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Abstract

A technique for computing the optical flow of a sequence of four or more images is
presented. The velocity at each point in the sequence can be computed by treating a local
region as a distinct sub-image which is translating with some velocity and by identifying the
Fourier components which exhibit the magnitude and phase changes which are consistent
with this velocity. The approach presented is more general than previously developed Fourier
approaches to optical flow estimation because it does not assume that the entire sub-image
is translating with a unique velocity. Instead, it allows that there may be (and certainly
will be at occluding boundaries) two objects moving in the image, each having a distinct
velocity. Consequently, it computes both possible velocities and chooses as the velocity which
possesses the greater number of Fourier components.

The proposed approach is evaluated using Otte and Nagel s benchmark image sequence,
[6], for which ground-truth data is available, and both maximum and RMS errors of velocity
magnitude and direction are computed.

1  Introduction

The measurement of optical flow has received a great deal of attention by the computer vision
community and the literature is replete with a very large number of publications on the topic.
Surveys and comparisons of the different approaches can be found in comprehensive works by
Barron et al. [5] and by Otte and Nagel [6]. Most approaches to the measurement of optical flow
in images normally exploit one of two primary techniques. The first involves the computation
of the spatio-temporal derivatives (first-order or second-order), differentiating the (filtered or
infiltered) image sequence with respect to time and thus computing the optical flow field (e.g.
[3]). The second involves either feature- or region-based matching (such as normalized cross-
correlation) of local iconic information such as raw image data or segmented features or objects.
Comparisons of the many variations of these approaches and the relationship between them can
be found in [5, 6, 7, §]. :

A lesser-used approach exploits the regularity in spatiotemporal-frequency representations of
the image, such as the spatiotemporal Fourier Transform Domain, resulting from certain types
of image motion [9, 10, 11, 12, 13].

In this paper, we present an alternative formulation of the above approach. This alternative
uses the normal spatial Fourier Transform together with a Hough Transform, rather than the
spatiotemporal Fourier Transform. The velocity at each point in the sequence is computed by
treating a local region as a distinct sub-image which is translating with some velocity and by
identifying the Fourier components which exhibit the magnitude and phase changes which are
consistent with this velocity. The approach presented is more general than previously developed
Fourier approaches to optical flow estimation because it does not assume that the entire sub-
image is translating with a unique velocity. Instead, it allows that there may be (and certainly
will be at occluding boundaries) two objects moving in the image, each having a distinct velocity.



Consequently, it computes both possible velocities and chooses as the velocity which possesses
the greater number of Fourier components. The approach is based on the comstruction and
solution of a set of four simultaneous quadratic equations in four complex unknowns. These
unknowns are the Fourier components of two objects translating in the image and the phase
change associated with their displacement. A Hough transform is used to group each of these
solutions into two distinct sets each of which exhibits a common phase change and, hence, a
common velocity. Because it bases the velocity computation on the Fourier phase information,
the approach is able to estimate the velocity on any signal function except a uniform flat field
(which has an ambiguous flow field in any case) and, consequently, the approach lends itself to
the production of arbitrarily dense optical flow fields. In addition, the technique facilitates the
computation of the velocity vectors with sub-pixel accuracy.

The proposed approach is evaluated using two images from Otte and Nagel’s benchmark-
image sequence [6], for which ground-truth data is available, and both maximum and RMS
errors of velocity magnitude and direction are reported.

2 Theoretical Background

It is shown elsewhere [18] that an image sequence comprising two additive images can be decom-
posed into the constituent images, provided each constituent image exhibits a distinct velocity.
This decomposition is effected by solving a a set of four simultaneous quadratic equations in four
complex unknowns. These unknowns are the Fourier components of two objects translating in
the image and the phase change é¢(kz, ky) associated with the displacement of each of the two
constituent images. This phase change is a spatial frequency-dependent function of the velocity
of the image and is given by:

8k, ky) = —(viks8t + v ky6t) (1)

This phase change will differ for each object ¢. It only remains, then, to identify the two velocities

(v}, v}) and (v2,77). ‘We do this using a Hough transform. From equation 1 we have:
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(86(kz, y) — kova6) (2)

Ty =

This equation represents a Hough transform in the two variables (v, v,) which we solve for all
6(kz,ky), kz, ky. and vz, Note that 6¢(ks, ky) = arctan(SA®(ky, ky), RAD( ke, ky)). Local
maxima in this Hough transform space represent the velocities which are exhibited by the
frequency components. In this case. there are two velocity maxima, one corresponding to wave

1 and the other to wave 2. The location of these maxima give us (v},v}) and (vZ,v2) and, thus,

Yy
we can proceed to sort the components.
Note that the Hough transform equation 2 becomes degenerate if k, = 0 in which case we

use an alternative re-arrangement as follows:

(8 key ky))
Ve = T ; (3)

3 Results

In the estimation of velocity at a point, we base the estimate on the translation which is apparent
in a local region (or window). Unfortunately, the image data in such a region will, in fact, exhibit
a change due not only to the signal shift but also the translation of objects into the window and
out of the the window. Consequently, there is a change in the spectral content of the window and
not just a phase change as is assumed in the model. In order to reduce the impact of this ‘edge
effect’, image data in a region is weighted as a function of its distance from the region centre. In
this paper, a Gaussian weighting function is used and the Gaussian’s standard deviation ¢ chosen
such that the weighting at a some distance from the region centre is 50% of that at the region

118



centre, where w is the length of the side of the 2-D region. Results are presented for Gaussian
weighting functions of three standard deviations, each representing increased attenuation of
image data toward the edge of the image (the three functions provide 50% weighting at 5 %,
and 3 from the region centre). In the following, we will denote the three Gaussian functions
as oy, Ozu, and Tu.

Figures 1 through 2 demonstrate the results of applying the technique to two images in Otte
and Nagel’s ground-truth test sequence [6].

Table 1 summarizes the mean magnitude and the mean direction of ground-truth data and
the measured velocities; table 2 provides a summary of the RMS and mean errors of the measured
velocities. -

Note that all of the results presented in this paper are the unprocessed output of the algorithm
(apart from interpolation); each velocity vector has been estimated independently and the vector

field has not be subjected to median or mean filtering.

4 Conclusions

The technique presented estimates the optical flow of an image sequence with at least four images
by decoupling the Fourier transform of a local Gaussian-weighted window centred at every point
at which the flow field is to be computed. The results compare very favourably with ground
truth optical flow data for the benchmark image sequence used to test the approach.

Problems remain at occluding contours. However, since the technique computes the velocities
of both objects in the local window around the occluding boundary (i.e. the occluding object
and the occluded background) it should be possible, in principle at least, to compute the correct
flow field on either side of the velocity discontinuity (i.e. the occluding boundary).
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Image Magnitude Direction

mean | standard | mean | standard

deviation deviation

Ground Truth | 1.353 0.807 0.272 0.231
Se 10959 0766 |0.240 | 0.374

& 10991] 0.793 |0.249 | 0.289

% 0.975 0.772 0.246 0.289

Table 1: Summary of mean magnitude and the mean direction of ground-truth data and mea-
sured velocities (using Gaussian weighting functions with 50% weight at %ﬁ %, and § pixels
from window centre, respectively, where w = window size).

Gaussian RMS Error Mean Error
Weighting

Magnitude | Direction | Magnitude | Direction
(pixels) | (radians) | (pixels) | (radians)

s 0.522 0.202 0.280 0.070
2w 0.531 0.235 0.273 0.102
¥ 0.510 0.282 0.287 0.106

Table 2: Summary of Errors in measured velocities (using Gaussian weighting functions with

50% weight at 58’3, 2‘sl£% and ¥ pixels from window centre, respectively, where w = window size).
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Figure 1: (a) and (b) Images number 40 and 43 of Otte and Nagel's ground-truth sequence.
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Figure 2: (a) True optical flow field computed from Otte and Nagel’s ground-truth data (sampled
every ten pixels); Optical flow field computed using phase information: Gaussian weighting
function with 50% weight at (b} ¥ pixels (c) %E pixels (d % pixels from window centre, w =
window size).
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