-

w W

S == own

ul
at
ss
’s
do
ed

is

’sS
rly
nd

ily
ns

1in

An Analysis of Strategies to Reduce Computational Complexity and
Processing Time in Industrial Optical Data Processing and Analysis

Adrian Trenaman, David Barry, David Vernon'.
Department of Computer Science, Maynooth College, Co. Kildare, Ireland

Telephone: 708 3847
Fax. 708 3848

trenaman(@cs.may.ie, drbarry@cs.may.ie, dvernon@cs.may.ie

ABSTRACT

In this paper we address the evaluation of the efficiency of machine vision systems. We provide a framework
for the analysis of such systems, incorporating algorithmic complexity and top-down structured analysis. Using
the framework it is possible to compare different solutions working over different machine architectures. An
example of such a comparison is presented, where we compare the image acquisition characteristics of a
contour following algorithm. A simulation of the algorithm verifies the correctness if the component based
framework.

1. Introduction

Very little work has been done in providing a general approach to the analysis of the performance of machine vision
systems, despite the potential usefulness of such a tool. Some reasons for this lack of research in such an important
area are offered by Forstner [1], who lists among them the complexity of vision systems, the impact of image data on
performance, and the number of tuning parameters for a vision system. Performance evaluation is a two fold
phenomenon, that is, by “performance” we mean firstly whether the technique is correct, and secondly, how efficient
the technique is, in terms of execution time and resource usage. It is this second meaning of performance that we shall
adhere to in this paper.

While there has been an increase in activity in the area of performance as correctness, there is very little work done in
the area of efficiency of computer vision algorithms. We propose in this paper to address this problem. In describing
the efficiency performance of vision algorithms, we borrow the notion of algorithmic complexity from the field of
algorithmics [2]. From every algorithm can be derived a complexity function, describing how long the algorithm will
take to execute over a certain size of input data. We can describe the complete machine vision system in terms of
algorithmic processes, from software right down to hardware. We provide a way to link these components together,
showing the data-flow between them and describing how the processes alter the size of this data-flow. Effectively, we
perform a top down analysis of the complexity of a vision algorithm, and arrive at a concrete estimate for its
performance. This methodology embraces both the software algorithms and the underlying hardware of the solution to
give concrete estimates of the algorithms performance. It provides a solid framework against which different solutions
can be quantitatively compared and optimal solutions found.

In Section 2 we describe this methodology, introducing a graphical notation to capture the execution of the machine
vision algorithm. This methodology is an extension of previous research by the authors in this area [3]. In Section 3
an example is given of the framework in use in which we compare a contour-following algorithm working over two
different architectures: a conventional frame-grabber working on the CCIR standard, and a Random Access Image
Sensor. We show that the latter architecture will reduce image acquisition time by a factor of 4 for this application. A
simulation of the random access solution was performed in software, and the number of pixel accesses were exactly as
predicted by the component-based analysis. We conclude that this technique forms a solid framework for the a priori
evaluation and comparison of machine vision solutions.

' This work is funded by ESPRIT Project 20557 RAMAP

b6

Figure 5: Sample input image. Figure 6: Pixel accesses in running the blob detection
algorithm.

The solution we will apply to the problem involves scanning the image to locate the edge of the b?ob, .folllowed by
contour following to produce a binary chain-code representation of the blob. From this representation it is egsy to
compute the perimeter, area and centroid of the blob [6]. Figure 6 shows the pixels accessed by the algorithm in the
course of its execution.

3.1 Frame acquisition using CCIR

Implementing the contour following solution with a
frame acquisition architecture using the CCIR

’ Coxﬁponmt Time Cotﬁplcxilf. 1) Data RMudioﬁ. ()

: S . 262144
signal standard [7] , we identified the following &%Frame 40ms
components, as shown in Table |. scan 3584 * Ty 1
. . * Teasion 240
Its clear from the component diagram (Figure 7) followContour 240" Taccn T

that the acquisition stage occurs in the getFrame ition based
component, which has a constant time complexity Table 1: Components for a frame-acquisition base
of 40ms. solution.

3.2 Random Access sensor.

This implementation shares the algorithmic components scan and followContour but use a different image

access technique. Since we are interested in Component Time Complexity, 1(n) Data Reduction,
evaluating the pixel accesses of the algorithm and j(")ﬁww_
since both the scan and followContour processes ~ gaFifter Tslow +2 * Thast_ 9

make such accesses, the component diagram is a getPixel Tslow * 0.66 + Tfast * 0.33]

little more complex. Pixel access can be either slow B |

or fast, due to the asymmetry of the random access SIOWACesS Tslow = 2ps

chip. Further, in-memory caching is used to ensure fastAccess Tfast=0.2us !

that pixels are not fetched more than once. We e R
identify the following new components in Table 2, Table 2: Components for the pixel-acquisition based
and the algorithm is shown in Figure 8. solution.

Using the component analysis technique, the total
acquisition time for the random access approach is
estimated as:

Tocan + Tronow = 10267.2 us

So, a worst case estimate for the acquisition time is 10.2 ms, for this implementation of the algorithm.

58

2. The Framework.

We analyse our machine vision system in terms of components. A component is an algorithmic process working in
hardware or software, and as such has a number of attributes: Time complexity, Data Complexity and a Dgta
Reduction Function. An algorithm working on a data-set of size n, has a time complexity function, (n), wh}ch
describes the time required to successfully run the algorithm. Usually t() gives a worst-case estimate of the runn%ng
cost of the algorithm. In the same way that ¢(n) describes the amount of time taken to execute an algorithm wor'kmg
on n items of data, d(n), the data complexity function, describes the amount of space in memory that an algorithm
requires to run. In general, there is a trade-off between time complexity and time complexity. The t{ata redz{ction
function, r(n) describes the amount of data that an algorithm turns out. For example, an algorithm to shrink the 31.ze of
an image by half, that is, reduce the height and the width of an image by a factor of %, will have a data complexity of
r(n) = n/4. A component’s time complexity, data complexity and data reduction function fully describe how an
algorithm will work in time - that is, how fast it will perform and how much information it will produce.

Components are represented diagramat caly as a rectangular box, with arrows indicating input and output. This
graphical notation for a component is shown in Figure 1.

Complexity analysis solutions are given in terms of fundamental units
of operation, that is, operations that take a fixed amount of time to
complete. In machine vision algorithms, the fundamental units of .
operation may in fact be complex vision operations themselves, and so n = number of input elements

simple time complexity analysis breaks down. We attack this problem n’ = r(n) = number of output elements
by building hierarchies of components, where each component Tp = tp(n) = Time taken for P to execute.
represents a complex machine vision operation, performed in hardware

or software.

i : . Figure 1: A component
Algorithms are often designed in a top-down fashion, and the

hierarchical component-analysis approach reflects this. Hierarchical component structures are built psing composition,
iteration and alternation. We introduce these structures with a graphical notation and show how qlexr perfqrmance can
be analysed. The graphic notation borrows heavily from that of the Jackson Structured Programming technique [4] [5].

I n" I n’ n

P P
n ’ n \\
0 \ n
Q R Q@ * R P
Figure 2: Composition: Figure 3: Component P calls Q Figure 4: Alternation - P will call
Component P calls Component Q and R a number of times. either Q or R.
and R

3. Example - Frame versus Random Access.

The notation presented allows graphical description of the way components work together, using composition,
iteration and alternation. We now show the notation at work, using it to describe a contour following algorithm, to
locate an arbitrary blob in a scene and calculate its centroid. Our analysis shall focus on the image acquisition
bottleneck of the vision system, that is, our intent is to estimate the number of pixel acquisitions that will be made and
the amount of time spent acquiring them. We will purposefully omit an analysis or comparison of the image

processing and analysis time for the two solutions, as we assume that the processing hardware shall be the same for
both solutions.

The problem is find the centroid of a bright object against a dark background - a sample image is shown b_elow. The
image dimensions are 512 x 512 pixels, that is, the image is a data-set of 262,144 elements. The blob is roughly
circular in shape, with a diameter of about 75 pixels. A sample input image is shown in Figure 5

57 |

centroid
1 240
n
0 n n
getFrame sean Follow
Contour

“n” = 262144, the number of pixels in the image.

Figure 7: Component diagram for frame- Figure 8: Component diagram for pixel-acquisition based
acquisition based solution. solution,

3.3 Comparison of the two solutions

Clearly we have shown that using this algorithm ~ Value Predicted Found by simuiation
w1th‘ a _ran@om access sensor redu?es the total Aoseeses inSean 16652 3760
acquisition time by a factor of 4, that is, from 40ms 66.6% 66.3% (5810)
to 10ms. A simulation of the algorithm was ~Fast o =
performed, where accesses to image data where -Slow 33.3% 33.6% (2950)
monitored and logged as if made to a random Accesses in Follow Contour 1200 1142
access sensor. As can be seen fr'om the table be.low, Fast 33.3% 34% (387)
the figures found in the simulation of the algorithm \ §6% (755
closely match those found in our simulation. - Slow 66.6% 0 (75%)

Size of Binary Chain Code 240 207

Thus, the rigorous component based analysis of the
algorithm provides accurate results, More Total Acquisition Time 10.2ms 8.6ms
importantly, it places the algorithm in a framework .
where it can be evaluated over any number of Table 3: Comparison of theoretical vs. actual results
different architectures. gathered from a simulation of the algorithm.

4. Conclusion

We have presented a top-down technique for analysing and estimating the performance of machine vision algorithms,
and shown it to give excellent results in comparison with figures obtained from experience with real data. The
technique is of great import to the field of real-time industrial machine vision, where the ultimate aim is to reduce
acquisition time. The framework allows us to identify solutions built with components of low computational
complexity working together using minimum pixel acquisitions.

References

1 W. Forstner. 10 Pros and Cons Against Performance Characterisation of Vision Algorithms. In H. L Christerilsen,
W. Forstner & C. B. Madsen, Proceedings for the Workshop on Performance Characteristics of Vision Algorithms
1996, Cambridge, UK.

2 David Harel, 4lgorithmics, The Spirit of Computing Second Edition, Addison Wesley, 1992.

3 A. Trenaman, D. Barry, D. Vernon, An Analysis of Strategies to Reduce Computational Complexity and Proc.essing
Time in Industrial Optical Data Processing and Analysis. Presented at OEPE ’96, Optical Engineering Society of
Ireland.

4 Alistair Sutcliffe, Jackson System Development, Prentice Hall, UK, 1988.
5M. J. King & J. P. Pardoe, Program Design Using JSP - A practical introduction. Basingstoke: Macmillan, 1992.
6 J.M. Wilf, Chain Code, Robotics Age, Vol. 3, No. 2.

7 D. Vernon, 1991. Machine Vision - Automated Visual Inspection and Robot Vision, Cambridge University Press, pp-
22-23.

o9

