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Abstract. An alternative to traditional spatiotemporal gradient and
feature-based approaches to measuring object velocity in images is in-
troduced. Here, the velocity is computed by treating each object as a
distinct intensity wave profile, with Fourier components, and by identify-
ing the Fourier components that exhibit the magnitude and phase
changes that are consistent with anticipated velocity wave motion. This
detection is accomplished using an appropriate Hough transform. The
two major advantages of this technique are that because the analysis
takes place in the Fourier domain, the spatial organization and the visual
appearance of the moving object are not significant and, second, the
formulation presented in this paper lends itself to direct extension for
more complex motion. Consequently, objects that are visually or spatially
complex and that would be difficult to analyze using either of the tradi-
tional spatiotemporal differentiation or feature-based approaches can be
effectively treated. The proposed approach is demonstrated for scenes
of varying complexity. © 1996 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

Traditional approaches to measuring object velocity in im-
ages normally exploit one of two primary techniques. The
first involves the computation of the spatiotemporal gradi-
ent, differentiating the (filtered or unfiltered) image se-
quence with respect to time and subsequently computing
the optical flow field.! The second involves the segmenta-
tion of the object or feature in question using either region-
based gradient (first or second order) filtering and analysis
followed either by the computation of the optical flow field
or by identification object correspondence, typically by
matching contour or region primitives.2 Comparisons of the
many variations of these approaches and the relationship
among them can be found in Refs. 3, 4, and 5.

A less-used approach exploits the regularity in spa-
tiotemporal frequency representations of the image, such as
the spatiotemporal Fourier transform domain, resulting
from certain types of image motion. Briefly, it can be
shown that the spatiotemporal Fourier transform of an im-
age sequence in which the image content is moving with
constant velocity results in a spatiotemporal frequency rep-
resentation that is equal to the spatial Fourier transform of
the first image multiplied by a #-Dirac function in the tem-
poral frequency domain. This &-Dirac function is depen-
dent on the image velocity, which can be computed if one
knows the position of the &-Dirac function and any spatial
frequency.® Because this approach is based on image mo-
tion, rather than object motion, it normally assumes uni-
form (zero) background when evaluating object motion.
Extensions of the technique have been developed to allow
it to adjust for situations involving noisy backgrounds,’

several objects,g’9 and nonuniform cluttered bac:kgrounds.10

In this paper, we present an alternative formulation of
the above approach. This alternative uses the normal spatial
Fourier transform together with a Hough transform, rather
than the spatiotemporal Fourier transform. This approach
lends itself to straightforward generalization to types of
motion other than the uniform translation in a plane parallel
to the image plane, as is normally required. Specifically, the
velocity of objects is measured by treating each object (ei-
ther moving or stationary) as a distinct intensity wave pro-
file, each of which is an additive component of the total
image intensity profile, and hence each of which is a solu-
tion of the wave equation. The Fourier components of wave
profiles—and equally of objects—that move with constant
velocity exhibit a regular phase change. The velocity of a
moving object is measured by identifying the Fourier com-
ponents of the total image intensity wave profile that ex-
hibit this phase relationship using an appropriate Hough
transform. This Hough transform embodies the relationship
between velocity and phase change, and velocity is mea-
sured by locating local maxima in the Hough space.

The two major advantages of this technique are that,
because the analysis takes place in the Fourier domain, the
spatial organization and the visual appearance of the mov-
ing object are not significant and, second, the formulation
presented in this paper lends itself to direct extension for
more complex motion. Consequently, objects that are visu-
ally or spatially complex and that would be difficult to ana-
lyze using either of the traditional spatiotemporal differen-
tiation or feature-based approaches can be effectively
treated. In the following sections, the proposed approach is
demonstrated for scenes of varying complexity.
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2 Overview

Consider an image g(x,y,?): a 2-D spatiotemporal repre-
sentation of the reflectance function of a scene. This image
1s normally regarded and viewed as a time-varying two-
dimensional representation of intensity values. However,
the image g(x,y,#) can also be regarded as a time-varying
surface. Consider an object O; to be moving in the image.
If we view g(x,y,?) as a time-varying surface, the height of
each point on the surface defining the reflectance value at
that point, then this object may be viewed as a wave, with
a characteristic shape, propagating through the image space
with a velocity v;(¢). The velocity function v can, in gen-
eral, be a function of image coordinates and time:
v(x,y,t); that is, it can vary with position and time. In this
paper, however, we restrict our attention primarily to the
situation where the velocity is constant and parallel to the
image plane. This restriction means that the shape of the
wave profile does not vary with position and that it propa-
gates with constant velocity: v,(f)=uv, a constant. The task
then becomes one of isolating the wave and computing this
velocity.

Let us use the general form of the 2-D differential wave
equation to model the object O; or, equivalently, its wave
form in image-time space. Thus:

FPPxy.) Py 1 Pixy.0)
o a? v at?

I

The solution of this wave equation #*(x,y,?) is, in ef-
fect, a description of the object as a gray-level wave profile
propagating with constant velocity v;, that is,

‘ﬁi(x,y’t) =fi(x - vxit9y - vyit)’

where fi(x,y) is a solution to the wave equation at time
t=0 and this solution describes the shape of the wave at
time £=0. Our task is to solve this equation for all distinct
v; using only our knowledge of the total optical field
¢=g(x,y,t). That is, we seek a decomposition of the total
optical field y=g(x,y,t) into components
e;f j(x~—uxjt,y—vyjt), each of which is a solution of the
wave equation:

n
Yy =g(®y,0= 2 ¢if (x=vsty=v, 1),

and to group them into m sets of the form

L
U(x,y,t)= E c;;fi(x—vi- t,}"U; 1)
k=1 k k

such that U, =constant and v, =constant: that is, the com-

ponents of ' all have a constant propagation velocity. We
note in passing that ¢=g(x,y,t)=37, ¢(x,y,t), where
m is the number of objects comprising the total optical
field. We use the discrete Fourier transform to accomplish
the decomposition and the Hough transform to accomplish
the grouping.

3 2-D Fourier Transform

The discrete Fourier transform %[ f(x,y)] of a 2-D func-
tion f(x,y) is given by:

ﬂf(x,y)]=F<kx,ky>=§ E FCy)explilkex +kyy)],

and the inverse discrete Fourier transform is:
F(x,y)=F [F(k, .k,)]
1
T 22 kE kEy [Fky k))lexpli gk . k,)]

Xexp[ — i(kx+kyy)],

where |F(k, ,ky)[ is the real-valued amplitude spectrum
and ¢(k, ,k,) is the real-valued phase spectrum.

In effect, f(x,y) can be constructed from a linear com-
bination of elementary functions having the form
exp[—i(k,x+k,y)], each appropriately weighted in ampli-
tude and phase by a complex factor F(k, ,k,). For a func-
tion or waveform ftranslating with constant velocity
(vy,v,), f(x,y) becomes f(x—v,dt,y—v,6t). By the
shift prope:rty11 its Fourier transform is given by:

FLf(x—v,6t,y—v,6t)]=|F(k, k,)|expli p(k; ,k,)]
Xexpl —i(kw, 8t +kyv,6t)].

Thus, a spatial shift of (v,6t,v,8¢) of a waveform in the
spatial domain, ie. f(x,y) shifted to f(v,dt,v,6t), only
produces a change in the phase of the Fourier components
in the frequency domain. This phase change is
exp[—i(k,v,dt+k,v,6r)]. Thus, in order to segment the im-
age into its component wave forms, each of which corre-
sponds to an object moving with constant velocity in the
image, we simply need to identify the set of frequency
components &, and k, which have all been modified by the
same phase shift, i.e. exp[—i(kw,dt+kuv,dr)]. To accom-
plish this, we note that the phase spectrum for the shifted
wave at time f+ &¢ is equal to the phase spectrum of the
wave at time ¢ multiplied by the phase change given before:

explidrs si(ky oky)]
=exp[ —i(k,v, St +kyv,8t)]expli,(k, ky)]
=expli[ ¢,(ky.k)) — (kv Ot +kyv,68)]}.
Hence,
Gt orkxky) = @ik hoy) — (kv 61+ kv, 61).
That is, the phase at time 7+ &7 is equal to the initial phase

at time ¢ minus (k,v, 67+ k,v,.6t). Since we require v, and
v,, we rearrange as follows:

1
U,\':m [Qbr(kx’ky)—(ﬁr-#&z(kx ,k),)-kxvxéf]. (1)
¥
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Fig. 1 Image sequence 1; image 1 (synthetic data).

This equation becomes degenerate if k,=0 in which case
we use an alternative rearrangement as follows:

th’k - t+th7ky
o Bck) —breall k)] o

If we have
t=t0,t1 ,t2,t3, .

several images taken at time
, We can compute ¢,0 in particular and

¢,0+,,5,, in general. Treating the equation above as a

Hough transform, with a 2-D Hough transform space de-
fined on v,, v,, then we can compute v, for all possible
values of v,, and for all (known) values of n, k,, ky,
¢,0+,, selky ,ky). Local maxima in this v, sy Hough trans-
form space signify Fourier components that comprise wave
forms—objects—in the spatial domain that are moving
with constant velocity v,,v,. Note that in both Egs. (1)
and (2), &(k,,k,) represents the absolute phase of fre-
quency (k,.k,). However, in the Fourier domain, phase is
bounded by *27 and phase values will ‘“wrap’’ as they
cross this threshold. In effect, phase values are represented
modulo 27. In this implementation, we have allowed for
this by solving Egs. (1) and (2) for the given phase values
Plky.ky)+2nm,>0; Pk, k)~ 2nm,¢<0, for all n
such that 2nw<|kv, dl+kov, &

We note in passing that the computational complexity of
the algorithm is {nm?) where m is the dimension of the
Fourier domain and 7 is the dimension of the Hough trans-
form space (and is proportional to the measurable accuracy)
since Eq. (1) must be computed for all x and y spatial
frequencies and for all possible values of v,.

4 Results

Figures 1 through 12 demonstrate the results of applying
the technique to three scenarios of increasing complexity.
Image sequence 1 (Figs. 1 to 3) illustrates the technique
when applied to synthetic images: Figs. 1 and 2 show the
first and last images in an eight-image sequence; Fig. 3
shows the resultant Hough transform, which displays a
well-localized maximum. Figures 4 anc 5 depict a translat-
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Fig. 2 Image sequence 1; image 8 (synthetic data).

Fig. 3 Image sequence 1; Hough transform (v,,v,) space derived
from images 1 to 8, inclusive.

Fig. 4 Image sequence 2; image 1 (constant background).
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Fig.

. Fig. 8 | ; Hough transform (v, ,v,) space derived
Fig. 6 Image seguence 2; Hough transform (vx,v,) space derived ' mage sequence 3; Hough tr (Vi v) sp
from images 1 to 8, inclusive.

from images 1 to 8, inclusive.

Fig. 10 image sequence 4; image 1 (refiected image superimposed
on scene}.
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Fig. 11 Image sequence 4; image 8 (reflected image superimposed
on scene).

ing object superimposed on a constant background. As with
Fig. 3, the maximum in the Hough transform space is well
localized (see Fig. 6). Figures 7 and 8 depict an object
translating over a background that varies slightly in each
image with the Hough transform shown in Fig. 9. In this
instance, the maximum in the Hough transform space is
less well localized (see Fig. 9). Finally, the sequence in
Figs. 10 and 11 demonstrates the results in a more complex
scenario where there is a foreground image of a cat super-
imposed on the (moving) background scene depicted in
Figs. 7 and 8. Such a situation arises when, for example, an
observer views a scene through a window and sees both the
external scene and its own reflection. Again, one can see a
degradation in the localization of the maximum in the
Hough transform space (Fig. 12). Table 1 summarizes the
actual and computed velocities in all cases. Finally, in order
to provide an indication of the accuracy of the technique,
the graph in Fig. 13 shows the percentage error in the com-

Fig. 12 Image sequence 4: Hough transiorm (v, , v,) space derived
from images 1 ic 8, inclusive.
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Table 1 Summary of measured velocities.

Actual Velocity Computed Velocity
(pixels/frame) (pixels/frame)
Image

Sequence Vy vy Vy vy
1 5.72 5.72 5.7 5.6

2 0 3.0 0 2.9

3 0 3.07 0.56 2.8

4 o] 3.07 0.56 3.0

puted velocity of the object in Fig. 4 when translated at 1,
2,...9 pixels per frame over a constant background.

A number of things should be noted about these results.
Most important, the implementation of the FFT that is be-
ing used produces a frequency domain representation that is
scaled to fit the size of the destination image. Thus, the
interpixel distance in the Fourier magnitude image is not a
constant spatial frequency interval, but varies with image
content. As a consequence, interpixel distances in the
Hough transform space also vary with image content and
do not correspond to absolute velocity values. The result of
this is that velocity values cannot be read directly from the
Hough transform space. To overcome this, we have cali-
brated the Hough Transform velocity space for each image
sequence by manually identifying a fiducial mark in the
moving object and identifying its position in the first and
last images. This yields the actual interframe velocity val-
ues in units of pixels/frame. Hough transform velocity in-
terpixel values are then computed by identifying the maxi-
mum in the Hough transform generated using a similar
image sequence. While this situation is not ideal, in most
practical situations a calibration phase is not uncommon. In
any event, an implementation of an FFT that will yield
absolute spectral values is planned.

% Error

1 2 3 4 5 8 7 8 9
Velocity (pixelsfframe)

Fig. 13 Error in velocity measurement for constant background.
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5 Discussion

5.1 Implications of Using the Wave Model

The velocity of objects moving paralle] to the image plane
is measured by treating each object as a distinct intensity
wave profile. It is assumed that each wave profile is an
additive component of the total image intensity profile and
hence that each is a solution to the wave equation.

Strictly speaking, this is not a valid assumption since the
intensity profile of an object does not add to the intensity
profile of the background visual environment; rather, it oc-
cludes it. As a result, the occluded part of the background
changes as the object moves and this distorts the phase
components of the background profile. As it happens, this
problem is in fact useful in circumstances where one is
attempting to estimate the motion of transparent or translu-
cent objects where the object and background intensity pro-
file are, to an approximation, additive (such as the situation
shown in Figs. 10 and 11).

5.2 Implications of Using the Fourier Transform

The Fourier transform represents a signal comprising two
or more distinct components of identical frequency but dif-
ferent phase by a single component in the frequency do-
main, with the magnitude determined by the relative phase
difference, and the phase equal to the sum of the phases of
the two components. This causes problems for the phase-
based velocity estimation procedure in that the model as-
sumes independent distinct (sinusoidal) components, possi-
bly of the same frequency but with different and varying
phases, for each object or wave profile. The Fourier domain
does not allow such a model and conflates the two compo-
nents of identical frequency into one frequency component
with additive phase and magnitude which is a function of
the relative phase of the components. This means that we
cannot be sure that all the components of a profile will be
present in the resultant image (due to destructive interfer-
ence) or that the phase change of a component will be
exclusively due to the translation of that profile: it could be
that the phase changes are aiso a result of the shift in the
components of another translating profile or object. Note
that this phase problem does not arise when there is only
one translating object since all phase changes are a result of
its translation even though the absolute phase value may
well contain an additive component due to the stationary
profile or the image background.

The consequence of this component conflation is that
when two translating profiles share a common spectrum
(ie., both comprise common spatial frequencies), the
changes in their additive phase will be a function of their
joint velocities, rather than the velocities of the individual

profiles. This problem can be surmounted, albeit at signifi- -

cant additional computational cost, by extending the Hough
transform to deal explicitly with two distinct velocities
[(vx],vyl) and (vxz,vyz)] rather than one (v,,v,), This
results in a 4-D accumulator space rather than a 2-D one;
identification in this space of local maxima of all possible
composite velocities allows the isolation of the individual
object velocities as well as their composite velocities.

5.3 Implications of Using the Hough Transform

As noted in the introduction, spatiotemporal frequency and
phase-based approaches to the estimation of object veloc-
ity, while not as popular as other approaches, have been
successfully used for situations where the objects are trans-
lating on a plane parallel to the image plane. The advantage
of using the Hough transform to group the Fourier compo-
nents rather than a temporal Fourier transform is that the
grouping criterion can be arbitrarily complex (although
with a consequent increase in computational cost). In this
paper we have restricted ourselves to the normal transla-
tional motion, but the technique can be extended in a very
straightforward manner to deal with more complex circum-
stances as follows.

Object scaling. If the object translates either toward or
away from the camera, then the perspective lens distortion
will result in a scaled image of the object. Such a scaling
results in an inverse scaling of the spatial frequencies and
this is easily incorporated into the equation defining the
Hough transform. This results in a 3-D Hough transform
defined in terms of v,, vy, s: the x and y velocity com-
ponents and the scaling factor, respectively.

Curvilinear motion. Objects that do not describe transla-
tion in a straight line, i.e. v,=v,(x,y) and Uy=0,(x,¥),
can also be estimated if their velocity profiles are continu-
ous. In this case, the object will generate a velocity curve
(or crest) in the Hough transform space rather than a single
peak.

Nonuniform velocity. 1t is often the case that objects do
not move with constant velocity and the velocity is time
dependent, i.e. v,=v () and v, =v,(#). In this case, the
Hough transform can be extended by two additional dimen-
sions v () and v,(¢) to cater for expected velocity profiles.
For example, let v, =at and v,=bt, in which case we have
a 4-D transform space defined on v,, Uy, 4, and b.

Rotation about an axis. The situation where an object
rotates about a vertical or horizontal axis parallel to the
image plane as it translates can be adjusted for by allowing
independent scaling of the object in the horizontal and ver-
tical directions, respectively.

Segmentation. Since the Hough transform effects a
grouping process, explicitly identifying the component of
the moving object or wave profile, this object can be
emphasized—segmented—by noting the spatial frequencies
that correspond to these local maxima and by blocking all
other frequencies prior to the application of an inverse Fou-
rier transform.

6 Conclusions

A fiexible and extendible technique for estimating the ve-
locity of objects moving ir image sequences has been pre-
sented and its efficacy has been demonstrated. It now re-
mains to validate and evaluate the proposed extensions.
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