returns the angle between the two vectors/needles passed, or 0 should
one of the vectors be undefined. Hence for the comparison of any two vectors the
top half of the fraction will be increased by a value between 0 and 7 and the bottom
half of the fraction will be increased by .

This definition results in a maximum value of 1 for NV (m,n) if the needle
diagrams are the same, and 2 minimum value of 0 if they are exact opposites.

5.3.2. Efficient template matching

In order to make this operation more efficient, the needle diagrams are first com-
pared at lower resolutions. These comparisons at lower resolutions use only a simple
comparison of the needle diagrams S(m,n) which is a measure of the number of
needles in the viewed models needle diagram which have a corresponding needle (of
any orientation) in the known models needle diagram.

22 flviewed(i, 7)) * f(known(, j)
2 25 flviewed(i, 5))
where the definitions previously indicated apply.
Only positions of the template for which S(m,n) is greater than 0.75 are con-
sidered at higher resolutions.

S(ma n) = (5)

5.4, Fine-Tuning Object Depth

Fine-tuning the distance between the known model and its viewing camera is done
by direct comparison of the depth maps generated from both the viewed model,
and the known model (in its determined pose). The Depth Change Required (or
DCR; note this is the optimal displacement of the model, and not an error term) is
defined as follows:

_ DI f(viewed(s, 7)) * f(known(i, §)) * (viewed(3, 7} — known(i, j))

DCR
Y 2; fviewed(i, 5)) * f(known(i, 5))

(6)
where viewed(i, j) and known(i, j) are the depths from the viewed and known depth
maps respectively, and

flvector) = 1 (if the depth is defined)
=0 (if the depth is unknown)

This depth change is directly applied as a translation to the pose of the camera
which views the known model, in a dirsction defined by the focal axis of the camera.
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Due to perspective effects this operation will have effects on the depth map rendered
and so is applied iteratively until the DCR falls below an acceptable level (e.g. 1 mm
along the Z axis).

5.5. Fine-Tuning Object Position to Sub-Pixel Accuracy

The final section of fine-tuning is again of the viewed object position. This is for
two reasons: Firstly due to possible effects of tuning object depth, and secondly in
order to tune the position to an extremely high degree of accuracy.

This sub-pixe! tuning of the viewed object position is accomplished using a
combination of template matching, normalised correlation and quadratic modelling
techniques.

The best position may be determined to pixel accuracy using the template
matching and correlation technique as previously described in Sec. 5.3. In order
to determine the position to sub-pixel accuracy the normalised correlations around
the best position (as determined to pixel accuracy) are used and are modelled as
quadratics in two orthognal directions (i.e. parallel to the two image axes). See
Ref. 12 for further details,

5.6. Dealing with Only One Visible Surface

The determination of the roll of the viewing camera with respect to a known model
inherently assumes the visibility of surfaces of more than a single orientation. If
only one orientation is present from the visible surfaces there is an ambiguity with
respect to rolling around the orientation vector of the visible surfaces. This problem,
however, is simpler than the situation where surfaces of multiple orientations are
visible, as it reduces to a 2-D shape recogunition task.

5.6.1. Detecting that only cne orientation is visible

Detecting whether surfaces with multiple or single orientations are visible may be
done by considering the Extended Gaussian Image®® of the viewed model. The
distribution of orientations may be calculated as a standard deviation and if that
deviation is greater than a small angle (e.g. 11°) then multiple surfaces must be
regarded as being present. See Fig. 20.

5.6.2. Determining surface ‘roll’ for single orientations

Somewhat surprisingly, the only parts of the algorithm (being presented here) for
recognising objects which are affected by this special case are the determination of
possible rolls, and the fine-tuning of those possible rolls.

In this situation, where surface orientation information can no longer be of
assistance, possible object roll may be determined (and fine-tuned) by using the rate
of change of boundary curvature. This rate of change of curvature is independent
of the roll, and may be calculated quite easily if an approximation to the camera
position is known. The approximation to camera position can be calculated quite
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Fig. 20. Two views of a cube, and EGIs with the surface orientations of each view mapped to them.
The distribution of the surface orientations mapped 1o EGI indicate whether the view contains a
single main orientation or multiple orientations.

easily (as before), but prior to instead of after the roll calculation. The object may
then be drawn, and its boundary traced, deriving a measure of its curvature and,
after smoothing the curvature to remove noise, the rate of change of the curvature
may be calculated.

The signature of the rate of change of curvature of known models may then
be compared to one calculated from the viewed model, in the same way as the
directional histograms of roll were compared, in order to determine possible rolls
(e.g- see Fig. 21). In this situation however, the possible rolls determined are not
in terms of degrees, but rather are in terms of boundary features, so care must be
taken when calculating the amount of roll. It is also important to realise that the
boundaries will most probably be of different sizes and so must be scaled to a fixed
size of the boundary curvature signature before comparison.

6. MODEL VERIFICATION

The normalised correlation comparison of needle diagrams, between the viewed
model and known models in determined poses, as used when fine-tuning object
position (see Sec. 5.3), gives a degree-of-fit which represents all aspects of object
position and orientation. This degree-of-fit, then, may be regarded as an overall
degree-of-fit between the two models (in the given poses).

The pose of the known model associated with the best degree-of-fit, given that
the degree-of-fit is over a high threshold is taken to represent the viewed model.
Search for this best degree-of-fit is continued until all invoked possibilities are
considered.
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Fig. 21. Example: comparison of boundary curvature,

7. TESTING

In this section the capabilities of the approach are demonstrated on models derived
from range images of single objects and then the issues involved with extending the
technique to scenes containing multiple objects are addressed.

Testing through experimentation proves only the applicability of the method
in the instances which are tested. It also suggests the aptness of the method in
other similar circumstances, although the validity of the implication may often be
related to the degree to which test instances are selected due to their particular
suitability. The instances presented in this chapter were taken from a database of
range images which was created at the Pattern Recognition and Image Processing
Lab. of Michigan State University (MSU). This database consisted of range images
of objects which were selected by those at MSU, and hence the objects were in no
way chosen because of their suitability.

Unfortunately, for the objects for which range images were supplied, no CAD
data was available (and the physical objects were in MSU). Hence models of the
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objects present in the range images had to be roughly approximated on the basis of
the range data supplied. This was done visually, by rendering an image of each of
the objects from the range data, and then calculating the approximate shape and
size of the objects. The range images were labelled by MSU and this facilitated the
task of estimating shape.

This method of deriving the CAD models results in the models being only ap-
proximations to the actual objects, and this in turn makes the task of recognition
more dificult. The database of models which was developed is this way is shown
in Fig. 7. '

7.1. Recognition of Objects in Scenes with One Object

The technique of Implicit Model Matching presented in this paper is intended for
the recognition of single objects (whether they be presented separately or whether
they have been segmented from all other objects in a complex scene). The main
body of testing of this approach is, then, with single objects. In Figs. 22-24 an
example of recognition of a piston ring-like object is shown in a number of steps.
The database of known objects was comprised of the ten objects which are shown
in Fig. 7.

Figures 25 through to 33 then show examples of the best matches determined
for various views of different objects, and each of these figures 25-33 contain the
following: In the top left quadrant, a rendering of the needle diagram of the viewed
model in which the grey-level is proportional to tilt. In the top right guadrant,
Tilt, Roll, Pitch and Yaw Directional histograms which are derived from the viewed
model. In the bottom left quadrant, a rendering of the needle diagram of the knouwn

Fig. 22. A range image of a piston rendered using tilt, along with various directional histograms,
sub-sampled views {which are used when fine-tuning object position) and an EGI, all of which
were derived from the view shown.
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Fig. 23. Two orientations of a CAD model of a piston which might represent the viewed model
shown in the previous figure. These were determined solely on the basis of tilt and roll directional
histograms.

Fig. 24. The recognised piston, together with the subtraction of the two needle diagrams and the
degree of fit which was associated with the match.

model in the determined pose which best matched the viewed model, together with
the degree-of-fit determined and finally in the dottom right quadrant, a subtraction
of the rendered needle diagrams of the viewed model and the best matching known
model in its determined pose, is shown.

The best measure-of-fit {or each known model when compared with each viewed
model are listed in Fig. 35.
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Fig. 26. Recognition of a cone.

7.2. Recognition of Correctly Segmented Objects

The segmentation technique employed is detailed in Sec. 3.3. Consider the Wye
piping junction which is segmented correcily {as “segmented Sec. 2") in Fig. 13.
‘When the recognition strategy is applied to that section, the resultant best match
is as shown in Fig. 34.

We note, however, that the orientation of the pipe is slightly incorrect. Con-
sider the subtraction of needle diagrams shown in the bottom right quadrant. The
section pipe which points downwards may be observed to be at a slightly incorrect
orientation. The reason for this due to the loss of information from the occluded
section of the pipe, and there are two ways in which this might be overcome:
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1. Object model reconstruction. It might be possible to reconstruct the occluded
surfaces on the basis of the surfaces which are visible, using a technique such as
that of Fisher®23

2. Considering complex models in terms of sub-parts. It could also be possible to
consider complex objects such as a Wye piping joint as comprising a number
of sub-parts (e.g. in this case two sections of a pipe). This would significantly
reduce the amount of information enceded in the directional histograms, and
should result in directional histcgrams for each sub-part which are “clearer”
(i.e. easier to match with directional histograms from known objects).

Fig. 27. Recognition of a funnel.

Fig. 28. Recognition of ancther view of the funnel. Notice the serious effect the missing parts
problem has caused with respect to the amount of the viewed model which is actually presented.
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Fig. 29. Recognition of an mdustrial part.

Fig. 30. Recognition of an adapter

8. CONCLUSIONS

The cxamples demonstrate the ability of the object recognition strategy developed
in this paper, to identify the correct model and its pose in scenes which can be
segmented so that only single objects are considered.

Further testing of the algerithm was performead employing 3-D models derived
using a depth from camera motion algorithm (i.e. a passive technique for the de-
termination of depth at significant intensity discomtinuities in images followed by
a simple planar interpolation).!® The mcdels determined ranged quite significantly
in terms of the amount of noise present, and the object recognition technique was
found to degrade quite gracefully as the noise increased.
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Fig. 31. Recognition of another view of the adapter. This view is being considered as a single ob-
ject, although it actually breaks into two segments if the segmentation technique is
applied to it.

Fig. 32. Recognition of a cylinder for holding propane.

The time for the algorithm to be executed on a single T800 transputer was
dependent on the complexity of the models used (much of the time being spent
rendering needle diagrams and depth maps) and, in the experiments detailed in
this report, ranged from 30 minutes up fo 3 hours. However, recognition time was
not even considered when developing the implementation, and it is clear (to the
authors) that a significantly more sfficient implementation is possible.

Recognised instances of several different objects were shown in this paper. How-
ever, it is important o also consider the discriminatory ability of the approach
(i.e. how well each of the other known models matches a given viewed model). In
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Fig. 33. Recognition of a Wye piping joint.

Fig. 34. Recognition of a Wye piping joint, which was segmented from scene containing multiple
objects. The information shown is of the same type 2= that shown in Figs. 25 to 33.

order to do this a table of the best degree-of-fit between each known model and
each viewed model was built up and is shown in Fig. 35.

Although each viewed model is matched with the correct known model, it is
interesting to note that several other of the known models result in reasonably
high measures-of-fit. Consider, for example, the 0.3805 degree-of-fit between the
“propane” known model and the view of the coffee mug. Although the “propane”
model is significantly larger than the view of the coffee mug a high degree-of-fit
is determined due to a part of the “propane” model (i.e. part of the cylinder)
being similar to the part of the coffee mug observed (as both objects are basically
cylindrical). This is also due to the definition of the correlation measure between
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needle diagrams (which takes no account of the regions of the known model which
do not correspond to any part of the viewed model).

In fact, several of the ten objects used in these experiments are quite similar
(i-e. are cylindrical), and hence by recognising these objects the testing provides
strong support for the approaches’ ability to discriminate between similar objects.

Additionally, considering the recognised Wye piping joint in Fig. 34 it is evident
that the ability of the approach to function when data is missing from a viewed
object (either by occlusion or by incorrect segmentation) is related to whether or
not the remaining data characterises the object sufficiently well. This seems a
reasonable constraint, as the ability to recognise is thence directly related to the
amount (i.e. relative to being completely visible), and quality, of the viewed data.

Finally it must be emphasized that the object recognition technique presented
compares 3-D models only on the basis of comparisons of representations which
are synthesized/derived from the 3-D models. Some of these representations, in
particular needle diagrams and depth maps, are based on the original image frame
of reference, and hence bare an obvious correspondence with the original scene
data, although they are generated by considering 3-D surface-based models. It is
this interplay, using secondary representations, between the viewed data and the
known CAD models which provides the technique with much of its function and
robustness.
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